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Abstract 

According to studies, music affects our moods, and 

we are also inclined to choose a theme based on our 

current moods. Audio-based techniques can achieve 

promising results, but lyrics also give relevant infor- 

mation about the moods of a song which may not 

be present in the audio part. So a multi-modal with 

both textual features and acoustic features can pro- 

vide enhanced accuracy. Sequential networks such 

as long short-term memory networks (LSTM) and 

gated recurrent unit networks (GRU) are widely used 

in the most state-of-the-art natural language process- 

ing (NLP) models. A transformer model uses self- 

attention to compute representations of its inputs and 

outputs, unlike recurrent unit networks (RNNs) that 

use sequences and transformers that can parallelize 

over input positions during training. In this work, we 

proposed a multi-modal music mood classification sys- 

tem based on transformers and compared the system’s 

performance using a bi-directional GRU (Bi-GRU)- 

based system with and without attention. The perfor- 

mance is also analyzed for other state-of-the-art ap- 

proaches. The proposed transformer-based model ac- 

quired higher accuracy than the Bi-GRU-based multi- 

modal system with single-layer attention by providing 

a maximum accuracy of 77.94%. 

Keywords: BERT, bidirectional GRU, music, self- 

attention, transformer 

Resumen 

Según los estudios, la música afecta nuestro estado de 

ánimo y estamos también inclinados a elegir un tema 

basado en nuestros estados de ánimo actuales. basado 

en audio técnicas pueden lograr resultados promete- 

dores, pero las letras también dan información sobre 

los estados de ánimo de una canción que puede no 

estar presente en la parte de audio Por lo tanto, un 

multimodal con características tanto textuales como 

acústicas puede proporcionar una mayor precisión. Re- 

des secuenciales tales ya que las redes de memoria a 
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corto plazo (LSTM) y las redes de unidades recurrentes 

(GRU) son ampliamente utilizadas en el procesamiento 

de lenguaje natural (NLP) más avanzado. modelos 

Un modelo de transformador utiliza la atención propia 

para calcular las representaciones de sus entradas y sal- 

idas, a diferencia de las redes de unidades recurrentes 

(RNN) que utilizan secuencias y transformadores que 

pueden paralelizarse sobre las posiciones de entrada 

durante el entrenamiento. En este trabajo, propusi- 

mos un sistema de clasificación de estados de ánimo 

musicales multimodal basado en transformadores y 

comparamos el rendimiento del sistema usando un sis- 

tema bidireccional basado en GRU (Bi-GRU) con y sin 

atención. El rendimiento también se analiza para otros 

enfoques de vanguardia. El modelo basado en trans- 

formadores propuesto adquirió mayor precisión que el 

sistema multimodal basado en Bi-GRU con atención 

monocapa al proporcionar una precisión máxima del 

77,94%. 

Palabras claves: BERT, GRU bidireccional, música, 

autoatención, transformador. 

1 Introduction 

Music is a significant and often emotional experience 

for many people. Humans are deeply influenced by 

music in numerous ways. It helps to increase our 

memory and task pertinacity, light up our mood, turn 

down anxiety and depression, stave off fatigue, im- 

prove our pain response, and work out more efficiently. 

For example, music has been used to reduce stress 

and discomfort related to surgical and dental proce- 

dures, alleviate anxiety and depression in coronary 

care units, and boost recovery from heart attacks. We 

all experience joy, anger, sadness, and other emotions 

because we are all human beings. Each of us experi- 

ences a variety of emotions, which have an impact on 

our behaviour. Whether a person is in a good, bad, or 

depressed mood, music can influence their emotions, 

feelings, thoughts, and physical states. When we listen 

to music, the rhythm and tone we hear change our 

mood in various ways. Our hearts begin to beat in time
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with the rhythm when we listen to it. Our brain inter- 

prets a slow heartbeat with high diastolic pressure as 

sad or depression. Love or happiness can be indicated 

by a dreamy rhythm with occasional upbeats, whereas 

a fast beat shows anger. Regarding tones, music in the 

“major key” transmits a happy message to our brain, 

whereas music in the “minor key” sends a sad message. 

All of this strongly impacts our brains, causing us to 

feel what is being conveyed to us genuinely. 

In recent years, the online music industry has seen 

massive growth. Media streaming applications such 

as Apple, Spotify, and YouTube Music have become 

very popular. Access to immense music resources 

has increased the need to manage efficiently, index, 

search and organize music data. Categorizing music 

with label information such as genre, artist, and emo- 

tion is more convenient, among which classification 

based on emotion has become an important criterion. 

