
NoSQL Database Design Processes - A Comparative
Study

Luciano Marrero1 , Verena Olsowy 1 , Pablo Thomas1

1 Instituto de Investigación en Informática LIDI

Facultad de Informática - Universidad Nacional de La Plata – Argentina

Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires

(CIC)

526 e/ 10 y 11 La Plata Buenos Aires

{lmarrero, volsowy, pthomas}@lidi.info.unlp.edu.ar

Abstract. NoSQL databases have emerged as a response to scalability problems
presented by relational databases when used in Big Data contexts. These
databases do not have a standard process for designing data schemas, but have
emerged as solutions directly at the physical level. As NoSQL databases have
gained popularity, different NoSQL design processes and/or methodologies
have been proposed, which are necessary to understand the semantics of the
stored data. This paper presents a comparative study of NoSQL database design
processes.

Keywords: NoSQL, Design NoSQL, Database Design Processes.

1 Introduction

For several years now, there have been software applications that have pushed
relational databases to their performance limits. Examples of these applications are
social networks, such as Twitter or Facebook, online shopping applications, such as
Amazon or eBay; Internet of Things (IoT) applications, Smart Cities; or the use of Big
Data, among others. These applications need to manage large volumes of data that are
often distributed across multiple servers, must ensure adequate response times and high
availability in contexts of a high number of concurrent requests. In these scenarios,
relational databases have shown different scalability problems. In response to this
problem, a new generation of database management systems, known as NoSQL, has
emerged.

NoSQL is not only an alternative to relational databases, but is an umbrella term for
various strategies for storing unstructured data. Initially, these databases emerged at the
implementation level (physical level), and consequently without a defined process for
their design [5, 6].

Traditional relational database design and construction methodologies have been
extensively studied, applied and refined for decades. However, the principles and/or
rules that apply to a relational data model are not appropriate for a NoSQL database.
This is because they have a different implementation, therefore, their design process
must also be different.

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 58 -

This paper proposes a comparative analysis of NoSQL database design processes.
Starting from section 2, the paper is organized as follows: first, the essential aspects

of NoSQL databases are presented, section 3 presents the selected design processes,
section 4 presents a comparative analysis, and finally, section 5 expresses conclusions
and future work.

2 Main features of NoSQL databases

 NoSQL differs from traditional relational database management systems in several
respects; it does not have a structured query language (SQL) as its core language, does
not require a fixed, tabular structure, does not support JOIN operations, does not fully
guarantee ACID properties (atomicity, consistency, isolation and durability), and is
generally suitable for horizontal scalability [6, 7, 8].

NoSQL proposes a system called "BASE (Basically Available, Soft State, Eventual
Consistency)". Through these properties basic availability is achieved, meaning that the
system will be available most of the time. With soft state the system becomes more
flexible in terms of consistency and with eventual consistency it is guaranteed that the
system will eventually become consistent [6, 7, 8]. There are four main types of storage
for NoSQL Databases.

Key/Value Storage: Simple in implementation, they store data as a set of
"key/value" pairs. The key represents a unique identifier that can return an arbitrary
complex object of information, called a value. For example, Redis and DynamoDB,
among others, implement this type of storage. [13, 14].

Documentary Storage: the central concept of this type of storage is the document.
A Documental NoSQL Database stores, retrieves and manages documents. These
documents encapsulate and encode data in some standard format (XML, YAML, JSON,
BSON). For example, MongoDB and CouchDB, among others, are implementations of
Document Databases.[9][10]

Column Family Storage: In this type of storage, data is organized by columns,
rather than rows. For example, Cassandra and HBase, among others, use this type of
storage. [15][16].

Graph Storage: the database is represented under the concept of a graph, allowing
the information to be stored as nodes and their respective relationships with other nodes
by means of edges. Graph theory is applied to traverse the structure. They are useful
for storing information in contexts where there are numerous relationships between
their data. Neo4j and OrientDB, among others, implement this type of storage. [11][12].

3 Design processes for NoSQL databases

In recent years, methodologies for the design of NoSQL databases have emerged. In
[5] a literature review was conducted on this topic. As a result of this review, only three
processes for the design of NoSQL databases have been identified [1], [2], [3, 4], which
are analyzed in the present work.

