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Abstract. Metric space indices make searches for similar objects more efficient 

in various applications, including multimedia databases and other repositories 

which handle complex and unstructured objects. Although there are a plethora 

of indexes to speed up similarity searches, the Distal Spatial Approximation Tree 

(DiSAT) has shown to be very efficient and competitive. Nevertheless, for its 

construction, we need to know all the database objects beforehand, which is not 

necessarily possible in many real applications. The main drawback of the DiSAT 

is that it is a static data structure. That means, once built, it is difficult to insert 

new elements into it. This restriction rules it out for many exciting applications. 

In this paper, we overcome this weakness. We propose and study a dynamic ver- 

sion of DiSAT that allows handling lazy insertions and, at the same time, im- 

proves its good search performance. Therefore, our proposal provides a good 

tradeoff between construction cost, search cost, and space requirement. The re- 

sult is a much more practical data structure that can be useful in a wide range of 

database applications. 
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1 Introduction 

The metric space approach has become popular in recent years to handle the various 

emerging databases of complex and unstructured objects- On these kinds of databases, it 

is only meaningfully searching for similar objects [4, 11, 12, 6]. Similarity searches have 

applications in a vast number of fields. Some examples are non-traditional databases, 

text searching, information retrieval, machine learning and classification, image quanti- 

zation and compression, computational biology, and function prediction, among others. 

These problems can be mapped into a metric space model [4] as a metric database. In 

this model, there is a universe U of objects, and a non negative real-valued distance 

function d: U x U —> R™ U {0} defined among them. This distance function, called 
also a metric, satisfies the three axioms that make the pairU, d) a metric space: strict 

positiveness (d(z,y) > O and d(z,y) =0 <= x = y), symmetry (d(x, y) = d(y, 2)), 
and triangle inequality (d(x, z) < d(x, y)+d(y, z)). We have a finite database X C U, 
[X] = n. 
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Thereby, “proximity” or “similarity” searching is the problem of looking for objects 

in a dataset X, similar enough to a given query object q € U, under a specific distance 

function. The smaller the distance between two objects, the more “similar” they are. 

The database can be preprocessed to build a metric index; that is, a data structure to 

speed up similarity searches. There are two typical similarity queries: range queries 

and k-nearest neighbors queries [4]. 

There are a large number of metric indexes for metric spaces [4, 12, 11]. The Distal 

Spatial Approximation Tree (DiSAT) is an index based on dividing the search space 

and then approaching the query spatially. DiSAT is algorithmically interesting by itself, 

and it has been shown to give an attractive tradeoff between memory usage, construction 

time, and search performance. The DiSAT has a significant advantage over other indices 

because it does not require any parameter tuning. However, DiSAT is a static index; that 

is, the index has to be rebuilt from scratch, or it requires an expensive updating when 

we insert a new element into the database. 

For several applications, a static scheme may be acceptable. However, many rel- 

evant ones do require dynamic capabilities. Actually, in many cases, it is sufficient to 

support insertions, such as in digital libraries and archival systems, versioned and histor- 

ical databases, and several other scenarios where objects are never updated or deleted. 

The Distal Spatial Approximation Forest (DiSAF) [2] is a dynamic index, based on the 

DiSAT. It uses the Bentley-Saxe method (BS)[1], that allows to transform a static index 

into a dynamic one only if on this index the search problem is decomposable. However, 

although the DiSAF admits insertions and DiSAF and DiSAT obtain similar search per- 

formance, its construction costs are very high. Therefore, in this paper, we are focused 

on a new dynamic version of the DiSAT that takes advantage of all our knowledge on 

the DiSAT and other metric space indexes. This new version significantly reduces the 

construction costs and obtains better search costs than DiSAT. We are focused only 

on supporting insertion and range searches, and we left deletions, k-NN searches, and 

other improvements as future works. 

The rest of this paper is organized as follows. In Section 2 we describe some basic 

concepts. Next, in Section 3 we detail the Distal Spatial Approximation Trees (DiSAT), 

the Distal Spatial Approximation Forest, and some notions of their close relatives: Spa- 

tial Approximation Trees (SAT) and the Dynamic Spatial Approximation Trees (DSAT). 

