Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-06-18T16:14:09Z
dc.date.available 2024-06-18T16:14:09Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/167341
dc.description.abstract Purpose: Optimizing brain bioavailability is highly relevant for the development of drugs targeting the central nervous system. Several pharmacokinetic parameters have been used for measuring drug bioavailability in the brain. The most biorelevant among them is possibly the unbound brain-to-plasma partition coefficient, Kpuu,brain,ss, which relates unbound brain and plasma drug concentrations under steady-state conditions. In this study, we developed new in silico models to predict Kpuu,brain,ss. Methods: A manually curated 157-compound dataset was compiled from literature and split into training and test sets using a clustering approach. Additional models were trained with a refined dataset generated by removing known P-gp and/or Breast Cancer Resistance Protein substrates from the original dataset. Different supervised machine learning algorithms have been tested, including Support Vector Machine, Gradient Boosting Machine, k-nearest neighbors, classificatory Partial Least Squares, Random Forest, Extreme Gradient Boosting, Deep Learning and Linear Discriminant Analysis. Good practices of predictive Quantitative Structure-Activity Relationships modeling were followed for the development of the models. Results: The best performance in the complete dataset was achieved by extreme gradient boosting, with an accuracy in the test set of 85.1%. A similar estimation of accuracy was observed in a prospective validation experiment, using a small sample of compounds and comparing predicted unbound brain bioavailability with observed experimental data. Conclusion: New in silico models were developed to predict the Kpuu,brain,ss of drug candidates. The dataset used in this study is publicly disclosed, so that the models may be reproduced, refined, or expanded, as a useful tool to assist drug discovery processes. en
dc.language en es
dc.subject ADME properties es
dc.subject blood-brain barrier es
dc.subject brain bioavailability es
dc.subject central nervous system es
dc.subject machine learning es
dc.subject pharmacokinetics modeling es
dc.subject artificial intelligence es
dc.subject unbound partition coefficient es
dc.title Application of machine learning to predict unbound drug bioavailability in the brain en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.3389/fddsv.2024.1360732 es
sedici.identifier.issn 2674-0338 es
sedici.creator.person Morales, Juan Francisco es
sedici.creator.person Ruiz, María Esperanza es
sedici.creator.person Stratford, Robert E. es
sedici.creator.person Talevi, Alan es
sedici.subject.materias Biología es
sedici.description.fulltext true es
mods.originInfo.place Laboratorio de Investigación y Desarrollo de Bioactivos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Frontiers in Drug Discovery es
sedici.relation.journalVolumeAndIssue vol. 4 es


Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)