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Abstract. We propose a hybrid strategy that combines three ideas, 

namely, a convenient way for reducing the length of the permutations, 

using a permutation similarity measure adjusted for these clipped per- 

mutations, and the use of the closest permutant of each object as a pivot 

for it. In this way, we increase the discriminability of the permutation 

index in order to reduce even more the number of distance computations 

without reducing the answer quality. The performance of our proposal is 

tested using two classical real-world databases: NASA and Colors which 

are part of the SISAP project’s metric space benchmark. We reduced 

more than 30% of the number of distance evaluations needed to solve 

the queries on both databases. 

Keywords: Similariy search - Permutant-based index - Permutation 

similarity measures 

1 Introduction 

Nowadays, multimedia databases are widely used, and of course, the information 

retrieval is a crucial task. Similarity searching is the only operation that makes 

sense with this kind of data because two elements are never exactly the same. 

The similarity is a concept that depends on the database’s domain, it is modeled 

and defined by experts of each field, and it is frequently expensive to compute in 

terms of arithmetic operations, I/O events, etc. Naturally, when a query is given, 

the goal is to answer it as quickly as possible. One way to achieve efficiency is 

to reduce the number of distance computations for answering a query. 

There are two kinds of similarity queries, namely, K-Nearest Neighbor query 

NNx(q) and Range query R(q,r). The NNx(q) retrieves the kK database el- 
ements that are the most similar to g. The R(q,r) finds the elements of the 
database whose distance to q is lower than or equal to the radius r. 

One way to represent the problem is by mapping it to a metric space [5]. A 
metric space is a pair (U,d), where U is the universe of valid objects and d is a 

distance function that allows us to compare any two objects from U. Let X C U 

be the database of interest and n = |X|. As we assume that the function d 
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is expensive to compute, our goal is to minimize the use of d when answering 

queries. One issue in this kind of problems is the intrinsic dimension [10] because 
when it is high, the distance between any pair of different objects tends to be 

the same, so searching complexity rises as the intrinsic dimension increases. 

Assuming we cannot establish a total order over a multimedia database, we 

have to resort to using a proximity index. An index is a data structure that 

allows us to obtain a candidate list without sequentially scanning the entire 

database (unthinkable for huge datasets). There are three well-known index fami- 

lies, namely, the ones based on pivots, the ones based on compact partitions, and 

recently, the ones based on permutations. Pivot-based and compact-partition- 

based indexes are exact proximity indexes, while permutations-based ones are 

approximate; in the sense that we may lose a few relevant objects from the query 

answers, but accepting this loss allows us to improve dramatically the searching 

time. 

In this paper, we propose a hybrid method to improve the performance of 

the permutations-based indexes, combining three main ideas: the first one is 

to conveniently reduce the length of the permutations stored within the index, 

the second is adapting the permutation similarity measure for these clipped 

permutations, and the third one is to use the closest permutant of each object as 

a pivot for it. This novel strategy allows us to improve the already remarkable 

performance of the permutation-based index when solving similarity queries. 

The performance of our proposal is tested using two classical real-world 

databases: NASA and Colors, which are part of the SISAP project’s metric 

space benchmark available at [8]. We reduce more than 30% of the number of 

distance evaluations needed to solve the queries on both databases. 

The rest of this article is organized as follows: in Section 2 we describe the 

related work on metric spaces and similarity search. Section 3 shows our novel 

hybrid index and Section 4 gives its experimental evaluation using two real world 

datasets from SISAP library [8]. Finally, we expose conclusions and some possible 

extensions for this work in Section 5. 

2 Related Work 

Similarity searching in metric spaces has been studied in three leading fami- 

lies of algorithms: pivot-based algorithms [12,5] (for low intrinsic dimension), 
partition-based algorithms [4,6] (for medium to high intrinsic dimension), and 
permutation-based algorithms [3, 1] (for high intrinsic dimension). As we afore- 
mentioned, the permutation-based approach is one of the best representative 

methods to solve approximate similarity searches. In the following we briefly 

describe the pivot-based and permutation-based algorithms as they are relevant 

for this work. 

