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Wheeler’s paradigm

I John Archibald Wheeler wrote the following: It is not
unreasonable to imagine that information sits at the core of
physics, just as it sits at the core of a computer. It from bit.
Otherwise put, every IT, every particle, every field of force,
even the space time continuum itself, derives its function,
its meaning, its very existence entirely, even if in some
contexts indirectly, from the apparatus elicited answers to
yes or no questions, binary choices, bits.

I It from bit symbolizes the idea that every item of the
physical world has at bottom, a very deep bottom, in most
instances, an immaterial source and explanation,

I that which we call reality arises in the last analysis from the
posing of yesno questions and the registering of
equipment-evoked responses; in short, that all things
physical are information theoretic in origin and that this is a
participatory universe.
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Fisher information measure

I Last 15 years: physics’ applications of Fisher’s information
measure (FIM), created in 1926. If associated with translations
of a one dimensional observable x (probability density ρ(x)) is

I

Ix =

Z
dx ρ(x)

�
∂ ln ρ(x)

∂x

�2

, (1)

I

Ix =

Z
dx ρ(x) (∇ ln ρ(x))2 or , setting ρ(x) = ψ(x)2, (2)

I

Ix = 4
Z

dx [∇ψ(x)]2. (3)

I Ix obeys the so-called Cramer-Rao inequality

(∆x)2 ≥ I−1
x , involving variance : (4)

(∆x)2 = hx2i − hxi2 =

Z
dx ρ(x) x2 −

�Z
dx ρ(x) x

�2

. (5)
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S = −
R

dx p(x) ln p(x) : MaxEnt’s ingredients

I Lagrange multipliers λj
I the information quantifier, and
I “prior"expectation values < Aj > (j = 1, . . . ,M) (input

information).
I For each j we have a pair (λj , Aj ).
I Always a normalization Lagrange multiplier α that is

Legendre conjugate to S.

I
Reciprocity conjugate pairs
([S]− < Aj >) and (α − λj ).

I [S] = S(< A1 >, . . . , < AM >) BUT α = α(λ1, . . . , λM).
I Shannon’s variation leads to an exponential function.
I fME(x) = exp{−[α+

PM
i=1 λi Ai(x)]}.
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More Fisher

I A MaxEnt-like program was successfully developed by us
that replaces Shannon’s information measure S by Fisher’s
one I. (local measure) in three relevant papers:

I 1) B. Frieden, A. Plastino, A. R. Plastino, B. Soffer, PRE 60
(1999) 48;

I 2) FPPS, PRE 66 (2002) 046128
I 3) S. P. Flego + FPPS, PRE 68 (2003) 016105.
I Instead of a FIXED-form PDF, a differential equation for the

PDF!!
I Such diff. eq. is Schroedinger’s!!
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FPPS Fisher treatment: Part I

I Fisher Measure I reads, for PDF f = ψ2:
I(hA1i, . . . , hAMi) = 4

R
dv [∇ψ(v)]2

I System specified by set of M physical quantities,
I µk = hAk i with Ak = Ak (v).

I µk are prior knowledge, empirical information measured.
I hAk i =

R
dv Ak (v) f (v), k = 1, . . . ,M.

I These mean values play here the role of extensive
thermodynamical variables.
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FPPS Fisher treatment: Part II

I − 1
2 ∇

2ψ − [
PM

k=1
λk
8 Ak ]ψ = α

8 ψ

I Schrödinger equation for a particle of unit mass moving in
the potential

I U = U(v) = −1
8
PM

k=1 λk Ak (v)

I Lagrange multiplier (α/8) plays the role of an energy
eigenvalue E = α/8.

I The λk are fixed by recourse to the available prior
information.

I ψ(v) is always real in the case in one dimensional
scenarios, or for the ground state of a real potential in N
dimensions.
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Legendre Transform

I Adrien-Marie Legendre
(September 1752 , January 1833).

I The Legendre transform is an operation that transforms
one real-valued function of a real variable into another,
maintaining constant its information content.

I The derivative of the function f becomes the argument to
the function fT .

I
fT (y) = xy − f (x); y = f 0(x) ⇒
reciprocity. Own inverse.

I Legendre ransformation is used to get from
Lagrangians the Hamiltonian formulation of classical
mechanics.