Listeners’ moods can be a helpful representation of 

music recommendation systems. The mood is a psy- 

chological state of feeling related to internal emotions 

and affect, which is how emotions are expressed out- 

wardly. Studies show that music not only affects our 

moods but also that we seem to choose music based on 

our current moods. Music mood classification based 

on acoustic features mostly depends on songs’ spec- 

tral and rhythmic features. Lyrics-based classification 

exploiting natural language processing techniques is 

also gaining popularity. A classification model based 

on hybrid feature sets, audio, and lyrics can provide 

a more promising audio mood classification system. 

Manual classification is not feasible with a vast on- 

line library of songs. Hence we use music informa- 

tion retrieval (MIR) techniques [1] to fetch musical 

information from music repositories and arrange them 

according to query relevance. MIR is used in different 

fields, including computational music theory, music 

creation applications, music recommendation, classifi- 

cation, and music browsing interfaces. 

The significant contributions of our research work 

can be concluded as follows: 

1. Multi-modal methods are efficient compared to 

uni-modal methods for predicting the mood of a 

song. 

2. Integrating attention mechanisms improves the 

performance of the system. 

3. Multi-modal transformer-based approaches can 

enhance the system’s efficacy, thereby proposing 

a spectrogram-independent multi-modal music 

mood classification system. 

1.1 Related Works 

Various attempts to classify songs based on moods 

and emotions using acoustic and textual features can 

be seen in the literature. Gordon C. Bruner [2] first 

attempted to classify songs according to moods. The 
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work in [3] introduces a mood detection approach for 

classical music from acoustic data based on Thayer’s 

model. In [4], a hierarchical framework is presented 

to automate the task of mood detection from acous- 

tic music data by following some music psychologi- 

cal theories. Using audio mining techniques, implicit 

knowledge and data relationships from the audio and 

audio similarity measure are extracted in [5]. Later, 

implementing the term frequency-inverse document 

frequency (TF-IDF) embedding method on lyrics, Van 

Zaanen and Kanters [6] developed a machine-learning 

model based on emotion. It is worth noting that the 

fusion of lyrics and acoustic features significantly im- 

proves the performance of classifiers [7, 8]. In [9], a 

novel method for categorizing music by mood based 

on the content was provided. Three different modali- 

ties—audio, lyric, and MIDI—were employed in this 

research. Following acquiring three feature sets, they 

develop three variations of the standard co-training 

algorithm. The findings showed that these techniques 

could significantly raise classification accuracy. RNNs 

such as LSTM[11] and GRU [12] are used to pro- 

cess sequential data by storing previous inputs. In the 

study [13], Abdillah et al. employed the Bidirectional 

Long-short Term Memory (Bi-LSTM) deep learning 

method with GloVe to classify the song’s emotions 

using the lyrics of the song. A multi-modal mood 

classification is done based on bi-directional LSTM 

(Bi-LSTM), and TF-IDF by Rajan R et al. [14]. In 

sequential networks such as LSTM and GRU, as the 

length of the sentence increases, it gets harder to cap- 

ture the information in this vector because the meaning 

of every input sentence is captured in one vector. Its 

performance deteriorates with long sentences since it 

tends to forget parts of it, and gradually the hidden 

vector becomes a bottleneck. To solve this bottleneck 

problem, attention mechanisms are introduced. Self- 

attention allows the inputs to interact with each other 

and decides to give more weight to the relevant feature. 

It reduces the computational complexity of the layers 

processed. It’s possible that assigning a high attention 

weight compared to the rest of the sequence will result 

in better results. Bahdanau et al. [15] introduced an 

additive attention mechanism that addresses the bottle- 

neck problem when a fixed-length encoding vector is 

used in RNN. Dot-product attention scheme [16] has 

been used in various NLP applications and recently in 

audio processing applications [17, 18, 19, 20]. 

Ashish Vaswani et al. introduced transformers in 

[10]. Using attention mechanisms and positional em- 

beddings transformer avoids recursion by processing 

sentences as a whole. The advantage of multi-headed 

attention in transformers is that different input vectors 

relate semantically in multiple ways. Transformers are 

widely used in NLP, and in past years, different vari- 

ants and pre-trained models such as bidirectional en- 

coder representations from transformers (BERT) and 

distiIBERT [21, 22, 23, 24] are also introduced. Since
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Figure 1: Multi-modal fusion architecture based on the transformer. Transformer architecture is incorporated from [10] 

transformers are good at processing sequential data, 

we can also use them for audio classification prob- 

lems. Transformers working with spectrogram[25, 26] 

were also introduced recently. The study in [27] , 

proposed a transformer-based approach model using 

XLNet. The authors also employed a robust method- 

ology to enhance the accuracy of web crawlers for 

extracting lyrics. Pyrovolakis et al. [28] examined and 

compared single-channel and multi-modal approaches 

for music mood detection by applying deep learning 

architectures. They proposed a multi-modal method- 

ology for classification based on convolutional neural 

networks (CNN) and BERT. They also proved that the 

correct extraction and combination of audio features 

could further improve the prediction goal. 