2.1 Pivot-based algorithm 

Pivot-based algorithms use a subset of database objects P = {p1,p2,...,pe} CX 

to compute pseudo-coordinates. Each database object x € X is represented 
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by a vector containing its k distances to every pivot pj € P. Let D(u, P) = 

(d(z,pi),...,d(,pz~)) be this vector. Given a query R(q,r), we first repre- 

sent q in the same coordinate system as D(q, P) = (d(q, pi),---,@(q, pe))- Thus, 
by virtue of the triangle inequality, any object x € X can be discarded if 

|\d(p;, x) — d(p;,q)| > r for any pivot p; € P. Finally, to obtain the query answer, 

all the non-discarded database objects are directly compared with qg and only 

the objects whose distance is within threshold r are reported. 

2.2 Permutation-based algorithm 

This kind of indexes use some distinguished elements from the database X 

as references points of view. These elements are called permutants. The main 

idea of this method was introduced in [2]. Let P be the permutant set, for- 
mally, P = {pi,...,px} C X. For the sake of producing the index, each u € X 

computes D(u,P) = {d(u,pi),...,d(u,px)}, that is, wu computes its distance to 

every permutant. Then, each object u sorts the set P using the distances com- 

puted in D(u,P) in increasing order. This ordering is called the permutation 

of u, which is denoted by JI. Therefore, the permutant in the first position 

of II, is the closest one, and so on. Inversely, let IJ! be the inverse of the 

permutation JT,,, so we can use IT, to identify the position of any permutant 

in II,. 

As an example, Figure 1 depicts a subset of points in R?, considering Eu- 

clidean distance. The set of permutants is P = {p1, po, ps, pa, ps, Po}; that is, k = 6. 

If we consider the object u € X, D(u, P) = (3, 4,6, 3, 2,5) where d(u, p1) = 3 and 

so on; then I, = (5,1,4,2,6,3). It can be noticed that the closest permutant 

is ps, because d(u,ps) = 2. The inverse permutation J,' is (2,4,6,3,1,5). 

Then, I77'(p2) = 4 means po is in the 4th position in J7,. We note that we 
need O(nk) distance computations to obtain all the permutations. 

®p, 
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d(u, p,) =3 
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Au, p3)=2 \ T1(w)= (5, 1, 4, 2, 6, 3) 
“ 

Ds 

Fig. 1. Example of a permutation considering P C R? using Euclidean distance. 

As two identical elements must have exactly the same permutation, we ex- 

pect that two similar elements have similar permutations. Therefore, when we 

search for elements similar to a query q, the problem is to find objects whose 

permutations similar to [J,. The advantage of this approach is that computing 
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the permutation similarity is cheaper than computing the distance function d. 

There are different measures to compute similarity between permutations [11]. 
One of the most used is the Spearman Footrule measure, defined as: 

k=|P| 

F(u,q)k = Fu, Hq) = > I, * (pi) — IT, *(pi)| (1) 

The basic method stores the whole permutation of each database object, 

hence it needs O(nk) space. 
An interesting member of this index family is the Metric Inverted File. In 

the next section we briefly describe it along with some of its improvements. 

2.3 Metric Inverted File (MIFi) 

Amato and Savino proposed using an inverted file of permutations [1], where 

each permutant in P has its respective entry in the inverted file. We call MIFi 

index this approach. To produce the index, they define parameter m; < |P| 

which is used during the preprocessing time. For each permutant p € P the MIFi 

index stores the list of the elements u € X such that its permutation JI, has the 

permutant p within the first m,; positions. The list for each permutant p stores 

pairs (u, pos), where u denotes an object in X and pos referes to the position 

of p within the permutation J7,,. 

Given the query q, we need to determine IJ,. The MIFi index uses another 

parameter m, < m, for searching. The MIFi search method only retrieves the 

posting lists of the first m, permutants in I, and next, it unites all of them to 

obtain the candidate set. Finally, all the elements in the union of the lists are 

directly compared with q using the distance d to produce the query answer. Au- 

thors in [1] proposed a variant of the Spearman Footrule permutation similarity 

measure, because each permutation was clipped by the parameter m;,. 