I E(S,V ,N) − F (T ,V ,N) ⇒ −F = ∂E
∂S S − E = TS − E

−(∂F/∂T ) = S, (∂E/∂S) = T Reciprocity Relations (RR).

A. Plastino Fisher Info and Quantum Mechanics



S−MaxEnt reciprocity

I fME(x) = exp{−[α+
PM

i=1 λi Ai(x)]}.
I α(~λ) = ln{

R
dx [exp(−

PM
i=1 λi Ai(x))]},

I [∂α(λ1, . . . , λM)/∂λj ] = −hAji,

I S = α+
PM

i=1 λi hAii,
I dS =

PM
i=1 λi dhAii

I
⇒ (∂S(hA1i, . . . , hAMi)/∂hAii) =
λi

I The reciprocity relations (in blue) are a manifestation of the
Legendre invariant structure of thermodynamics and its
most salient structural mathematical feature.
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Fisher reciprocity relations

I

I( ~hAk i) = α+
MX

k=1
λk hAk i .

I

α( ~λk ) = I( ~hAk i)−
MX

k=1
λk hAk i .

I

∂α

∂λi
= −hAii, λk =

∂I
∂ hAk i

.

I Recip. Relat. a Fisher-feature ⇒ Fisher-thermodynamics.
F. Pennini, A. Plastino, Reciprocity relations between
ordinary temperature and Fisher temperature, PRE 71
(2005) 047102.
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Hellmann-Feynman theorem and reciprocity

I Fisher Information, Hellmann-Feynman Theorem, and
Jaynes’ Reciprocity Relations, Annals of Physics 326
(2011) 2533.

I Feynamn-Hellmann theorem (HFT): how perturbations in
an operator affect the operator’s eigenvalues.

I HFT theorem assures that an eigenvalue Ei(b) of H(b) of
eigenvector ψi(b) varies with respect to b according to:

I
∂Ei
∂b

= hψi |
∂H
∂b
|ψii

I We showed that the above relation is just a reciprocity
relation if we express the potential in a series-expansion

I U(x) =
P

n cn xn, and regard cn as parameters.
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Virial-HF theorems are traditional properties of SE

I These properties lead to the SE’s Legendre structure by
themselves!

I QUANTUM CONNECTION
Legendre-transform structure derived from quantum
theorems
S.P. Flego, A. Plastino, A.R. Plastino, Physica A 390 (2011)
2276.

I VIRIAL THEOREM: For any stationary state of H = T + U
h − (~2/m) ~∇ iψ = h~x .~∇U(~x)iψ.

I Helmann-Feynman Theorem: (∂Ei/∂b) = hψi |(∂H/∂b)|ψii.

I −m
2∇

2ψ+ U(x)ψ = Eψ. Ordinary Schr. Eq. with assoc. Iψ
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Fisher + Classical Hamiltonians

I Assume that our prior information is that of the mean value
of a potential function V (x) in phase-space. Fisher
variational problem becomes

I

δ

�
I + λ0

Z
dxdp

h
f (x ,p) + λ

Z
dxdp

h
V (x)f (x ,p)

�
= 0.

(6)
I Schroedinger Eq. particle moves in potential well V (x).

I

Trajectories in the coordinate-subspace of classical
phase space that minimize Fisher’s measure are
identical to their quantum mechanical counterparts.

I Out of the infinitude of phase-space orbits, minimizing FIM
selects out just the quantum orbit subset. F. Olivares, A.
Plastino, B. H. Soffer, Quantum trajectories emerging from
classical phase space, Physica A 390 (2011) 1926-1930.
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Fisher-Schroedinger Statistical Mechanics

I Non-interacting classical particles of mass m with
coordinates q = (r,p), where mdr/dt = p. In extremizing
FIM we constrain the normalization of ρ(r) and η(p) to the
total number of particles N and to 1, respectively.

I Translational invariance is described by family of
distributions F (r0,p0) whose form does not change under
the transformations r0 = r− θr and p0 = p− θp. The density
can obviously be factorized in the fashion
F (r,p) = ρ(r)η(p) ⇒ I = Ir + Ip

I

Ir = cr

Z
dDr ρ(r) |∇r ln ρ(r)|2

Ip = cp

Z
dDp η(p) |∇p ln η(p)|2 .