Section 4 introduces our new dynamic version of DiSAT. In Section 5 we experimen- 

tally evaluate the performance of our proposal. Finally, we draw some conclusions and 

future works in Section 6. 

2 Previous Concepts 

The metric space model can be formalized as follows. Let X be a universe of objects, 

with a nonnegative distance function d : X x X —> R* defined among them. This 

distance satisfies the three axioms that make (U, d) a metric space: strict positiveness 
(djz,y) = 0 <= zx = y), symmetry (d(z,y) = d(y,x)) and triangle inequality 
(d(x, z) < d(x, y) + d(y, z)). We handle a finite dataset U C X, which can be prepro- 
cessed (to build an index). Later, given a new object from X (a query q € X), we must 

retrieve all similar elements found in U. There are two typical queries of this kind: 
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Range query: Retrieve all elements in U within distance r to q. Thatis, [x € U, d(x,q) < 
r}. 

k-nearest neighbors query (k-NN): Retrieve the k closest elements to q in U. That is, a 

set A C U such that |A| = k and Vz € A,y € U— A,d(z,q) < d(y, q). 

The distance is assumed to be expensive to compute. Hence, it is customary to 

define the complexity of the search as the number of distance evaluations performed, 

disregarding other components such as CPU time for side computations and even I/O 

time. In this scenario, the goal is to preprocess the dataset such that queries can be an- 

swered with as few distance evaluations as possible. In this paper, we are devoted to the 

most basic type of queries; range-queries. k-nearest neighbor queries can be obtained 

from range queries in an optimal way [7,8], so we can restrict our attention to range 

queries. 

There are a plethora of indexes to speed up similarity searches [11, 12,4] Algo- 

rithms to search in general metric spaces can be divided into two large areas: pivot- 

based and clustering algorithms. However, some algorithms combine ideas from both 

areas. 

3 Distal Spatial Approximation Trees 

The Distal Spatial Approximation Tree (DiSAT) [3] is a variant of the Spatial Approxi- 

mation Tree (SAT) [9]. DiSAT and SAT are data structures that use a spatial approxima- 

tion approach. They are iteratively getting closer to the query by starting at the root as 

navigating the tree. The DiSAT is built as follows. An element a is selected as the root, 

and it is connected to a set of neighbors N(a), defined as a subset of elements x € X 
such that x is closer to a than to any other element in N(a). The other elements (not 
in N(a) U {a}) are assigned to their closest element in N(a). Each element in N(a) 
is recursively the root of a new subtree containing the elements assigned to it. For each 

node a the covering radius, the maximum distance R(a) between a and any element 

in the subtree rooted at a, is stored. The starting set for neighbors of the root a, N(a) 
is empty. Therefore we can select any database element as the first neighbor. Once this 

element is fixed, the database is split into two halves by the hyperplane defined by prox- 

imity to a and the recently selected neighbor. Any element in the a side can be selected 

as the second neighbor. While the root zone (those database elements closer to the root 

than the previous neighbors) is not empty, it is possible to continue with the subsequent 

neighbor selection. 

The DiSAT tries to increase the separation between hyperplanes, which in turn de- 

creases the size of the covering radius, the two parameters governing the performance 

of these trees. The performance improvement consists in selecting distal nodes instead 

of the proximal nodes selected in the original algorithm. Considering an example of 

a metric database illustrated in Fig. 1(a) and Fig. 1(b) shows the DiSAT obtained by 

selecting pg as the tree root. We depict the covering radii for the neighbors of the tree 

root. It is possible to obtain completely different trees (DiSATs) if we select different 

roots, and each tree may have different search costs. 

Algorithm 1 gives a formal description of the construction of DiSAT. Range search- 

ing is done with the procedure described in Algorithm 2. This process is invoked as 
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(a) Example of a space. (b) DiSAT. 

Fig. 1. Example of a metric database in R®, and DiS AT obtained if pg were the root. 