In the works [9,7], the authors improved the performance of the MIFi index 

in two ways. On the one hand, each posting list stores only elements u but not 

the positions pos [9] and the short permutation of each element is maintained. 

They also proposed a new way to compute the Spearman Footrule measure. On 

the other hand, to reduce the candidate list size, even more, a new parameter 

m,, is selected according to the radius of the similarity query [7| (instead of the 
fixed-parameter m, from the MIFi index). 

3 Our proposal 

We look to improve even more the performance of the alternative to MIFi index 

presented in [7]. Our proposal considers several aspects. The first one is to have 
smaller permutations in the index, the second one is to use one of the permutants 

as a pivot, and the third is to consider a modified permutation similarity measure. 

After explaining in detail these three main aspects of our contribution, we show 

how to combine them in order to produce our novel index and its respective 

searching algorithm. 
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3.1 Clipped permutations 

Instead of having a maximum global length m,;, each permutation can be short- 

ened with a different length, by considering for each u € X its appropriate per- 

mutation prefix. To do so, we consider the distance to its closest permutant; that 

is, d(u,pr,(1)) = Tu, and keep for u those permutants within a distance lower 

than or equal to 2r,. We ran preliminary experiments to determine that 2r,, 

performs well when solving queries, but this clearly deserves further study. We 

call IT), the clipped permutation of wu. 

Let m, denote the length of the trimmed permutation for element u; that 

is, My, = |IZj,| is the length of the prefix selected. In this case, since some objects 
could have only one permutant within distance 2r,, from u, we propose using 

a minimum global length min for all the permutations. Likewise, since some 

objects could have all the permutants within distance 2r,, from u, we also propose 

a maximum global length max for all the permutations. 

In our example of Section 2.2, Figure 1, for element u we obtained r, = 2. 

So, its clipped permutation is IJ,, = (5,1,4,2) because d(u,p2) = 4 < 2ry. It can 

be noticed that, by this way of shortening the permutations, each permutation 

would have a different length. 

3.2 Including a single pivot 

When we search for a query g, we have to compute I/, by calculating all the 

distances between g and every permutant in P. Besides, we know that if we keep 

the distances from the element u € X to all the permutants in P, we can use 

them to obtain lower bounds of the distance from u to q, as in a pivot-based 

algorithm. Hence, we can discard the elements whose lower bounds exceed the 

search threshold r. However, storing all the distances between the elements u € X 

and the permutants p € P is expensive. 

We also know that a good pivot for estimating the distance from u to q is 

some element similar to u; so, we decided to use the permutant closest to u as its 

pivot. Then, we already have the pivot identifier and we only need to store the 

distance to it. Therefore, we only need one distance for each object u € X, which 

implies that we keep exactly n extra distances in the index, which is negligible 

for the index size. 

Continuing with our example in Figure 1, the closest permutant of object u 

is ps5, SO, we use it as pivot and store the distance 2. 

3.3. Permutation similarity measure 

Given a query q, we need to calculate all the distances between g and the permu- 

tants in P to obtain I/,. At this point, we have the complete query permutation 

(with length &) and the distances D(q,P). Thus, it is possible to compare any 

clipped permutation I!, with II,, using the same Equation 2 proposed in [7]: 

F* (usd) my = F" (Uli Ma) = ki g(a) @) 
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If all the clipped permutations had the same size, we could directly use Equa- 

tion 2, as it computes a similarity measure that is fair when all the permutation 

prefixes have the same size. However, this is not the case, thus we have to readapt 

the similarity measure considering different sizes of prefixes. 

This adaptation corresponds to define mechanisms to apply penalties when 

we find a permutant that does not belong to JZ/, and, analogously, when we 

miss a permutant from the prefix of [J,. Fortunately, they also improve the 

discriminability of our proposal, as can be seen in Section 4. 

Penalty when a permutant does not belong to IZ’, Each permutant 

clipped from JZ/, adds a penalty that considers how big is the displacement of the 

remaining permutants in IJ’, with respect to their positions in IJ. We call the 

maximum of all these displacements mazi. So, we add mazi - (k — m,,) to F™. 