(7)
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A. Hernando, A. Plastino, C. Vesperinas: Physica A 389 (2010) 490

I Penalize infinite values particle momentum with variance
constraint for η(p) to an empirically valueZ

dDp η(p)(p− p)2 = Dσ2
p = DmkBT , (8)

where p is the mean value of p.
I Virial Theorem: variance related to temperature T as
σ2

p = mkBT , kB Boltzmann const. Below µ, λ and ν are
Lagrange multipliers.

I

δ

�
cr

Z
dDr ρ |∇r ln ρ|2 + µ

Z
dDr ρ

�
= 0 (9)

and

δ

�
cp

Z
dDp η |∇p ln η|2 + λ

Z
dDp η(p− p)2 + ν

Z
dDp η

�
= 0.

(10)
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Fisher treatment of the ideal gas

I

ρ(r)η(p). Vary w .r .t . ρ gives
h
−4∇2

r + µ0
i
Ψ(r) = 0, (11)

where µ0 = µ/cr . To fix the boundary conditions, we first
assume that the N particles are confined in a box of
volume V , and next we take the thermodynamic limit
N,V →∞ with N/V finite. The equilibrium state
compatible with this limit corresponds to the ground state
solution (µ0 = 0), which is the uniform density ρ(r) = N/V .

I Introducing η(p) = Φ2(p) and varying with respect to Φ
leads to the quantum harmonic oscillator-like equationh

−4∇2
p + λ0(p− p)2 + ν 0

i
Φ(p) = 0, (12)

where λ0 = λ/cp and ν 0 = ν/cp. The equilibrium
configuration corresponds to the ground state solution,
which is now a gaussian distribution.
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Fisher treatment of the D−dimensional ideal gas

I Using (8) to identify |λ0|−1/2 = σ2
p we get the

Maxwell-Boltzmann distribution, which leads to a density
distribution in configuration space of the form

f (r,p) =
N
V

exp
�
−(p− p)2/2σ2

p
�

(2πσ2
p)D/2 . (13)

V is elementary phase-space Vol. Total microstate Nr. is
Z = N!VDN QN

i=1 F1(ri ,pi), where F1 = F/N is the
single-particle distr. N! counts all possible permutations for
distinguishable particles. S = −kB ln Z becomes, using
Stirling, well-known:

S = NkB

ln V
N

 
2πσ2

p

V2

!D/2

+
2 + D

2

 , (14)
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Scale invariance

I Because of the nature of the systems to be addressed we
consider now a one-dimensional system with a physical
parameter θ and a discrete coordinate k = k1, k2, . . . , ki , . . .
where ki+1 − ki = ∆k for a certain value of the interval ∆k .
This scenario arises, for instance, in the case of nuclear
multifragmentation, the abundances of genes, the
frequency of words, scientific collaboration networks, the
Internet traffic, Linux packages links, electoral results,
urban agglomerations, firm sizes, etc.

I In the continuous limit (∆k → dk ), the Fisher information
measure is cast as

I(F ) = ck

Z ∞

k1

dkF (k |θ)
���� ∂∂θ ln F (k |θ)

����2 . (15)
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Scale invariance II

I Instead of using translation invariance, we appeal to
scaling invariance

I F. Pennini, A. Plastino, B. H. Soffer, and C. Vignat, Phys.
Let. A 373 (2009) 817.

I so that we can anticipate some new physics. All members
of the family F (k/θ) possess identical shape —there are
no characteristic size, length or frequency for the
observable k— namely dkF (k/θ) = dk 0F (k 0) under the
transformation k 0 = k/θ. To deal with this new symmetry it
is convenient to change to the new coordinate u = ln k and
parameter Θ = ln θ. Why?
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Scale invariance III

I Because then the scale invariance becomes again
translational invariance, and we are entitled to use
essential result, namely, that MFI leads to a
Schroedinger-like equation. Note that the new coordinate
u0 = ln k 0 transforms as u0 = u −Θ. Defining f (u) = F (eu)
and taking into account the fact that the Jacobian of the
transformation is |dx/du| = eu and ∂/∂θ = e−Θ∂/∂Θ, the
Fisher information measure acquires now the form

I(F ) = cke−2Θ

Z ∞

u1

du euf (u)