RangeSearch (a, q,r, d(a, q)) , where a is the tree root, r is the radius of the search, 

and q is the query object. One key aspect of DiSAT is that a greedy search will find 

all the objects previously inserted. For a range query of q with radius r, and being 

c the closest element between {a} U N(a) U A(a) and A(a) the set of the ances- 
tors of a, the same greedy search is used entering all the nodes b € N(a) such that 

d(q,b) < d(q,c) + 2r because any element x € (q,1r)a, can differ from q by at most 
r at any distance evaluation, so it could have been inserted inside any of those b nodes 

[12,9]. In the process, all the nodes x founded close enough to q are reported. 

3.1 Distal Dynamic Spatial Approximation Forest 

The Bentley-Saxe method (BS) allows transforming a static index into a dynamic one 

if on this index the search problem is decomposable, based on the binary representation 

of the integers [1]. The Distal Spatial Approximation Forest (DiSAF) [2] applies the 

BS method to a DiSAT to transform it into a dynamic one. In this case, we use the BS 

method to have several subtrees T;, particularly DiSATs. For this reason, this index is 

called as Distal Dynamic Spatial Approximation Forest (DiSAF), because we have a 

forest of DiSATs. Each subtree T; into the DiSAF is a DiSAT in the forest that will 

have 2* elements. 
Considering the example illustrated in Fig. 1(a), the Fig. 2 illustrates the DiSAF 

obtained by inserting the objects p1,--- , p15 one by one, in this order. As we have 15 

elements, DiSAF will build four DiSATs: To, 71,72, and T3. The final situation will 

have: To with the dataset {pis}, 7, with {piz, p14}, To with {p9,..., pio}, and T3 

with {pi,...pg}. We depict the covering radii for the neighbors of the tree roots; some 
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Algorithm 1 Process to build a DiSAT for U U {a} with root a. 

BuildTree (Node a, Set of nodes U) 

. N(a) 0  /* neighbors of a */ 

. R(a)-0 /* covering radius */ 

. For v €U inincreasing distance toa Do 

R(a) — max(R(a), d(v, a)) 
If Vbe N(a), d(v,a) < d(v,b) Then 

N(a) + N(a) U {v} 

. For b€ N(a) Do S(b)<+ @ 

. For v€U—N(a) Do 
c + argminge y(q)d(¥, b) 

S(c) + S(c) U {v} 
. For be N(a) Do BuildTree (b, S(b)) 
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Algorithm 2 Searching of q with radius r in a DISAT with root a. 
  

RangeSearch (Node a, Query q, Radius r, Distance dmin) 

. If d(a,q) < R(a)+r Then 
If d(a,qgq) <r Then Report a 

dmin + min {d(c,q), c€ N(a)}U {dmin} 
For be N(a) Do 

I£ d(b,q) < dmin + 2r Then 
RangeSearch (b, g, 7, dmin) N

O
 
P
W
N
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covering radii are equal to zero. As the DiSAF has not any parameter, the only way to 

obtain different forests is by considering different insertion orders. 

Dynamic Spatial Approximation Tree 

The Dynamic Spatial Approximation Tree (DSAT) [10] is an online version of the SAT. 

It is designed to allow dynamic insertions and deletions without increasing the construc- 

tion cost for the SAT. An astounding and unintended feature of the DSAT is boosting 

the searching performance. The DSAT is faster in searching even if, at construction, it 

has less information than the static version of the index. For the DSAT, the database is 

unknown beforehand, and the objects arrive at the index at random and the queries. A 

dynamic data structure cannot make strong assumptions about the database and will not 

have statistics about all of the database. 

4 Dynamic Distal Spatial Approximation Trees 

As we mentioned, the DiSAT is a static index that must be rebuilt from scratch or re- 

quires an expensive updating when we insert a new element into the database. On the 

other hand, DiSAF allows to insert elements and obtains a similar search performance 

as DiSAT, but its construction costs are very high because each insertion has to re- 

build some subtrees. Therefore, using our deep knowledge of DiSAT and its relatives 
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Fig. 2. Example of the DiSAF, inserting from p; to pis. 

and also taking advantage of storing one distance per element, we propose a new dy- 

namic version of DiSAT that can be built by inserting the elements individually. The 

Dynamic Distal Spatial Approximation Tree (DDiSAT) reduces the construction costs 

significantly with respect DiSAF and obtains better search performance than DiSAT. 