Note that if the permutants in JJ’, are placed in the prefix of I,, this penalty 

is very mild. Also, the penalty increases as long as displacements are bigger. 

Penalty when missing a permutant from the prefix of Tz Two per- 

mutations starting with the same permutants give a strong suggestion that the 

respective objects could be similar. Likewise, if some of the permutants in the 

prefix of IZ, does not belong to IZ/,, we have a strong indicator that object u 

could be irrelevant to the query gq. 

So, we need to establish a criterion about what is this prefix. Analogously 

to IZ), considering the query radius r and using D(q,P), we compute how 

many permutants have their distances from gq within threshold 2r. This value is 

called mg, so the prefix of mg permutants is called IT r Notice that, if mg < Mmin 

then mg is set to Mmin. Otherwise, if mg > Mmax then mg is set to Mmax.- 

Therefore, we determine how many permutants in IT; are missing in IT;,. We 

call this value c. Finally, as this is a strong indicator that u is not relevant to q, we 

strongly penalize the measure with c- F’*. Of course, if all the permutants in IT, 

occur in I7/,, this term is zero. But, the more the number of missing permutants 

in IT), the greater the penalty (and each increment is also very strong). 

Resulting permutation similarity measure We use Equation 2 and these 

two penalties in order to compute the permutation similarity measure. The ob- 

tained measure is depicted in Algorithm 1. 

The variable ¢ accumulates the similarity measure, c is initialized as mg so we 

start by assuming that we miss all the permutant in J/ ” and mai is initialized 

as zero. Then, we compute a for cycle to review all the permutants in /7/, (Lines 3 
throu 9). Line 4 computes the displacement A; for each permutant in I/{, and 

accumulate it in ¢. Line 5 updates the value of maxi, when the displacement 

increases. In Line 6, we verify whether the permutant J/,,(i) belongs to the prefix 

IT, in whose case, we decrease c by 1 (Line 7), as we found another permutant 

within JT ¢ Finally, in Line 10 we apply the penalties and return the permutation 

similarity measure. 
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Algorithm 1 distanceBetweenPermutations( 7, 1 Mq; Tu, Mu; k) 

1: OUTPUT: Reports modified Spearman Footrule. 

2: £< 0,c+ mq, maxi <— 0 

3: for i< 1 to m, do 

45 A, li-y*(h))|, t-t+Ai 

  

5: maxi + max(Aj, mazi) 
6: if IT7*(ITu(i)) < mg then 
7: ce cl 

8: end if 

9: end for 

0: return t< t+ mazi-(k-—mu)+c-t 
  

3.4 Solving similarity queries 

Given the dataset X, we chose a subset of k objects at random to compute the 

permutations. Then, for each object u € X we compute its permutation and 

its clipped version JZ’, and we store both JZ), and the distance to the closest 
permutant in the index. 

Given a query g, we compute its permutation IJ, and its prefix IT). Since 

we have the distance between u and its closest permutant, and we already com- 

pute D(q,P) at querying time, then, we can calculate a lower bound of d(u, q) 

with any permutant. Thus, for each u, d(u, g) is lower bounded by |d(u, p) — d(p,q)|, 

using the closest permutant to u as a pivot. Then, if |d(u, p) —d(p,q)| > r then u 

can be discarded from the candidate list. Only the non-discarded objects are 

included in the candidate list. We sort increasingly the candidate list according 

to our adapted permutation similarity measure. Next, a small portion of this list 

is traversed and compared with q using the distance function d. 

4 Experimental Results 

The performance of our proposal has been tested using two classical real-world 

databases: NASA and Colors. These datasets are available from SISAP project’s 

metric space benchmark set [8]. Any quadratic form can be used as a distance 

on these spaces, so we chose Euclidean distance as the simplest meaningful al- 

ternative for both databases. 

4.1 NASA 

NASA is a dataset with 20-dimensional vectors. They were generated from im- 

ages downloaded from NASA* and there is not duplicate vectors. The total 

number of vectors is 40,150. The first 39,650 are indexed and the remaining 500 

vectors are used as queries. 