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 59 -

3.1 Mortadelo: Automatic generation of NoSQL stores from plataform-
independent data models [1]

Mortadelo is described as a model-based NoSQL database design process, where,
starting from a conceptual data model, independent of any database type, a possible
implementation for a specific NoSQL database system is autonomously generated. In
addition, this process allows the final design to be configured according to the needs of
each context.

This process needs to operate with well-defined models, in particular, it needs as
input a metamodel in which the conceptual data model and the queries that will retrieve
and update the represented information are specified. In addition, it allows certain
general annotations to be made, e.g. the update rate that an entity is likely to have. This
metamodel is called Generic Data Metamodel (GDM) and describes its components
(entities, relations or references and queries) by means of a textual notation that has its
own syntax.

In this process, starting from a case study, represented through a GDM, logical
models are proposed for two categories of unstructured data storage, column family,
where the Cassandra database engine [15] is used, and documentary, where the
MongoDB database engine [9] is used. For this purpose, a set of predefined rules and
algorithms are applied to transform an instance of a conceptual model into a concrete
logical model for a NoSQL database type.

Finally, using another set of rules, they generate concrete code transformations for
two database engines, Cassandra (column family storage) and MongoDB (document
storage), i.e. the physical schema for a specific database engine is generated.

3.2 NoAM (NoSQL Abstract Model): Data Modeling in the NoSQL World [2]

A design process is proposed that has a conceptual phase, a logical phase, which is
independent of the database type, and a final phase that considers the specific
characteristics of a NoSQL database engine. NoAM is based on the following main
activities:
A. Conceptual data modeling from Domain Driven Design (DDD) resulting in a UML

diagram. There is no mention of how to realize this diagram.
B. On the UML diagram of the previous point, aggregates are identified. An aggregate

is a group of related objects, representing an atomic unit of access and manipulation.
C. Implementation of the NoAM model based on the identification of aggregates.

The process begins with database design, building a conceptual representation of the
data of interest, in terms of entities, relationships and attributes. Next, aggregations are
identified. This activity may be driven by data access patterns, as well as by scalability
and consistency needs. Specifically, aggregates must be designed as the units in which
atomicity must be guaranteed. Each aggregate should include all the data required by a
relevant data access operation. On the other hand, aggregates should be as small as
possible. Small aggregates reduce concurrency collisions and meet performance and
scalability requirements.

In this approach, NoAM is used as an intermediate model between aggregates and
NoSQL databases. In NoAM, the unit of data access and distribution is modeled by a
block, which represents a maximal unit of data for which atomic, efficient and scalable
access operations are provided. NoSQL systems provide efficient, scalable and

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 60 -

consistent operations on blocks and, in turn, this choice propagates such qualities to
operations on aggregates.

Finally, we discuss how a NoAM data representation can be implemented in a
specific NoSQL database engine (e.g., MongoDB [9]).

3.3 Modeling NoSQL databases: From Conceptual to Logical Level Design
[3,4]

This approach proposes a common conceptual level model for several types of
NoSQL databases and a NoSQL data specification language to represent a logical level
data model, independent of any physical level representation. In addition, different
validation rules have been proposed with respect to the conceptual model through the
evolution of a case study.

This conceptual model has a common set of constructs, relationships and a set of
meaningful properties of relationships to unify the conceptual level representations of
different NoSQL databases. This model consists of three interrelated layers: Collection,
Family and Attribute. The Attribute layer is the base layer of the conceptual model and
the AT construct types are groups of all possible same instance types and elementary in
nature.

The family layer is the middle layer of the conceptual model and can contain
numerous types of FA constructs. This layer can be decomposed into multiple levels
according to the designers' preferences.

The collection layer is the top layer of the conceptual model. The semantically
related families of the top layer are assembled to form a column.

From a higher level, the database can be viewed as a set of columns.
The constructs of this model are connected to each other by distinct relationships.

These relationships can be of two types: type relationship between layers and type
relationship within the layer. These relationships have several properties, such as
multiplicity, order, modality, availability, conditional participation and consistency.

A specification language is proposed to transform a conceptual data model into a
logical model and then into a corresponding physical model for a NoSQL database
engine.

Finally, a set of validation rules is proposed for the NoSQL model obtained, these
rules are divided into three groups: for structural validation, for constraint validation
and for consistency validation.

4 Comparative analysis

The three works present a design process for NoSQL databases. These three
processes propose an approach which starts with a conceptual modeling stage,
continues with a logical model and culminates with a physical model specific to a
particular NoSQL database engine.

