
An Efficient Dynamic Version of the Distal Spatial

Approximation Trees

Edgar Chávez!, María E. Di Genaro?, and Nora Reyes?

l Centro de Investigación Científica y de Educación Superior de Ensenada, México

elchavez@cicese.mx

2 Departamento de Informática, Universidad Nacional de San Luis, Argentina

{mdigena, nreyes}@unsl.edu.ar

Abstract. Metric space indices make searches for similar objects more efficient

in various applications, including multimedia databases and other repositories

which handle complex and unstructured objects. Although there are a plethora

of indexes to speed up similarity searches, the Distal Spatial Approximation Tree

(DiSAT) has shown to be very efficient and competitive. Nevertheless, for its

construction, we need to know all the database objects beforehand, which is not

necessarily possible in many real applications. The main drawback of the DiSAT

is that it is a static data structure. That means, once built, it is difficult to insert

new elements into it. This restriction rules it out for many exciting applications.

In this paper, we overcome this weakness. We propose and study a dynamic ver-

sion of DiSAT that allows handling lazy insertions and, at the same time, im-

proves its good search performance. Therefore, our proposal provides a good

tradeoff between construction cost, search cost, and space requirement. The re-

sult is a much more practical data structure that can be useful in a wide range of

database applications.

Keywords: similarity search, dynamism, metric spaces, non-conventional databases

1 Introduction

The metric space approach has become popular in recent years to handle the various

emerging databases of complex and unstructured objects- On these kinds of databases, it

is only meaningfully searching for similar objects [4, 11, 12, 6]. Similarity searches have

applications in a vast number of fields. Some examples are non-traditional databases,

text searching, information retrieval, machine learning and classification, image quanti-

zation and compression, computational biology, and function prediction, among others.

These problems can be mapped into a metric space model [4] as a metric database. In

this model, there is a universe U of objects, and a non negative real-valued distance

function d: U x U —> R™ U {0} defined among them. This distance function, called
also a metric, satisfies the three axioms that make the pairU, d) a metric space: strict

positiveness (d(z,y) > O and d(z,y) =0 <= x = y), symmetry (d(x, y) = d(y, 2)),
and triangle inequality (d(x, z) < d(x, y)+d(y, z)). We have a finite database X C U,
[X] = n.

468

Thereby, “proximity” or “similarity” searching is the problem of looking for objects

in a dataset X, similar enough to a given query object q € U, under a specific distance

function. The smaller the distance between two objects, the more “similar” they are.

The database can be preprocessed to build a metric index; that is, a data structure to

speed up similarity searches. There are two typical similarity queries: range queries

and k-nearest neighbors queries [4].

There are a large number of metric indexes for metric spaces [4, 12, 11]. The Distal

Spatial Approximation Tree (DiSAT) is an index based on dividing the search space

and then approaching the query spatially. DiSAT is algorithmically interesting by itself,

and it has been shown to give an attractive tradeoff between memory usage, construction

time, and search performance. The DiSAT has a significant advantage over other indices

because it does not require any parameter tuning. However, DiSAT is a static index; that

is, the index has to be rebuilt from scratch, or it requires an expensive updating when

we insert a new element into the database.

For several applications, a static scheme may be acceptable. However, many rel-

evant ones do require dynamic capabilities. Actually, in many cases, it is sufficient to

support insertions, such as in digital libraries and archival systems, versioned and histor-

ical databases, and several other scenarios where objects are never updated or deleted.

The Distal Spatial Approximation Forest (DiSAF) [2] is a dynamic index, based on the

DiSAT. It uses the Bentley-Saxe method (BS)[1], that allows to transform a static index

into a dynamic one only if on this index the search problem is decomposable. However,

although the DiSAF admits insertions and DiSAF and DiSAT obtain similar search per-

formance, its construction costs are very high. Therefore, in this paper, we are focused

on a new dynamic version of the DiSAT that takes advantage of all our knowledge on

the DiSAT and other metric space indexes. This new version significantly reduces the

construction costs and obtains better search costs than DiSAT. We are focused only

on supporting insertion and range searches, and we left deletions, k-NN searches, and

other improvements as future works.