* Available at http: //www.dimacs.rutgers.edu/Challenges/Sixth/software.html. 
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NASA dataset. NASA. Permutations’ size 
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(a) NNx(q) queries. (b) Histogram of lengths of clipped permut. 

Fig. 2. Performance with NASA dataset. 

In Figure 2(a), we show the performance of our proposal (shortPerms) along 
with those of the basic permutation idea (PP, with 64 permutants), the MIFi us- 

ing m, for the missing values during the Spearman Footrule computation (MIFI 

Pi, using similar space of our index), and the MIFi modified as in |7| (MIFI Pm, 
using similar space of our index). These experiments account for how many dis- 

tances are needed to obtain the true NNx(q) answer, varing K € [1,8]. Notice 
that our proposal makes 30% fewer distance computations than the best tech- 

nique proposed in [7] for NNg. In Figure 2(b), we show the histogram for different 
lengths of clipped permutations, considering that mmin = 8 and Mmax = 32. 

It is remarkable that using 64 permutants we can get clipped permutations 

with different m,, lengths and smaller than the original size (64), as shown in 
Figure 2(b). The average length of the clipped permutation is 27. We note that 

our index having almost half the space of PP with 64 permutants, behaves better. 

Moreover, when using a more extensive set of permutants (128 concerning 64), 

the searching costs are almost the same, since the clipped permutations have 

almost the same size. If we use more permutants, we increase the construction 

cost of the index. Therefore, it is not worth using more permutants because 

our proposal always leave only a few permutants that are good ones. In fact, in 

Figure 2(a) we omit the plot for k = 256 as the results are similar to those of 
k = 64 and 128. 

During searches, our proposal outperforms the other variants that build the 

index with the same number of permutants and construction costs. This behavior 

may be not only due to a good clipped permutation but also to the pruning 

ability that gives the stored distance to the nearest permutant of each element. 
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Colors dataset. Colors. Permutations’ size 
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Fig. 3. Performance with Colors dataset. 

4.2 Colors 

This dataset consists of 112,682 color histograms represented as 112-dimensional 

feature vectors, from an image dataset °. Similarly with the NASA dataset, the 

first elements are indexed and the last 500 color histograms are used as queries. 

In Figure 3(a), we show the performance of our proposal. Again, it is com- 
pared with the MIFi algorithms and the permutation-based algorithm (PP). In 
this dataset, our proposal needs 37% fewer distances than the best technique 

used in [7]. As it occurs in the NASA space, the number of permutants used 

does not significantly affect the search performance. On Figure 3(b), we show 

the histogram for each length of clipped permutations. Notice that all permu- 

tations have almost the same length for short permutations independent of the 

original permutation size, again with an average length of 27 permutants. 

Newly, if we fix the number of permutants used to build the different al- 

ternatives of the indexes whose construction costs are the same, our proposal 

outperforms the others during searches. 

5 Conclusions and Future Work 

In this paper, we propose a new strategy for reducing the length of the per- 

mutations, which we call clipped permutations. We also propose a permutation 

similarity measure adapted for this clipping. Our approach also takes advantage 

of storing only one distance per database element, that is well selected, to obtain 

a lower bound of the distance between the element and the query. This stored 

distance allows for discarding many elements. This way we can use a smaller 

hybrid index and at the same time improving the search performance. 

We have tested the performance of our proposal with two classical real- 

world databases: NASA and Colors, obtained from SISAP project’s metric space 

® Available at  http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/- 

histo112.112682. gz. 
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benchmark set [8]. Our experimental results proved that our approach sur- 

passes the other known permutation-based techniques. Therefore, the combi- 

nation of these three contributions significantly improves searching performance 

of a permutation-based index for approximate proximity searching. As it can be 

noticed, we reduced more than the 30% the distance evaluations needed to solve 

the queries on both databases. 

As future work, we will assess how scalable this method is, considering very 

large datasets. We will analyze how the values of Mpin and mmax affect the 

lengths of the permutations and in consequence the impact on storage and search 

performance. Besides, we plan to study the actual prunning ability of the stored 

distances to the nearest permutant of each database element. Also, we consider 

investigating how the number of permutants used during the index construction 

affects the search performance considering other metric spaces. 
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