1.2 Motivation 

Generally, music is classified according to different 

genres, album names, artists, etc. Ordinary people, es- 

pecially those who don’t know much about the genre, 

often find it difficult to choose songs based on these 

classifications. Since music can change moods and 

relieve stress, most people choose to hear music based 

on their moods. This necessitates the development 

of a user-centric music classification system based 

on mood. Such a system can ease the selection of 

songs and reduce browsing time. Musical informa- 

tion can be derived from both audio as well as lyrics 

features. The use of both modalities can result in a 

system with improved performance. Besides, the po- 

tential of transformers to understand the relationship 

between sequential elements has not yet been explored 

in music mood classification. These factors motivated 
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us to develop a multi-modal architecture based on a 

user-centric music mood classification system. 

2 System Description 

The proposed model is a multi-modal music mood clas- 

sification system based on a transformer. The trans- 

former architectures take advantage of the attention 

mechanism to enhance the performance of deep learn- 

ing NLP translation models. The transformer made 

it possible to facilitate greater parallelization during 

training, which significantly speeds up training. A de- 

tailed block representation of the transformer-based 

multi-modal mood classification system is given in 

Figure 1. Initially, we experimented with Bi-GRU and 

CNN frameworks. Later we studied the effect of the 

attention mechanism on the task. Two modalities of a 

song - text, audio and their fusion are employed in the 

feature extraction phase. Four mood classes, namely, 

aggressive, happy, sad, and relaxed, are considered in 

this study. 

The acoustic features with position encoding are 

initially fed to the transformer model. The transformer 

model contains a stack of encoders. Each encoder con- 

sists of multi-head attention, point-wise feed-forward 

networks, and layer normalization. Multiple attention 

mechanisms enable the model to capture more rela- 

tionships between inputs than possible with a single 

attention mechanism. The stack of encoders processes 

this input sequence and produces an encoded represen- 

tation of the input sequence. 

The lyrics contain words that must be pre-processed 

before being fed to the model. Cleaning, stop word
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Table 1: Extracted audio features 

  

SI. No Features Description 
  

It is the rate at which the sign of a signal is changed. It detects 

whether a speech frame is voice, unvoiced, or silent. Unvoiced 
1 Zero Crossing Rate (ZCR) 

segments give higher ZCRs than voice segments, and ideally, 

ZCRs are zero for silence segments. 
  

Chroma vector consists of 12-elements which show the energy 

  

  

  

  

  

  

  

  

  

2 Chroma content corresponding to the 12 pitch classes in the song. For 

chroma implementation, STFT analysis is used. 

Spectral Centroid It indicates where the ” center of mass” for a sound is located. 

4 Spectral Bandwidth It is the difference between upper and lower frequencies of the spectrum. 

Spectral flatness characterizes the audio spectrum. It helps to 

measure how much sound resembles a pure tone. A high spectral 
5 Spectral Flatness 

flatness means the spectrum is similar to white noise. It is also 

called tonality coefficient. 

RMS is the root-mean-square-energy. It helps to perceive 
6 Spectral Roll-off 

loudness, which can be used for event detection. 

4 RMS Root Mean Square energy helps to perceive loudness, which 

can be used for event detection. 

It determines beats per minute. It helps to identify the speed at 
8 Tempo 

which musical piece is played. 

9 Tonnetz It gives tonal centroid features of 6 pitch classes 

Mel Frequency Spectrum provides better representation of audio 

10 MFCC because frequency bands are equally dis- tributed in mel scale. It 

gives the overall shape of the spectral envelope. 

11 PLP Predominant Local Pulse is used to find stable tempo for each frame. 
  

removal, and stemming have been done as part of 

pre-processing step. We employed the BERT embed- 

ding technique to compute textual vectors. BERT uses 

wordpiece embedding input for tokens. In the multi- 

modal framework, acoustic and textual feature vectors 

are fed separately through the global average pool 

layers. Then these two layers are concatenated, and 

features are provided through the dense layer. Finally, 

the softmax activation function is used at the output 

layer for predicting the moods according to songs. We 

also experimented with other deep learning architec- 

tures such as Bi-GRU, XLNet, and CNN to analyze 

the performance from a multi-modal perspective. The 

following subsections describe feature extraction and 

classification methods in detail. 