The rest of this paper is organized as follows. In Section 2 we describe some basic

concepts. Next, in Section 3 we detail the Distal Spatial Approximation Trees (DiSAT),

the Distal Spatial Approximation Forest, and some notions of their close relatives: Spa-

tial Approximation Trees (SAT) and the Dynamic Spatial Approximation Trees (DSAT).

Section 4 introduces our new dynamic version of DiSAT. In Section 5 we experimen-

tally evaluate the performance of our proposal. Finally, we draw some conclusions and

future works in Section 6.

2 Previous Concepts

The metric space model can be formalized as follows. Let X be a universe of objects,

with a nonnegative distance function d : X x X —> R* defined among them. This

distance satisfies the three axioms that make (U, d) a metric space: strict positiveness
(djz,y) = 0 <= zx = y), symmetry (d(z,y) = d(y,x)) and triangle inequality
(d(x, z) < d(x, y) + d(y, z)). We handle a finite dataset U C X, which can be prepro-
cessed (to build an index). Later, given a new object from X (a query q € X), we must

retrieve all similar elements found in U. There are two typical queries of this kind:

469

Range query: Retrieve all elements in U within distance r to q. Thatis, [x € U, d(x,q) <
r}.

k-nearest neighbors query (k-NN): Retrieve the k closest elements to q in U. That is, a

set A C U such that |A| = k and Vz € A,y € U— A,d(z,q) < d(y, q).

The distance is assumed to be expensive to compute. Hence, it is customary to

define the complexity of the search as the number of distance evaluations performed,

disregarding other components such as CPU time for side computations and even I/O

time. In this scenario, the goal is to preprocess the dataset such that queries can be an-

swered with as few distance evaluations as possible. In this paper, we are devoted to the

most basic type of queries; range-queries. k-nearest neighbor queries can be obtained

from range queries in an optimal way [7,8], so we can restrict our attention to range

queries.

There are a plethora of indexes to speed up similarity searches [11, 12,4] Algo-

rithms to search in general metric spaces can be divided into two large areas: pivot-

based and clustering algorithms. However, some algorithms combine ideas from both

areas.

3 Distal Spatial Approximation Trees

The Distal Spatial Approximation Tree (DiSAT) [3] is a variant of the Spatial Approxi-

mation Tree (SAT) [9]. DiSAT and SAT are data structures that use a spatial approxima-

tion approach. They are iteratively getting closer to the query by starting at the root as

navigating the tree. The DiSAT is built as follows. An element a is selected as the root,

and it is connected to a set of neighbors N(a), defined as a subset of elements x € X
such that x is closer to a than to any other element in N(a). The other elements (not
in N(a) U {a}) are assigned to their closest element in N(a). Each element in N(a)
is recursively the root of a new subtree containing the elements assigned to it. For each

node a the covering radius, the maximum distance R(a) between a and any element

in the subtree rooted at a, is stored. The starting set for neighbors of the root a, N(a)
is empty. Therefore we can select any database element as the first neighbor. Once this

element is fixed, the database is split into two halves by the hyperplane defined by prox-

imity to a and the recently selected neighbor. Any element in the a side can be selected

as the second neighbor. While the root zone (those database elements closer to the root

than the previous neighbors) is not empty, it is possible to continue with the subsequent

neighbor selection.

The DiSAT tries to increase the separation between hyperplanes, which in turn de-

creases the size of the covering radius, the two parameters governing the performance

of these trees. The performance improvement consists in selecting distal nodes instead

of the proximal nodes selected in the original algorithm. Considering an example of

a metric database illustrated in Fig. 1(a) and Fig. 1(b) shows the DiSAT obtained by

selecting pg as the tree root. We depict the covering radii for the neighbors of the tree

root. It is possible to obtain completely different trees (DiSATs) if we select different

roots, and each tree may have different search costs.

Algorithm 1 gives a formal description of the construction of DiSAT. Range search-

ing is done with the procedure described in Algorithm 2. This process is invoked as

470

Pu

P12

@F:

0
P3 @Pi0

Pa o P6

0 é
P110

P7@ Pu®

p¡s0

. e 1
Ps . e. o

(a) Example of a space. (b) DiSAT.

