
TinyML for Small Microcontrollers

César A. Estrebou1[0000−0001−5926−8827], Marcos D. Saavedra2, Federico Adra2,
and Mart́ın Fleming2

1 Instituto de Investigación en Informática LIDI, Facultad de Informática,
Universidad Nacional de La Plata

{cesarest}@lidi.info.unlp.edu.ar
2 Facultad de Informática, Universidad Nacional de La Plata

Abstract. This paper describes the progress made in the context of a
research and development project on machine learning techniques and
algorithms applied to small microcontrollers. The beginning of the de-
velopment of EmbedIA, a machine learning framework for microcon-
trollers, is presented. The experiments carried out comparing the pro-
posed framework with other similar frameworks such as Tensorflow Lite
Micro, μTensor and EloquentTinyML show an important advantage with
respect to memory and inference time required by small microcontrollers.

Keywords: Machine Learning · Embedded Systems · Microcontrollers
· IoT · Convolutional Neural Networks · TinyML

1 Introduction

While machine learning is a term that encompasses many different approaches
to solving problems, TinyML is a subset of machine learning that refers specifi-
cally to the application of machine learning on resource-constrained devices like
microcontrollers.

In the past few years, the world has been experiencing a real proliferation of
new smart devices. One of the most interesting aspects of these is that, for the
first time, they are capable of running machine learning models on the device
itself. One of the main causes of this evolution is the paradigm shift where all
the information that was sent to the cloud for processing, began to be processed
at the edge to avoid problems [5, 10] related to bandwidth, response delays, high
computational and storage costs, higher energy consumption, among others.

However, machine learning is a complicated discipline and making it work
on small devices creates more than interesting challenges. This is why TinyML
has become a popular area of research and development, where machine learning
and in particular deep learning have the potential to provide powerful solutions
[9] as long as they can be adapted to devices with limited hardware resources.

In this context, in 2021 we initiated this research and development project
that aims to document, study and implement traditional machine learning tech-
niques adapted to small devices. In this paper we present the progress made
during the course of the past year.

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 42 -



2 Software and Hardware for TinyML

2.1 TinyML Microcontrollers

From the hardware point of view, the term TinyML is associated with relatively
powerful devices, with significant memory and computing capabilities for what
is considered a ”traditional” microcontroller. On the other hand, TinyML is
closely related to the IoT area, so it is usually considered only devices with
wireless communication.

Within the project, all microcontrollers with a minimum capability to run
machine learning algorithms are included for experimentation. The choice of
models is based on aspects such as local availability, low cost, low/medium com-
putational capacity and availability of open source software for application devel-
opment. Regarding connectivity, both IoT and non- IoT devices are considered,
since from a machine learning point of view there are many popular devices with
interesting hardware capabilities without this feature.

Currently, the project has several development boards for testing different
implementations of machine learning algorithms. The table 1 shows the micro-
controllers that have been tested as well as their technical characteristics.

Table 1: Relevant technical features of the MCUs used in the project.
Memory (KiB)

Board MCU Cores
Clock
(Mhz)

Bits Data Prog. FPU Connectivity

Arduino Mega ATmega2560 1 16 8 8 256 No No
Stm32f103c8t6 Arm Cortex-M3 1 72 32 20 64 No No
Stm32f411ceu6 Arm Cortex-M4 1 100 32 128 512 Si No
NodeMCU Tensilica L106 1 80 32 80 512 No Wi-Fi

ESP32-WROOM Xtensa LX6 2 160 32 520 448 Si Wi-Fi+BT
Raspberry Pi Pico RP2040 2 133 32 264 2048 No No

2.2 On-Line Platforms and Open Source Frameworks

There are a variety of on-line platforms (AlwaysAI, Edge Impulse, Qeexo, Carte-
siam.AI and OctoML, among others) that significantly simplify the development
and deployment of machine learning applications on microcontrollers. Some per-
form automatic exploration of solutions for data, others allow the configuration
of models from data and others optimize models for deployment on microcon-
trollers.