2.1 Feature Extraction 

Feature extraction helps to identify and extract key 

features in the input data set. It transforms raw data 

into numerical features by preserving the information 

in the original data set. We computed two sets of 

features from audio and lyrics. 

-21- 

2.1.1 Audio Feature Extraction 

The acoustic features are extracted using the Librosa 

package [29]. The acoustic features extracted are 

listed in Table 1. Zero-crossing rate (ZCR), tempo, 

and predominant local pulse are temporal features, 

and the rest are spectral features. Mel-frequency cep- 

stral coefficient (MFCC) features are the most com- 

monly used feature for audio classification. Here, 

25 MFCC coefficients, its first derivative(delta) and 

second derivative(delta-delta) features are extracted. 

The whole features extracted for a song are concate- 

nated for a single representation before proceeding 

with training. 

2.1.2 Lyrics Feature Extraction 

The lyrics provide a narrative and additional intrigue 

that instrumental music alone cannot provide. Words 

in lyrics play an important role in evoking emotions. 

Figure 2 shows a word cloud representation of com- 

monly occurring words in four mood corpora. These 

words are pretty helpful in determining a song’s mood.
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Figure 2: Most common words in (a) aggressive corpus (b) happy corpus (c) relaxed corpus (d) sad corpus 

Four embedding techniques, namely, GloVe, 

Word2Vec, BERT, and XLNet, are used for this re- 

search work. Cleaning, stop word removal, and stem- 

ming have been done as part of pre-processing step, 

followed by vectorization. 

e Word2Vec: Word2Vec accepts text inputs and 

gives corresponding vectors as outputs. The se- 

mantic closeness of the words to each other are 

also revealed in this representation. The length 

of the vector depends on the corpus size. The 

relationship is derived using the cosine distance 

between the words. The vector representation 

of each word in the corpus places words with 

similar contexts next to one another in the vec- 

tor space. The one-hot encoding is used to show 

the word vectors in the Word2Vec models. These 

word vectors serve as inputs to the neural network, 

which sums the inputs with parameter tables in 

its hidden layers. The softmax function is then 

applied at the output layer to predict the right 

word positions in the one-hot vectors of the out- 

put. Word2Vec has two architectural modeling 

options, the CBoW (Continuous Bag of Words) 

and the Skip-gram, for the vector representation 

of the words. The CBoW model attempts to pre- 

dict the target word in the output using the nearby 

words of a target word as input. The Skip-gram 

model takes a word as input and forecasts the 

nearby words as output. Skip-gram represents 

uncommon words or phrases well and performs 

well with small datasets. While CBOW can better 

represent more frequent words and trains more 

quickly than Skip-Gram. 

e (Global Vectors (GloVe): GloVe encodes the co- 

occurrence probability ratio as a vector differ- 

ence between the words. The co-occurrence ma- 

trix tells how often a particular word pair occurs 

together. Each value in the co-occurrence ma- 

trix represents a pair of words occurring together. 

GloVe uses a weighted least squares objective that 

minimizes the difference between the dot product 

of the vectors of two words and the logarithm of 

their number of co-occurrences[30]. 

_22 - 

v 

J= y f (Xj) (w! w; +b; + bj —logXi;)” 

ij 

(1) 
where w; and b; are the word vector and bias 

respectively of word 1, w; and b; are the context 

word vector and bias respectively of word J, X;; Is 

the number of times word 1 occurs in the context 

of word j , and f is a weighting function that 

assigns lower weights to rare and frequent co- 

occurrences. 

BERT: The BERT tokenizer accepts text as input 

for tokenization. While maintaining the occur- 

rence order of words, it creates a sequence of 

terms-words matching each input word in the cor- 

responding term provided by its vocabulary. The 

tokenizer tries to break down input words that are 

not recognized in the vocabulary into vocabulary 

tokens to the maximum number of characters, and 

it may split a word into characters. When a word 

is split, the first token will remain in the order 

it appears, and the subsequent tokens will build 

on each other using the double symbol # at the 

start. Consequently, the model can recognize the 

tokens that result from splitting. 

XLNet: The process of making embeddings for 

XLNet is different from BERT; first, we will tok- 

enize the texts with sentencepiece, then, we will 

add “<sep>”, ”<cls>” and pad mask to the em- 

beddings. In XLNet, the word token output is 

calculated by taking into account the permutation 

of all word tokens in the sentence. 

2.2 Classification Schemes 

Various classification models such as support vector 

machine (SVM)-based classifier, Bi-GRU with self- 

attention model, CNN-based model and transformer- 

based models are utilized in the study and compared 

with the proposed model.
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2.2.1 Support vector machine-based classifier 

As a baseline machine learning-based classifier, we 

experimented with SVM. The goal of the SVM al- 

gorithm is to create a hyperplane that can segregate 

n-dimensional space into classes so that we can easily 

put the new data point in the correct category in the 

future. 