Fig. 1. Example of a metric database in R®, and DiS AT obtained if pg were the root.

RangeSearch (a, q,r, d(a, q)) , where a is the tree root, r is the radius of the search,

and q is the query object. One key aspect of DiSAT is that a greedy search will find

all the objects previously inserted. For a range query of q with radius r, and being

c the closest element between {a} U N(a) U A(a) and A(a) the set of the ances-
tors of a, the same greedy search is used entering all the nodes b € N(a) such that

d(q,b) < d(q,c) + 2r because any element x € (q,1r)a, can differ from q by at most
r at any distance evaluation, so it could have been inserted inside any of those b nodes

[12,9]. In the process, all the nodes x founded close enough to q are reported.

3.1 Distal Dynamic Spatial Approximation Forest

The Bentley-Saxe method (BS) allows transforming a static index into a dynamic one

if on this index the search problem is decomposable, based on the binary representation

of the integers [1]. The Distal Spatial Approximation Forest (DiSAF) [2] applies the

BS method to a DiSAT to transform it into a dynamic one. In this case, we use the BS

method to have several subtrees T;, particularly DiSATs. For this reason, this index is

called as Distal Dynamic Spatial Approximation Forest (DiSAF), because we have a

forest of DiSATs. Each subtree T; into the DiSAF is a DiSAT in the forest that will

have 2* elements.
Considering the example illustrated in Fig. 1(a), the Fig. 2 illustrates the DiSAF

obtained by inserting the objects p1,--- , p15 one by one, in this order. As we have 15

elements, DiSAF will build four DiSATs: To, 71,72, and T3. The final situation will

have: To with the dataset {pis}, 7, with {piz, p14}, To with {p9,..., pio}, and T3

with {pi,...pg}. We depict the covering radii for the neighbors of the tree roots; some

471

Algorithm 1 Process to build a DiSAT for U U {a} with root a.

BuildTree (Node a, Set of nodes U)

. N(a) 0 /* neighbors of a */

. R(a)-0 /* covering radius */

. For v €U inincreasing distance toa Do

R(a) — max(R(a), d(v, a))
If Vbe N(a), d(v,a) < d(v,b) Then

N(a) + N(a) U {v}

. For b€ N(a) Do S(b)<+ @

. For v€U—N(a) Do
c + argminge y(q)d(¥, b)

S(c) + S(c) U {v}
. For be N(a) Do BuildTree (b, S(b))

r
F
O
M
W
M

W
A
N
D

O
B

W
N

A

h
o
p

Algorithm 2 Searching of q with radius r in a DISAT with root a.

RangeSearch (Node a, Query q, Radius r, Distance dmin)

. If d(a,q) < R(a)+r Then
If d(a,qgq) <r Then Report a

dmin + min {d(c,q), c€ N(a)}U {dmin}
For be N(a) Do

I£ d(b,q) < dmin + 2r Then
RangeSearch (b, g, 7, dmin) N

O

P
W
N

EF

covering radii are equal to zero. As the DiSAF has not any parameter, the only way to

obtain different forests is by considering different insertion orders.

Dynamic Spatial Approximation Tree

The Dynamic Spatial Approximation Tree (DSAT) [10] is an online version of the SAT.

It is designed to allow dynamic insertions and deletions without increasing the construc-

tion cost for the SAT. An astounding and unintended feature of the DSAT is boosting

the searching performance. The DSAT is faster in searching even if, at construction, it

has less information than the static version of the index. For the DSAT, the database is

unknown beforehand, and the objects arrive at the index at random and the queries. A

dynamic data structure cannot make strong assumptions about the database and will not

have statistics about all of the database.