All three processes present details that should be taken into account when using
and/or applying each of them.

In [1], it is required to define a metamodel called GDM that integrates a high-level
conceptual model and the queries that will impact the database. Defining queries at an
early stage can be prone to major changes at later stages when there are changing

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 61 -

requirements. In addition, examples are presented for specific NoSQL databases,
Cassandra for columnar family and MongoDB for documents. In the case of NoSQL
databases with key-value storage, the possibility of applying this design process
following the same rules as for column-family and document NoSQL databases is
mentioned. For problems where the complete conceptual model and the main queries
that will impact the database are available, it is a NoSQL database design process
through which a physical model can be obtained for two types of NoSQL database
engines, column-family (Cassandra) and document (MongoDB). For key-value NoSQL
database types it is mentioned that it is an applicable process, following the same
guidelines as for column-family and document engines, but no example is specified and
with respect to graph-oriented NoSQL database types, no details of its application have
been provided.

In [2], the starting point is a UML diagram [x] that is generated from a DDD
(Domain-Driven Design) of which no details are given as to how it was done. On the
UML model generated, the design of aggregates is carried out. This design requires
knowledge of how the data will be retrieved and modified, which makes the process
difficult, as it is generally difficult to establish the exact way in which the data will be
manipulated at an early stage of the design. However, for documentary NoSQL
database types, which have flexible schemas, or for key-value NoSQL databases, where
the key must be clearly defined and is the only way to access the data, this design
process can be adequately applied. For column-family NoSQL databases, e.g.
Cassandra and/or graph-oriented databases, e.g. Neo4j [11], there is not enough detail
to draw a conclusion.

In [3, 4] the design of a conceptual model specifically created for the proposed
approach that has a set of layers or phases is required. In this conceptual model the
existing relationships between the data is not explicit, but is at the layer level, something
that can make it difficult to read and interpret. Subsequently, a logical and physical
model is defined based on process-specific templates and finally a set of 18 rules that
can be applied to obtain a final physical model must be analyzed. Compared to [1] and
[2] this approach has formalisms and technicalities that make it a design process that
demands a lot of attention and discipline from the designer. However, it provides an
overview that supports changes dynamically and has important features with respect to
data availability and replication, something that is not clear in [1] and [2].

In summary, in the case of using a NoSQL database engine that implements column
family storage (e.g. Cassandra) or document storage (e.g. MongoDB), the design
process proposed in [1] could be considered, this is because, in the examples presented,
it is a complete process in its definition and its implementation is clearer and simpler
compared to [2, 3, 4].

For graph-oriented NoSQL database engines, the design process defined in [3, 4]
could be used, as it is the only one that considers this type of storage. For key-value
NoSQL database engines, the design process in [1] could be used, if it is possible to
generate the GDM metamodel. In the case of having only the conceptual model, one
could consider the design process [2] or [3, 4] if one wants to use the phased conceptual
model defined in that approach.

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 62 -

5 Conclusions and future work

This paper focuses on the analysis of three processes for the design of NoSQL
databases. A literature review was conducted in [5], which identifies three design
processes or methodologies that are presented or classified as applicable to more than
one type of NoSQL databases [1], [2], [3, 4].

First, Mortadelo: Automatic generation of NoSQL stores from platform-independent
data models [1] was presented. This approach describes a process based on models that
need as input the conceptual data model and the queries that will impact the final
database. Subsequently, the derivation is made to two logical models according to the
type of database to be used (column family and documentary). Finally, a set of
algorithms are applied, according to the logical model generated, to create the physical
model corresponding to the NoSQL database engine to be used.

Secondly, NoAM: (NoSQL Abstract Model): Data Modeling in the NoSQL World
[2] was presented. This approach proposes a phased design process. In the first phase
the conceptual data model is made, and a set of aggregates are identified, in the second
phase a logical model is proposed and finally, in the third phase the physical model is
generated according to the NoSQL database engine to be used.

Thirdly, the approach Modeling NoSQL databases: From Conceptual to Logical
Level Design [3, 4] was presented. In this approach, a conceptual model was presented,
which is generated based on a set of constructs and/or layers. Then, through a set of
templates, the corresponding transformations are proposed to obtain a logical and
physical model according to the NoSQL database engine to be used.

Finally, a comparative analysis is proposed where it is suggested which design
process or processes are more convenient according to the type of NoSQL database to
be used.