2.2.2 Bi-GRU with self-attention 

Audio, lyrics, and multi-modal architectures are 

trained using networks without and with attention. A 

bidirectional GRU, or Bi-GRU is a bidirectional recur- 

rent neural network that consists of two GRUs - one 

takes the input in the forward direction and the other 

in the backward direction. The GRU model consists of 

two gates [12]: the reset gate r and the update gate z. 

At time step, t, the GRU unit output, /;, is calculated 

as follows 

Z=—0 WAS? + Unzhi-1) (2) 

=o WAS? + Unrhi-1) (3) 

h, = tanh(Wx, +U (r; © hy-1)) (4) 

h=(1-2)0h-1 +u Oh (5) 

where the feedforward weights of the update gate 

z,, the reset gate r;, and the output candidate activation 

h, at time step t are W,,, W,,, and W. The recurrent 

weights of the update gate z,, the reset gate r,, and 

the output candidate activation A,, are Up, Unr, U re- 

spectively. The symbol & denotes the element-wise 

(Hadamard) multiplication. o is the logistic sigmoid 

function and tanh is the hyperbolic tangent function. 

Attention is “withdrawal from something to deal 

effectively with others”[31]. The idea is extended to 

deep neural networks by focusing on certain input 

features while ignoring others. Attention models are 

implemented by relating each output sequence to a 

certain part of the input sequence before producing the 

output. Attention can be global or local, depending on 

whether the attention is given to all the input positions 

or a subset. They differ in the derivation of the context 

vector for the input sequence. The alignment score 

function can be additive, dot product, and scaled dot 

product. Self-attention, also known as intra-attention, 

relates different positions of an input sequence to ob- 

tain a representation of the entire sequence. It learns 

self-alignment[10]. Our study employs self-attention 

based on the dot product alignment function for calcu- 

lating the attention, B, between input and output. 

2.2.3 Convolutional Neural Network 

The convolutional neural network (CNN) is one of 

the most well-liked deep neural networks. A basic 

CNN comprises several layers, each of which con- 

verts one volume of activations into another using a 

differentiable function. Convolutional, pooling, and 
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fully-connected layers are the layers used by CNN. 

Complete CNN architecture is built by stacking these 

layers. 

¢ The convolutional layer calculates the output of 

neurons connected to local regions in the in- 

put, each computing a dot product between their 

weights and a small region connected to the input 

volume. 

¢ ReLU applies an element-wise activation func- 

tion. It does not change the volume. 

¢ Pooling layers perform a downsampling opera- 

tion along width and height (spatial dimensions). 

¢ The arrangement of neurons in a fully connected 

layer is comparable to that of the traditional neu- 

ral network. In a fully connected layer, each node 

is directly connected to every other node in the 

layer previous to and next to it. 

2.3 Transformer 

The transformer is a network architecture relying en- 

tirely on attention mechanisms, eschewing recurrence 

and convolutions completely [10]. The transformer 

uses multi-head self-attention for computing represen- 

tations of the input sequence. Transformer model ar- 

chitecture follows an Encoder- decoder structure. But 

for classification purposes here, we used an encoder 

only. It consists of a positional encoding layer, an 

encoding block (repeats N, times), a softmax layer, 

and a linear layer. The encoding block consists of a 

position-wise fully connected feedforward sub-layer 

and a multi-head self-attention sub-layer. The input 

is first passed through the positional encoding layer. 

The network benefits from comprehending the relative 

or absolute positional information in each sequence. 

Then it is fed through the encoding blocks A, times. 

The linear and softmax layer receives the output of 

the final encoding block. Transformer architecture is 

described as follows: 

Multi-head attention techniques implement self- 

attention layers running in parallel. Queries, keys, 

and values are linearly projected h times with different, 

learned linear projections to dk, dg, and dv dimensions, 

respectively. The attention function is applied paral- 

lel to the projected queries, keys, and values versions. 