Regarding open source libraries and frameworks, there are several alterna-
tives but few of them provide support for neural networks and even fewer sup-
port convolutional neural networks. Among those analyzed within the project,

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 43 -



the following can be mentioned EloquentTinyML 3, Tensorflow Lite Micro4 [1],
μTensor 5, EdgeML [2] and CMSIS-NN [7]. In general, they all require experi-
enced users with respect to the generation of machine learning models as well
as the microcontroller development platform.

Both online platforms and open source frameworks/libraries are mostly de-
veloped and optimized for specific architectures such as ARM Cortex-M, for 32-
bit architecture or microcontrollers with support for FPU, DSP and/or SIMD
instructions. This excludes devices with different architectures or without hard-
ware for specialized mathematical computing. Another limitation that these li-
braries usually have is that they are developed for C++ 11 and rely on heavy
software architectures, object-based with inheritance and polymorphisms that
increase the size of the programs and slow down algorithm inference time. This
approach may be feasible for microcontrollers with good memory size and hard-
ware resources that accelerate mathematical computing, but it is unsuitable for
microcontrollers with low computing power and limited hardware resources.

2.3 Development of a New Open Source Framework

As mentioned in the section 2.2 the online platforms and frameworks have im-
portant limitations. In this context, it was decided to start the development of
EmbedIA, an open source framework to implement machine learning solutions
on microcontrollers with important hardware limitations. In this first stage it
was decided to focus on the implementation of neural networks, giving priority
to the layers and functions of convolutional neural networks.

EmbedIA is implemented in C, C++ and Arduino compatible code so that it
can be compiled on any platform that supports these programming languages. It
provides functionalities to perform inference and debugging of the models from
the microcontroller. Currently, it supports different neural network layers and
activation functions including convolutional, depthwise, binary, pooling, flatten,
fully connected, batch normalization, ReLU, sigmoid and softmax. It integrates
optimizations for 32-bit, 16-bit and 8-bit fixed-point arithmetic. This reduces
program size and RAM usage and speeds up inference time on microcontrollers
without floating-point support.

To improve the performance of data memory usage, a swap buffer is imple-
mented to minimize the amount of dynamic memory requirements and avoid
fragmentation, which is indispensable for those microcontrollers that do not im-
plement good memory management.

In addition, a conversion tool is provided to transform a model generated with
Tensorflow/Keras to its equivalent in C code. It allows to generate a C, C++
or Arduino project that includes the functions to perform the inference on the
converted model, possibility to use fixed point or floating point and debugging
functions for the model.

3 https://github.com/eloquentarduino/EloquentTinyML
4 https://www.tensorflow.org/lite
5 https://github.com/uTensor/uTensor

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 44 -



Tensorflow/Keras
neural network

training

C/C++ application
with model and

libraries
exportation

Project
Compilation

Deployment of
executable code

on the device

Architecture, network 
hyperparameters
and training data

selection

Solution
Deployment

Compilation
& Tests

EmbeIA-NN
Export

Model
Generation

Configuration

Fig. 1: Steps of development process with the EmbedIA Framework.

3 Experiments Performed and Results Obtained

A series of experiments have been performed on several convolutional neural net-
work [6] (CNN or ConvNet) models to compare the capabilities of EmbedIA with
respect to other frameworks/libraries. Initially, we considered to test the perfor-
mance of Tensorflow Lite Micro, EloquentTinyML, CMSIS-NN and EdgeML
but, unfortunately, the latter two do not have support for the microcontrollers
used.

Among the most relevant results we can highlight [3, 4] one where a convo-
lutional neural network model was used to recognize a total of 36 classes associ-
ated with images of 26 letters and 10 handwritten digits. The four Embedia-NN
implementations (8-bit, 16-bit and 32-bit fixed-point and floating-point) were
compared with other similar frameworks/libraries on microcontrollers of differ-
ent features, measuring data and program memory size required and inference
time consumed. It was found that the four variants of the proposed framework
clearly outperformed the implementations of μTensor, Google Tensorflow Lite
Micro and Eloquent TinyML. In particular the 16-bit fixed-point implementa-
tion achieves, on average, a 5 to 10 times improvement in inference time, about
3 times the data memory requirements and 3 to 7 times the program memory
requirements.