We want to avoid reconstruction at each insertion to reduce construction costs. 

Therefore, we consider using lazy insertions; we need to ensure that several insertions 

do not need to do any rebuilding and that only some of them require rebuilding the 

index. Each DDiSAT node can store an element a, its covering radius rc(a), its set of 
neighbors N(a), and a bag B(a) of pairs of (element, distance), that are new elements 
into the database and the distance is its distance from a. The main idea is only to rebuild 

the DDiSAT when the new insertion in a bag makes the number of elements in the bags 

(pending insertion in the DiSAT) equal to the number of nodes in the DDiSAT. The 

above means, the DDiSAT reaches twice of the original elements inside its nodes. We 

have two cases to consider during insertions into the DDiSAT: 

— If the DDiSAT has 7 nodes and less to 7 elements into their bags, we insert the new 

element x into a node bag and do not need to rebuild the DDiSAT. 

— Otherwise, we retrieve all the elements into the DDiSAT (in nodes and bags), and 

we rebuild the tree as a DiSAT. 

Therefore, most of the insertions will proceed as follows. When we insert a new 

element x into the DDiSAT, we search its insertion point. This search begins at the tree 

root. At any DDiSAT node, let be b its element, if b is closer to x than any neighbors in 

N(b) we insert the pair (x, distance(b, x)) into the bag B(b) of this node. Otherwise, 
we go down by the node of the nearest element to x in N(b). As the new element x 
insertion goes down through the tree nodes, we have to update the covering radii. This 
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Algorithm 3 Searching of q with radius r in a DDiSAT with root a. 
  

RangeSearch (Node a, Query gq, Radius r, Distance dmin) 

If d(a,q) < R(a)+r Then 
If d(a,q) <r Then Report a 
For any pair (2,dz) € B(a) 

If |d(a,q)—dz| <r Then 
If (d(z,q) <r Then Report z 

dmin + min {d(c,q), c€ N(a)}U {dmin} 
For be N(a) Do 

If d(b,q) < dmin + 2r Then 
RangeSearch (b, q, 7, Admin) 0

0
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way, we avoid several rebuilding of the tree and ensure to do not degrade the search 

performance. As it can be observed, as the DDiSAT grows in elements, the number of 

insertions needed to double the number of elements also increases. Thus the reconstruc- 

tions will be more sporadic. However, they will involve more elements. 

During searches, we take advantage of all the information from the tree. As in 

a search on a DiSAT (Algorithm 2), we also use the distances stored in the buck- 

ets. The Algorithm3 illustrates the new search process. This process is invoked as 

RangeSearch (a, q,r, d(a, q)) , where a is the tree root, r is the radius of the search, 

and q is the query object. 

5 Experimental Results 

For the empirical evaluation of the indices, we consider three widely different metric 

spaces from the SISAP Metric Library (www.sisap.org) [5]. 

Dictionary: a dictionary of 69,069 English words. The distance is the edit distance, 

the minimum number of character insertions, deletions, and substitutions needed 

to equal two strings. This distance is useful in text retrieval to cope with spelling, 

typing, and optical character recognition (OCR) errors. 

Color Histograms: a set of 112,682 8-D color histograms (112-dimensional vectors) 

from an image database*. Any quadratic form can be used as a distance; we chose 

Euclidean as the simplest meaningful distance. 

NASA images: a set of 40,700 20-dimensional feature vectors, generated from images 

downloaded from NASA‘. The Euclidean distance is used. 

When we evaluate construction costs, we build the index with the complete database. 

If the index is dynamic, the construction is made by inserting, one by one, the objects. 

Otherwise, the index knows all the elements beforehand. To evaluate the search perfor- 

mance of the indexes, we build the index with the 90% of the database elements and we 

use the remaining 10%, randomly selected, as queries. So, the elements used as query 

3 Athttp://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz 

4 Athttp://www.dimacs.rutgers.edu/Challenges/Sixth/software.html 
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objects are not in the index. We average the search costs of all these queries. All results 

are averaged over 10 index constructions with different datasets permutations. 

We consider range queries retrieving on average 0.01%, 0.1%, and 1% of the dataset. 