The output will have dimension dv. Parallel outputs 

are then concatenated, resulting in the final attention 

vector. Queries and keys have dimension dk and values 

have dimension dv. The dot products of the query with 

all keys are computed, divided by Vdk, and finally, a 

softmax function is utilized to obtain the weights on 

the values. This is extended to a set of queries, keys, 

and values packed into matrices and represented by Q, 

K, and V, respectively. Figure 3 shows the schematic 

representation of multi-head attention.
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3 Performance evaluation 

3.1 Dataset 

The available dataset that we used for training and eval- 

uation is a subset of MoodyLyrics Dataset [32] It con- 

sists of a set of 2000 song titles alongside their corre- 

sponding mood label, from four basic moods—happy 

(Q1), aggressive (Q2), sad (Q3) and relaxed (Q4). This 

dataset does not contain the needed data (audio files, 

lyrics, or any information on the genre). It only pro- 

vides less information, such as song titles, related artist 

names, and mood labels. Using this data, we gathered 

680 songs’ audio and lyrics. The lyrics of the entire 

song are saved in .txt format. The words that make 

up a song are called the lyrics and provide strong and 

relevant information about the emotional state that a 

song can elicit in the listener. Audio files are trun- 

cated to 30 seconds and saved as .wav files. Songs 

are classified based on Russel’s emotional circumplex 

model[33]. All human emotions, according to circum- 

plex, are dispersed in a circular two-dimensional space 

with valence and arousal axes. The dataset is divided 

by the ratio of 70:10:20 as train, validation, and test 

pattern. 

3.2 Experimental Setup 

Initially, we implemented a support vector machine 

(SVM)-based classification for the proposed work. 

Eleven acoustic features are extracted using the librosa 

package and combined to form an input tensor (2191, 

119). We imported the SVC class from Sklearn.svm 

library to create the SVM classifier. The extracted au- 

dio features are used to train the SVM classifier using 

audio features. We have used kernel=‘poly’ and the 

degree=‘3’, for better results. The polynomial kernel 

displays the similarity of the vectors in the training 

set of data in a feature space over the polynomials 
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of the initial variables utilized in the kernel. Simi- 

larly, we have implemented an SVM classifier using 

lyrics features. The better result is obtained when we 

employ kernel=‘rbf’, c=‘1’, and gamma= ‘le-3’. A 

Radial basis kernel (RBF) non-linearly maps samples 

into a higher dimensional space. Following that, we 

merged lyrical and audio features and developed an 

SVM classifier. We have applied kernel="rbf”, c=’ 10’, 

and gamma=’ le-3’. 

Afterwards, we explored deep learning models. The 

extracted audio features are fed to the Bi-GRU layer 

of 512 units. A batch normalization layer is used 

for normalizing inputs. The normalized inputs are 

passed through several dense and dropout layers with a 

dropout value of 0.3. Finally, the output layer consists 

of the softmax activation function, which predicts the 

mood classes. The model is trained over 100 epochs 

with a batch size of 32. 

We also experimented with a CNN using audio fea- 

tures. The features are fed to a 2D convolution layer 

of filter size 32 and kernel size 7 x7, followed by the 

ReLU activation layer and max-pooling layer. Again 

it passes through a series of convolution layers (filter 

size=64, 128, 256, and kernel size=3) and max-pooling 

layers. The max-pooling layer has a stride size of 2. 

With a batch size of 32, the model is trained over 100 

epochs. 

For lyrical features, the experiments are done with 

two models - Word2Vec and GloVe. Experiments are 

carried out with various embedding dimensions and 

maximum word lengths (maximum number of words). 

Several combinations of embedding dimensions (100, 

200, 300) and maximum word length (100, 200, 300) 

are considered for analyzing the best combination. A 

Bi-GRU network of 256 units is used to train the model 

with several dense and dropout layers with a dropout 

value of 0.3. Batch normalization is also integrated 

into the model. ReLU is used in dense layers, and 

softmax is used in the output layer as an activation 

function. The model is trained for 100 epochs. A 

batch size of 32 is used. In the GloVe framework, we 

experimented with various vector-length pre-trained 

representations. The co-occurrence matrix is built 

from these vectors, and its untrained weights are re- 

placed at the level of integration. The embedding layer 

uses it as a weight matrix. 

In the multi-modal system, two modalities are used - 

audio and text. The acoustic and textual features were 

computed using Word2Vec/GloVe embeddings com- 

bined to obtain a hybrid model. The acoustic features 

are fed into a Bi-GRU network with 512 units and 

dense layers with 256 and 128 neurons with a dropout 

of 0.3. Textual features are processed through a Bi- 

GRU layer, followed by dense layers with 256 and 128 

neurons and a dropout of 0.3. The acoustic and lyrical 

features are then concatenated and passed through lay- 

ers of 256, 128, and 64 neurons with a dropout of 0.3. 

A batch normalization layer is also used for normal-
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izing the input data. In the training phase, an Adam 

optimizer with a learning rate of 0.0001 was utilized. 

The batch size used is 32, and the model has iterated 

over 100 epochs. 