As part of the exploration of EmbedIA’s capabilities we can mention the
development of two interesting models that run on different microcontrollers. The
first model runs on an 8-bit Atmega 2560 with 8 Kib of RAM and recognizes
26 handwritten characters. The second runs on a Tensilica Xtensa LX6 and
recognizes 6 different voice commands. It should be noted that both models
could not be used in other frameworks because they exceeded the amount of
memory of the microcontrollers.

4 Final Comments

This paper has presented the progress of the research and development project
on machine learning applied to microcontrollers with significant hardware limi-
tations. It has started the development of EmbedIA, a machine learning frame-

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 45 -



work for microcontrollers, which at this stage is focused on the implementation
of neural network algorithms. So far, comparative performance tests with other
frameworks show the potential of this new framework.

Currently, the implementation of convolutional layers for binary neural net-
works is being finalized and experiments are being prepared to compare them
with the implementation of traditional convolutional networks. Different con-
volutional models are also being developed and tested for human detection on
microcontrollers with a small camera.

In the future, it is planned to implement a convolutional layered optimization
using an optimization called patch-based interference [8] which minimizes about
8 times the peak RAM requirement.

References

1. David, R., Duke, J., Jain, A., Reddi, V.J., Jeffries, N., Li, J., Kreeger, N., Nappier,
I., Natraj, M., Regev, S., Rhodes, R., Wang, T., Warden, P.: Tensorflow lite micro:
Embedded machine learning on tinyml systems (2021)

2. Dennis, Don Kurian and Gopinath, Sridhar and Gupta, Chirag and Ku-
mar, Ashish and Kusupati, Aditya and Patil, Shishir G and Simhadri, Har-
sha Vardhan: EdgeML: Machine Learning for resource-constrained edge devices,
https://github.com/Microsoft/EdgeML

3. Estrebou, C.A., Fleming, M., Saavedra, M.D., Adra, F.: A neural network frame-
work for small microcontrollers. In: Proceedings of the XXVII Argentinean
Congress of Computer Science. pp. 51–60 (2021)

4. Estrebou, C.A., Fleming, M., Saavedra, M.D., Adra, F., De Giusti, A.E.:
Lightweight convolutional neural networks framework for really small tinyml de-
vices. In: Narváez, F.R., Proaño, J., Morillo, P., Vallejo, D., González Montoya,
D., Dı́az, G.M. (eds.) Smart Technologies, Systems and Applications. pp. 3–16.
Springer International Publishing, Cham (2022)

5. Farhan, L., Kharel, R., Kaiwartya, O., Quiroz-Castellanos, M., Alissa, A., Ab-
dulsalam, M.: A concise review on internet of things (iot) -problems, challenges
and opportunities. In: 2018 11th International Symposium on Communication
Systems, Networks Digital Signal Processing (CSNDSP). pp. 1–6 (July 2018).
https://doi.org/10.1109/CSNDSP.2018.8471762

6. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge,
MA, USA (2016), http://www.deeplearningbook.org

7. Lai, L., Suda, N., Chandra, V.: Cmsis-nn: Efficient neural network kernels for arm
cortex-m cpus (2018)

8. Lin, J., Chen, W.M., Cai, H., Gan, C., Han, S.: Mcunetv2: Memory-efficient patch-
based inference for tiny deep learning. In: Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS) (2021)

9. Sharma, K., Nandal, R.: A literature study on machine learning fu-
sion with iot. In: 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI). pp. 1440–1445 (April 2019).
https://doi.org/10.1109/ICOEI.2019.8862656

10. Shekhar, S., Gokhale, A.: Dynamic resource management across cloud-edge re-
sources for performance-sensitive applications. In: 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. pp. 707–710 (May 2017).
https://doi.org/10.1109/CCGRID.2017.120

Short Papers of the 10th Conference on Cloud Computing, Big Data & Emerging Topics

- 46 -