4 Dynamic Distal Spatial Approximation Trees

As we mentioned, the DiSAT is a static index that must be rebuilt from scratch or re-

quires an expensive updating when we insert a new element into the database. On the

other hand, DiSAF allows to insert elements and obtains a similar search performance

as DiSAT, but its construction costs are very high because each insertion has to re-

build some subtrees. Therefore, using our deep knowledge of DiSAT and its relatives

472

root Ty

‘root T,

Fig. 2. Example of the DiSAF, inserting from p; to pis.

and also taking advantage of storing one distance per element, we propose a new dy-

namic version of DiSAT that can be built by inserting the elements individually. The

Dynamic Distal Spatial Approximation Tree (DDiSAT) reduces the construction costs

significantly with respect DiSAF and obtains better search performance than DiSAT.

We want to avoid reconstruction at each insertion to reduce construction costs.

Therefore, we consider using lazy insertions; we need to ensure that several insertions

do not need to do any rebuilding and that only some of them require rebuilding the

index. Each DDiSAT node can store an element a, its covering radius rc(a), its set of
neighbors N(a), and a bag B(a) of pairs of (element, distance), that are new elements
into the database and the distance is its distance from a. The main idea is only to rebuild

the DDiSAT when the new insertion in a bag makes the number of elements in the bags

(pending insertion in the DiSAT) equal to the number of nodes in the DDiSAT. The

above means, the DDiSAT reaches twice of the original elements inside its nodes. We

have two cases to consider during insertions into the DDiSAT:

— If the DDiSAT has 7 nodes and less to 7 elements into their bags, we insert the new

element x into a node bag and do not need to rebuild the DDiSAT.

— Otherwise, we retrieve all the elements into the DDiSAT (in nodes and bags), and

we rebuild the tree as a DiSAT.

Therefore, most of the insertions will proceed as follows. When we insert a new

element x into the DDiSAT, we search its insertion point. This search begins at the tree

root. At any DDiSAT node, let be b its element, if b is closer to x than any neighbors in

N(b) we insert the pair (x, distance(b, x)) into the bag B(b) of this node. Otherwise,
we go down by the node of the nearest element to x in N(b). As the new element x
insertion goes down through the tree nodes, we have to update the covering radii. This

473

Algorithm 3 Searching of q with radius r in a DDiSAT with root a.

RangeSearch (Node a, Query gq, Radius r, Distance dmin)

If d(a,q) < R(a)+r Then
If d(a,q) <r Then Report a
For any pair (2,dz) € B(a)

If |d(a,q)—dz| <r Then
If (d(z,q) <r Then Report z

dmin + min {d(c,q), c€ N(a)}U {dmin}
For be N(a) Do

If d(b,q) < dmin + 2r Then
RangeSearch (b, q, 7, Admin) 0

0

0

0

a

Q

N

E

way, we avoid several rebuilding of the tree and ensure to do not degrade the search

performance. As it can be observed, as the DDiSAT grows in elements, the number of

insertions needed to double the number of elements also increases. Thus the reconstruc-

tions will be more sporadic. However, they will involve more elements.

During searches, we take advantage of all the information from the tree. As in

a search on a DiSAT (Algorithm 2), we also use the distances stored in the buck-

ets. The Algorithm3 illustrates the new search process. This process is invoked as

RangeSearch (a, q,r, d(a, q)) , where a is the tree root, r is the radius of the search,

and q is the query object.

5 Experimental Results

For the empirical evaluation of the indices, we consider three widely different metric

spaces from the SISAP Metric Library (www.sisap.org) [5].

Dictionary: a dictionary of 69,069 English words. The distance is the edit distance,

the minimum number of character insertions, deletions, and substitutions needed

to equal two strings. This distance is useful in text retrieval to cope with spelling,

typing, and optical character recognition (OCR) errors.

Color Histograms: a set of 112,682 8-D color histograms (112-dimensional vectors)

from an image database*. Any quadratic form can be used as a distance; we chose

Euclidean as the simplest meaningful distance.

NASA images: a set of 40,700 20-dimensional feature vectors, generated from images

downloaded from NASA‘. The Euclidean distance is used.

When we evaluate construction costs, we build the index with the complete database.

If the index is dynamic, the construction is made by inserting, one by one, the objects.