We also experimented with an attention framework 

for a multi-modal system. An attention layer in the 

Word2Vec-based text input channel is included to cap- 

ture the relevant aspects. Acoustic features are ex- 

tracted and fed to a Bi-GRU network of 512 neurons 

after batch normalization. Then it passes through a 

self-attention layer. The output from the attention 

layer is then fed to dense layers. After that, the au- 

dio and lyrics features are concatenated and processed 

via dense and dropout layers. Since the ReLU is the 

function most frequently employed for hidden layers, 

it is used in this instance. At the output layer, the soft- 

max activation function is used. The model is trained 

for One hundred epochs with a batch size of 32. An 

early stopping with patience ten is also used to train 

the models better. In the next hybrid model based on 

attention, we used GloVe embeddings and repeated the 

process as in the Word2Vec-based multi-modal with 

attention. With a single attention layer, we acquired 

better results for the multi-modal system. 

Inspired by these results, we implemented a 

transformer-based music mood classification system 

that uses multi-head attention. Different input vec- 

tors relate to each other semantically in multiple ways. 

Multi-head attention catches such types of relations 

because the heads work parallelly. We analyzed the 

uni-modal transformer classification model based on 

textual features. For this, we use a pre-trained trans- 

former model BERT. The BERT model was pre-trained 

on BookCorpus, a dataset consisting of 11,038 un- 

published books and English Wikipedia (excluding 

lists, tables, and headers). BERT is simply a trans- 

former architecture Encoder stack. The Encoder stack 

of BERTBAsE, One of the pre-trained BERT models, 

includes 12 layers. It also has larger feed-forward net- 

works (768) with 12 heads. It has 110 million parame- 

ters. The BERT model requires a particular representa- 

tion of the input data to operate correctly, called BERT 

embeddings. In particular, the BERT’s tokenizer gen- 

erates a sequence of word tokens by comparing each 

input word to the dictionary of the BERT. Tokenizer 

appends the token [CLS] to the beginning of the list 

once tokenization is complete and the [SEP] token at 

the end of each sentence. BERT foresee three parallel 

vectors of fixed length 128 - input_ids ,input_masks 

and segment_ids. The identification IDs of each to- 

ken in the input are used to create the vector input ids. 

These IDs are stored in the dictionary of the model. 

Vector segment ids aid in the separation of sentences 

that make up an input. Sequences greater than 128 

characters will be trimmed. The sequence is filled 

with empty tokens 1f the number of tokens is less than 

128. Each of BERT’s 12 layers is an encoder, and 

each encoder is made up of three various embedding 

-25- 

vector processing layers. The first layer implements 

a multi-head-attention mechanism with 12 heads of 

attention. The second layer comprises a normalization 

layer and a feed-forward network. It also includes a 

layer of each encoder which consists of a position en- 

coding technique that integrates position information 

in embedding vectors. The encoder outputs are fed to 

a global max-pooling layer followed by a dense layer 

of 16 units with a ReLU activation function. Later the 

features are fed to the output layer, which consists of 

the softmax activation function. The BERT model is 

trained over 30 epochs. The learning rate adapted is 

0.0001. 

Yudhik Agrawal [27] proposed a transformer-based 

approach to music emotion recognition from lyrics 

using XLNet, which was adopted to study. XLNet 

is an auto-regressive language model. A greater un- 

derstanding of contextual information is possible for 

the network due to the integrated recurrence of the 

transformer. We use the adam optimizer with an initial 

learning rate of 2e-5 and a dropout regularization with 

a 0.1 discard probability for the layers. We used cross- 

entropy loss here. A batch size of four was used. As 

they are trained on large corpora, pre-trained (XLNet- 

base-cased) models have access to rich information. 

Training the classifier is quite cheap because the pre- 

trained model layers already encode rich linguistic 

information. 

Multi-modal system (CNN+BERT) proposed in 

[28] is also implemented for the performance com- 

parison. Acoustic features extracted are trained using 

the CNN model, and for lyrics, BERT is used. Later 

both models are combined, and finally, integrated fea- 

tures are processed through a softmax output layer. 

Adam optimizer with a learning rate of 2e-5 is used. 

32 is used as batch size. 

Next, we analyzed a multi-modal classification sys- 

tem based on Bi-GRU and BERT. The acoustic fea- 

tures are fed into a Bi-GRU network with 256 units 

and dense layers with 256, 128, and 64 neurons with a 

dropout of 0.2. Text is transformed in representations 

BERT expects, as described in section 2.1.2. Later 

BERT embedding features passed through a stack of 

encoders. The output is pooled and fed to a dense 

layer of 16 units. A dropout of 0.2 is given to layers. 

Acoustic and textual dense layers are concatenated and 

passed through the dense layer of 16 units and then 

through the output layer. Adam is chosen as the op- 

timizer for the training process, with a learning rate 

of 0.0001. The number of epochs for this process are 

selected to be equal to 20. 