����∂ ln f (u)

∂u

����2 , (16)

where u1 = ln k1, and the factor e−2Θ guaranties the
invariance of the associated Cramer-Rao inequality as
shown in PLA Vignat.
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More Scale invariance

I Scale invariance is a feature of objects or laws that do not
change if scales of length, energy, or other variables, are
multiplied by a common factor. The technical term for this
transformation is a dilatation (also known as dilation),

I One-dimensional system with dynamical coordinates
q = (k , v) where dk/dτ = v , with τ the time variable. We
define k as a discrete coordinate, i.e. k = k1, k2, . . . , kM ,
where ki = i∆k and M � 1, is the total number of bins of
width ∆k in our system.

I In order to address the scale-invariance behaviour of k we
change variables passing to new coordinates u = ln k and
w = du/dt .

I u and w are canonically conjugated and uncorrelated. This
assumption immediately leads to proportional growth since

dk/dt = v = kw . (17)
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More More Scale invariance II

I For constant w Eq. dk/dt = v = kw . yields exponential
growth k = k0ewt , which represents uniform linear motion
in u, that is, u = wt + u0, with u0 = ln k0.

I Scale transformation k 0 = k/θk leaves invariant the
coordinate w , whereas the coordinate u transforms
translationally as u0 = u −Θk , where Θk = ln θk . Physics
scale independent! System Translat. invariant with respect
to the coordinates u and w , so that distribution of physical
elements described by monoparametric translation
familiesas above.

I By analogy with the IG, we will call our system a
“scale-free ideal gas” (SFIG), i.e., a system of N
non-interacting elements.
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Scale invariance III

I Taking into account that i) u and w are canonical and
uncorrelated the density distribution can be factorized as
f (u,w) = g(u)h(w),and ii) that the Jacobian for our change
of variables is dkdv = e2ududw , the information measure
I = Iu + Iw can be obtained in the continuous limit as

Iu = cu

Z
Ω

du e2ug(u)

����∂ ln g(u)

∂u

����2
Iw = cw

Z ∞

−∞
dw h(w)

����∂ ln h(w)

∂w

����2 , (18)

where Ω = ln(kM/k1) = ln M is the volume defined in u
space.
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Fisher-Scroedinger treatment of the the scale-free ideal gas

I Z
Ω

du e2ug(u) = N,
Z ∞

−∞
dw h(w) = 1. (19)

We penalize infinite values for w with a constraint on the
variance of h(w) to a given measured valueZ ∞

−∞
dw h(w)(w − w)2 = σ2

w , (20)

where w is the average growth. The variation yields

δ

(
cu

Z
Ω

du e2ug
����∂ ln g
∂u

����2 + µ

Z
Ω

du e2ug

)
= 0 (21)

and

δ

(
cw

Z ∞

−∞
dw h

����∂ ln h
∂w

����2 + λ

Z ∞

−∞
dw h(w − w)2 + ν

Z ∞

−∞
dw h

)
= 0,

(22)
where µ, λ and ν are Lagrange multipliers.
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Fisher-Scroedinger treatment of the the scale-free ideal gas II

I Introducing g(u) = e−2uΨ2(u), and varying with respect to
Ψ leads, as is always the case with the MFI , to the
Schroedinger-like equation�

−4 ∂2

∂u2 + 4 + µ0
�

Ψ(u) = 0, (23)

where µ0 = µ/cu. Analogously to the IG, we impose
solutions compatible with a finite normalization of g(u) in
the thermodynamic limit N,Ω →∞ with N/Ω = ρ0 finite,
where ρ0 is defined as the bulk density. Solutions
compatible with the normalization of (19) are given by
Ψ(u) = Aαe−αu/2, where Aα is the normalization constant
and α =

√
4 + µ0. In this general case, the density

distribution as a function of k takes the form of a power
law: g(u)α(ln k) = A2/k2+α. The equilibrium is always
defined for the MFI as the ground state solution, which
corresponds to the lowest allowed value α = 0.
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Fisher-Scroedinger treatment of the the scale-free ideal gas III

I Introducing now h(w) = Φ2(w) and varying with respect to
Φ leads to the quantum harmonic oscillator-like equation�

−4 ∂2

∂w2 + λ0(w − w)2 + ν 0
�

Φ(w) = 0, (24)

where λ0 = λ/cw and ν 0 = ν/cw . The equilibrium
configuration corresponds to the ground state solution,
which is now a Gaussian distribution. Using (20) to identify
|λ0|−1/2 = σ2

w we get the Maxwell-Boltzmann distribution

h(w) =
exp

�
−(w − w)2/2σ2

w
�

√
2πσw

. (25)

The density distribution in configuration space
F (k , v)dkdv = f (u,w)e2ududw is then

F (k , v) =
N

Ωk2
exp

�
−(v/k − w)2/2σ2

w
�

√
2πσw

. (26)
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Fisher-Scroedinger treatment of the the scale-free ideal gas IV

I If we define ~ = ∆k2/∆τ as the elementary volume in
phase space, where ∆τ is the time element, the total
number of microstates is Z = N!~N QN

i=1 F1(ki , vi), where
F1 = F/N is the monoparticular distribution function and
N! counts all possible permutations for distinguishable
elements. The entropy equation of state S = −κ ln Z reads

S = Nκ

(
ln Ω

N

√
2πσw
H 0 +

3
2

)
, (27)

where κ is a constant that accounts for dimensionality and
H 0 = ~/(kMk1) = ~/(M∆k2) = 1/(M∆τ). Remarkably, this
expression has the same form as the one-dimensional IG
(D = 1 in (14)); instead of the thermodynamical variables
(N,V ,T ), here we deal with the variables (N,Ω, σw ), which
make the entropy scale-invariant as well.
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Fisher-Scroedinger treatment of the the scale-free ideal gas V

I The total density distribution for k is obtained integrating for all v
the density distribution in configuration space. Accordingly,
from (26) we get

F (k) =

Z
dvF (k , v) =

N
Ω

1
k

=
ρ0

k
. (28)

It can be show that it is just a uniform density distribution in u
space of the bulk density: F (k)dk = f (u)eudu = N/Ωdu = ρ0du.

I Represent empirical data with rank-plot. The j th system’s
element represented by its size, length or frequency kj vs. its
rank, sorted from the largest to the smallest one. This process
just renders the inverse function of the ensuing cumulative
distribution, normalized to the number of elements. We call r the
rank that ranges from 1 to N. For large N, the density distribution
(28) correspond to an exponential rank-size distribution

k(r) = kM exp
�
− r − 1

ρ0

�
. (29)

A. Plastino Fisher Info and Quantum Mechanics



Social examples of scale-free ideal gases

I Rank-size distribution of the cities of the province of
Huelva, Spain (2008), sorted from largest to smallest,
compared with the result of a simulation with Brownian
walkers (green squares).
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Social examples of scale-free ideal gases II

I Rank-plot of the 2008 General Elections results in Spain.
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Social examples of scale-free ideal gases III

I Rank-plot of the 2005 General Elections results in the
United Kingdom. (Red dots and fit to (29)).
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Digital

I Digital physics is a collection of theoretical perspectives
based on the premise that the universe is, at heart,
describable by information, and is therefore computable.

I Thus, the universe can be conceived of as the output of a
program in a vast, digital computation device.

I Digital physics is grounded in one or more of the following
hypotheses; listed in order of decreasing strength. The
universe, or reality:

A. Plastino Fisher Info and Quantum Mechanics



Digital II

I is essentially informational (although not every
informational ontology needs to be digital)

I is essentially computable
I can be described digitally
I is in essence digital
I is itself a computer
I is the output of a simulated reality exercise
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Digital IV

I Every computer must be compatible with the principles of
information theory, statistical thermodynamics, and
quantum mechanics. A fundamental link among these
fields was proposed by Edwin Jaynes in two seminal 1957
papers.

I The hypothesis that the universe is a digital computer was
pioneered by Konrad Zuse in his book Calculating Space.
The term digital physics was first employed by Edward
Fredkin, who later came to prefer the term digital
philosophy. Others who have modeled the universe as a
giant computer include Stephen Wolfram, and Nobel
laureate Gerard ’t Hooft.

I These authors hold that the apparently probabilistic nature
of quantum physics is not necessarily incompatible with the
notion of computability. Support from Seth Lloyd and David
Deutsch.
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