This corresponds to radii 0.051768, 0.082514 and 0.131163 for the Color Histograms; 

and 0.605740, 0.780000 and 1.009000 for the NASA images. The Dictionary has a dis- 

crete distance, so we used radii 1 to 4, which retrieved on average 0.00003%, 0.00037%, 

0.00326%, and 0.01757% of the dataset, respectively. The same queries were used for 

all the experiments on the same datasets. As we mentioned previously, given the exis- 

tence of range-optimal algorithms for k-nearest neighbor searching [7, 8], we have not 

considered these search experiments separately. 

We show the comparison between our dynamic DDiSAT, the DiSAF and the DSAT, 

and the static alternatives SAT and DiSAT. The source code of the different SAT ver- 

sions (SAT and DSAT) is available atwww.sisap.org. A final note in the experi- 

mental part is the arity parameter of the DSAT which is tunable and is the maximum 

number of neighbors of each tree node. In our experiments, we used the arity suggested 

by authors in [10]: the best arity for the NASA images and for Color histograms is of 4, 

and arity 32 for the Dictionary. Figure 3 illustrates the construction costs of all indices 

on the three metric spaces. As it can be seen, DDiSAT surpasses DiSAF on construc- 

tion costs. On the other hand, DSAT does not make any reconstruction while it builds 

the tree via insertions. It must be considered that SAT and DiSAT are built with all the 

elements known simultaneously, not dynamically. 

Construction cost per element for n = 69,069 words 

800   
SAT —— 

DSAT, Arity 32 —— | 
DISAT —K— 
DISAF —=3— |) 

600 DDISAT —a— 4 

700 

500 

400 

300 k 

Di
st

an
ce

 
ev

al
ua

ti
on

s 

200 

ot. ye     0 1 1 1 1 1 1 1 1 

10 20 30 40 50 60 70 80 90 100 

Percentage of database used 

    
Construction cost per element for n = 112,682 color histograms Construction cost per element for n = 40,700 feature vectors 
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Fig. 3. Construction costs for the three metric spaces considered. 
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We analyze search costs in Figure 4. As can be noticed, DDiSAT surpasses the 

dynamic indexes DiSAF and DSAT in all the spaces. Moreover, DDiSAT obtains the 

best search performance concerning the other four indexes (static and dynamic ones). 

Therefore, we can affirm that the heuristic of construction of DiSAT allows surpassing 

in searches the other strategies used in SAT and DSAT, and combining it with the bags 

into the nodes that store new elements near them, it is possible to obtain even better 

results. Besides, we have obtained a dynamic index that overcomes DiSAT at searches. 

Moreover, DDiSAT has the advantage over DSAT, which does not have any parameters 

to tune. 

Query cost per element for n = 69,069 words 
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Fig. 4. Search costs for the three metric spaces considered. 

6 Conclusions 

We have presented a new dynamic version of the DiSAT, which at this time can handle 

insertions and improve its search quality. As we mentioned, there are few data structures 

for searching metric spaces that are dynamic and efficient. Furthermore, we have shown 

that we can take advantage of the heuristic used in DiSAT even more. As the distal nodes 

produce more compact subtrees, which in turn give more locality to the underlying 

partitions implicitly defined by the subtrees, we can use these partitions over the metric 

space to assign each new element to its closest object in the tree while it is waiting to 

be actually inserted as a DiSAT node. 
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The DiSAT was a promising data structure for metric space searching, with several 

drawbacks that prevented it from being practical: high construction cost and inability to 

accommodate insertions and deletions. We have addressed some of these weaknesses. 

We have obtained reasonable construction costs, and it is still possible to improve it. 

For example by providing a bulk-loading algorithm to initially create the DDiSAT if we 

know aforehand a subset of elements, avoiding some unnecessary rebuildings when we 

insert elements and combining with lazy insertion that do not always rebuild trees. 

In future works, we consider making the DDiSAT fully dynamic; that is, supporting 

deletions and designing an efficient bulk-loading algorithm, which allows for reducing 

more the insertion costs. We also consider to design an efficient alternative of k-NN 

search that applies a smart solution by taking advantage of all distances calculated in 

order to shrink, as soon as possible, the radius from q that encloses k elements. 
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