Otherwise, the index knows all the elements beforehand. To evaluate the search perfor-

mance of the indexes, we build the index with the 90% of the database elements and we

use the remaining 10%, randomly selected, as queries. So, the elements used as query

3 Athttp://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz

4 Athttp://www.dimacs.rutgers.edu/Challenges/Sixth/software.html

474

objects are not in the index. We average the search costs of all these queries. All results

are averaged over 10 index constructions with different datasets permutations.

We consider range queries retrieving on average 0.01%, 0.1%, and 1% of the dataset.

This corresponds to radii 0.051768, 0.082514 and 0.131163 for the Color Histograms;

and 0.605740, 0.780000 and 1.009000 for the NASA images. The Dictionary has a dis-

crete distance, so we used radii 1 to 4, which retrieved on average 0.00003%, 0.00037%,

0.00326%, and 0.01757% of the dataset, respectively. The same queries were used for

all the experiments on the same datasets. As we mentioned previously, given the exis-

tence of range-optimal algorithms for k-nearest neighbor searching [7, 8], we have not

considered these search experiments separately.

We show the comparison between our dynamic DDiSAT, the DiSAF and the DSAT,

and the static alternatives SAT and DiSAT. The source code of the different SAT ver-

sions (SAT and DSAT) is available atwww.sisap.org. A final note in the experi-

mental part is the arity parameter of the DSAT which is tunable and is the maximum

number of neighbors of each tree node. In our experiments, we used the arity suggested

by authors in [10]: the best arity for the NASA images and for Color histograms is of 4,

and arity 32 for the Dictionary. Figure 3 illustrates the construction costs of all indices

on the three metric spaces. As it can be seen, DDiSAT surpasses DiSAF on construc-

tion costs. On the other hand, DSAT does not make any reconstruction while it builds

the tree via insertions. It must be considered that SAT and DiSAT are built with all the

elements known simultaneously, not dynamically.

Construction cost per element for n = 69,069 words

800
SAT ——

DSAT, Arity 32 —— |
DISAT —K—
DISAF —=3— |)

600 DDISAT —a— 4

700

500

400

300 k

Di
st

an
ce

ev

al
ua

ti
on

s

200

ot. ye 0 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100

Percentage of database used

Construction cost per element for n = 112,682 color histograms Construction cost per element for n = 40,700 feature vectors

1200 1 1 1 1 550 t 1 1 t
SAT —+— SAT ——

DSAT, Arity 4 —— 500 + DSAT, Arity 4 —<— $
14000 + DISAT —— - DISAT ——

DISAF —8— h 450 5 DISAF —E— 7
DDiSAT —™— DDiSAT —"—

400 +
800 tp 350 L

600 +

Di
st

an
ce

ev

al
ua

ti
on

s

Di
st

an
ce

ev

al
ua

ti
on

s

L L 4

400 4 g 2007 K
150 7

200% | 100)]
O 5 qgIAá A F

o EA o A A A AA
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Percentage of database used Percentage of database used

Fig. 3. Construction costs for the three metric spaces considered.

475

We analyze search costs in Figure 4. As can be noticed, DDiSAT surpasses the

dynamic indexes DiSAF and DSAT in all the spaces. Moreover, DDiSAT obtains the

best search performance concerning the other four indexes (static and dynamic ones).

Therefore, we can affirm that the heuristic of construction of DiSAT allows surpassing

in searches the other strategies used in SAT and DSAT, and combining it with the bags

into the nodes that store new elements near them, it is possible to obtain even better

results. Besides, we have obtained a dynamic index that overcomes DiSAT at searches.

Moreover, DDiSAT has the advantage over DSAT, which does not have any parameters

to tune.

Query cost per element for n = 69,069 words

45000 7 7

40000 *

35000 7

30000 7

25000 7

20000 7

Di
st

an
ce

ev

al
ua

ti
on

s

15000 SAT —— y
DSAT, Arity 32 ——

DiSAT J
10000 DiSAF —S—

DDISAT —"—
5000 1

1 2 3 4
Search radius

Query cost per element for n = 112,682 color histograms Query cost per element for n = 40,700 feature vectors

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Di
st

an
ce

ev

al
ua

ti
on

s

Di
st

an
ce

ev

al
ua

ti
on

s

SAT ——
DSAT, Arity 4 ——

DiSAT
DISAF —B—

DDISAT —"—

 , DDiSAT -—=— o ,

0.01 0.1 1 0.01 0.1 1

Percentage of database retrieved Percentage of database retrieved

Fig. 4. Search costs for the three metric spaces considered.