As future work, we intend to apply the design processes analyzed to different case
studies and different types of NoSQL databases.

References

1. Alfonso de la Vega, DiegoGarcía,Saiz Carlos Blanco,Marta Zorrilla, Pablo Sánchez.
Mortadelo: Automatic generation of NoSQL stores from platform-independent data
models.Future Generation Computer Systems. Volume 105, April 2020, Pages 455-
474.

2. Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, Riccardo Torlone. Data Modeling in
the NoSQL World. HAL open science. https://hal.archives-ouvertes.fr/hal-01611628.

3. Shreya Banerjee, Anirban Sarkar. Modeling NoSQL Databases: From Conceptual to
Logical Level Design. 3rd International Conference on Applications and Innovations
in Mobile Computing (AIMOC – 2016) At: Kolkata, India.

4. Shreya Banerjee, Anirban Sarkar. Logical level design of NoSQL databases.2016 IEEE
Region 10 Conference (TENCON).

5. Luciano Marrero, Verena Olsowy, Fernando Tesone, Pablo Thomas, Leandro
Corbalán, Juan Fernández Sosa, Patricia Pesado: Un Estudio de Procesos de Diseño de
Bases de Datos NoSQL. XXVIII Congreso Argentino de Ciencias de la Computación
- CACIC 2022. ISBN: 978-987-1364-31-2.
http://sedici.unlp.edu.ar/handle/10915/149452.

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 63 -

https://www.sciencedirect.com/science/article/abs/pii/S0167739X19312063#!
https://www.sciencedirect.com/journal/future-generation-computer-systems
https://www.sciencedirect.com/journal/future-generation-computer-systems/vol/105/suppl/C
https://hal.archives-ouvertes.fr/hal-01611628
https://ieeexplore.ieee.org/author/38579091900
https://ieeexplore.ieee.org/author/37305200400
https://ieeexplore.ieee.org/document/7848452/
https://ieeexplore.ieee.org/xpl/conhome/7838019/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7838019/proceeding
http://sedici.unlp.edu.ar/handle/10915/149452

6. Pesado P., Thomas P., Delía L., Marrero L., Olsowy V., Tesone F.: Análisis de
performance en Bases de Datos NoSQL y Bases de Datos Relacionales. XXVI
Congreso Argentino de Ciencias de la Computación (CACIC 2020). ISBN 978-987-
4417-90-9. http://sedici.unlp.edu.ar/handle/10915/114202.

7. Pesado P., Thomas P., Delía L., Marrero L., Olsowy V., Tesone F., Fernandez S. J.:
Un estudio comparativo de bases de datos relacionales y bases de datos NoSQL. XXV
Congreso Argentino de Ciencias de la Computación (CACIC 2019). ISBN 978-987-
688-377-1. http://sedici.unlp.edu.ar/handle/10915/91403.

8. Migani Silvina, Vera Cristina, Lund María Inés. NoSQL: modelos de datos y sistemas
de gestión de bases de datos. XX Workshop de Investigadores en Ciencias de la
Computación (WICC 2018, Universidad Nacional del Nordeste).
http://sedici.unlp.edu.ar/handle/10915/67258.

9. MongoDB. https://www.mongodb.com/es. Abril de 2023.
10. CouchDB. https://couchdb.apache.org/. Abril de 2023.
11. Neo4j. https://neo4j.com/. Abril de 2023.
12. OrientDB. https://orientdb.org/. Abril de 2023.
13. Redis. https://redis.io/. Abril de 2023.
14. Amazon DynamoDB. https://aws.amazon.com/es/dynamodb/. Abril de 2023.
15. Apache Cassandra. https://cassandra.apache.org/_/index.html. Abril de 2023.
16. Apache HBase. https://hbase.apache.org/. Abril de 2023.

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 64 -

http://sedici.unlp.edu.ar/handle/10915/114202
http://sedici.unlp.edu.ar/handle/10915/91403
http://sedici.unlp.edu.ar/handle/10915/67258
https://www.mongodb.com/es
https://couchdb.apache.org/
https://neo4j.com/
https://orientdb.org/
https://redis.io/
https://aws.amazon.com/es/dynamodb/
https://cassandra.apache.org/_/index.html
https://hbase.apache.org/

	03-CONTENIDO
	11-2558-Thomas-NoSQL+Database+Design+Processes+-+A+Comparative+Study