6 Conclusions

We have presented a new dynamic version of the DiSAT, which at this time can handle

insertions and improve its search quality. As we mentioned, there are few data structures

for searching metric spaces that are dynamic and efficient. Furthermore, we have shown

that we can take advantage of the heuristic used in DiSAT even more. As the distal nodes

produce more compact subtrees, which in turn give more locality to the underlying

partitions implicitly defined by the subtrees, we can use these partitions over the metric

space to assign each new element to its closest object in the tree while it is waiting to

be actually inserted as a DiSAT node.

476

The DiSAT was a promising data structure for metric space searching, with several

drawbacks that prevented it from being practical: high construction cost and inability to

accommodate insertions and deletions. We have addressed some of these weaknesses.

We have obtained reasonable construction costs, and it is still possible to improve it.

For example by providing a bulk-loading algorithm to initially create the DDiSAT if we

know aforehand a subset of elements, avoiding some unnecessary rebuildings when we

insert elements and combining with lazy insertion that do not always rebuild trees.

In future works, we consider making the DDiSAT fully dynamic; that is, supporting

deletions and designing an efficient bulk-loading algorithm, which allows for reducing

more the insertion costs. We also consider to design an efficient alternative of k-NN

search that applies a smart solution by taking advantage of all distances calculated in

order to shrink, as soon as possible, the radius from q that encloses k elements.

References

1. Jon L. Bentley and James B. Saxe. Decomposable searching problems i. static-to-dynamic

transformation. Journal of Algorithms, 1(4):301-358, 1980.

2. Edgar Chavez, Maria E. Di Genaro, Nora Reyes, and Patricia Roggero. Decomposability of

disat for index dynamization. Journal of Computer Science and Technology, pages 110-116,

2017.
3. Edgar Chávez, Verónica Ludeña, Nora Reyes, and Patricia Roggero. Faster proximity search-

ing with the distal sat. Information Systems, 2016.

4. Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquín. Searching

in metric spaces. ACM Computing Surveys, 33(3):273-321, September 2001.

5. Karina Figueroa, Gonzalo Navarro, and Edgar Chávez. Metric spaces library, 2007. Avail-

able at http: //www.sisap.org/Metric. Space Library.html.

6. Magnus Hetland. The basic principles of metric indexing. In Carlos Coello, Satchidananda

Dehuri, and Susmita Ghosh, editors, Swarm Intelligence for Multi-objective Problems in

Data Mining, volume 242 of Studies in Computational Intelligence, pages 199-232. Springer

Berlin / Heidelberg, 2009.

7. Gisli R. Hjaltason and Hanan Samet. Incremental Similarity Search in Multimedia

Databases. Number CS-TR-4199 in Computer science technical report series. Computer

Vision Laboratory, Center for Automation Research, University of Maryland, 2000.

8. Gisli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric spaces. ACM

Transactions on Database Systems, 28(4):517-580, 2003.

9. Gonzalo Navarro. Searching in metric spaces by spatial approximation. The Very Large

Databases Journal (VLDBJ), 11(1):28-46, 2002.

10. Gonzalo Navarro and Nora Reyes. Dynamic spatial approximation trees. Journal of Experi-

mental Algorithmics, 12:1.5:1-1.5:68, June 2008.

11. Hanan Samet. Foundations of Multidimensional and Metric Data Structures (The Morgan

Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2005.

12. Pavel Zezula, Giussepe Amato, Vlatislav Dohnal, and Michal Batko. Similarity Search: The

Metric Space Approach, volume 32 of Advances in Database Systems. Springer, 2006.

477

	PAPERS - COMPLETO-v2 (2).pdf
	WBDDM - COMPLETO
	14249-___CR 14346-Cacic_22