Finally, we introduce a better efficient model, which 

is purely based on transformers. Here, both acoustic 

and textual features are trained using transformer mod- 

els. The architecture of the proposed model is shown in 

Table 2. As a first step, we have created a transformer- 

based model using acoustic features. Here we need the 

encoder part of the transformer. We select the number
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Table 2: Architecture of proposed transformer-based multi-modal music mood classification system 

  

SINO Layer Output Shape 
    

1 Audio Input (None, 2191, 119) 
  

2 Audio encoder(12 layers) (None, 2191, 119), (None, 2191, 119), (None, 2191, 119), 
(None, 2191, 119), (None, 2191, 119), (None, 2191, 119), 
(None, 2191, 119), (None, 2191, 119), (None, 2191, 119), 
(None, 2191, 119), (None, 2191, 119), (None, 2191, 119) 
  

  

  

  

3 Dropout (None, 2191, 119) 

4 Global Average PoolinglD (None, 119) 

5 Dense (None, 64) 

6 Text Input “input mask”: (None, 128), “input word ids”:(None, 128), 

“input type-ids”: (None, 128) 
  

7 BERT Encoder(12 layers) "sequence output”: (None, 128, 768), *encoder_outputs’: 

[(None, 128, 768), (None, 128, 768), (None, 128, 768), (None, 

128, 768), (None, 128, 768), (None, 128, 768), (None, 128, 

768), (None, 128, 768), (None, 128, 768), (None, 128, 768), 

(None, 128, 768), (None, 128, 768)], 'pooled output”: ( None, 

768), “default”: (None, 768) 
  

  

  

  

  

8 Dropout (None, 768) 

9 Dense (None, 64) 

10 Merge (None, 128) 

11 Dense (None, 32) 

12 Dropout (None, 4) 
    

of encoder layers (N,) as 12, the number of heads in 

the multi-head attention models as 7, the dimension of 

the feed-forward network model(dff) as 2048, drop out 

value of 0.3, and the number of expected features in the 

encoder(d,nodei) as 119 (dimension of input features 

extracted). ReLU is used as the activation function. 

Next, we developed a transformer classification model 

based on textual features. We have used a pre-trained 

BERTpase model. Textual features in BERT embed- 

dings are fed to the stack of encoders. The output 

from encoders is fed to the pooling layer. The pooling 

layer and dense layer concatenated both the acoustic 

and lyrical models and passed through an output layer 

with a softmax activation function. The pooling layer 

is used to reduce the dimension of inputs from trans- 

former encoders. We used Adam as the optimizer with 

a learning rate of 0.00001 over 20 epochs. 

3.3 Results and Analysis 

Precision, recall, Fl-score, and overall accuracy are 

used to evaluate performance. The evaluation parame- 

ters show that the proposed multi-modal architecture 

with attention and transformer models outperforms 

multi-modal architecture without attention and single- 

modal architectures. The evaluation parameters gradu- 

ally increase from single-modal architectures to multi- 
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modal architectures with transformers. 

The overall accuracy of the SVM classifier based on 

audio features is 52.94%. The average precision, recall, 

and F1 score is 0.55, 0.53, and 0.53, respectively. The 

lyric-based SVM classifier obtained an accuracy of 

32.35% with average precision, recall, and Fl score 

of 0.33, 0.32, and 0.31, respectively. With average 

precision, recall, and F1 score of 0.62, 0.60, and 0.59, 

respectively, the audio+lyrics-based SVM classifier 

achieved an accuracy of 59.55%. Precision, Recall, 

and F1 score of three SVM classifiers are given in table 

3 

The performance metrics for audio-based classifi- 

cation using Bi-GRU and CNN networks are given in 

Table 4. Average precision, recall, and Fl-score of 

0.56, 0.56, and 0.55 are reported for Bi-GRU-based 

classification and 0.63, 0.62, and 0.62 are reported for 

CNN-based classification. The highest metrics values 

are reported for the aggressive class for the Bi-GRU 

model. For the CNN model, the highest precision and 

Fl score is attained for the class sad, and the high- 

est recall is for the class happy. The Bi-GRU model 

and CNN model have provided an overall accuracy of 

56.00 % and 61.76%, respectively. 

For the second phase with textual features, the 

results are tabulated in Table 5, for the embedding 

dimension and maximum word length as 100 for
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Table 3: Precision, recall and F1 score for audio-based, lyrics-based, and audio+lyrics-based classification using 

  

  

  

  

SVM 

Lyrics Audio Audio+Lyrics 

P R F P R F P R F 

Aggressive 0.28 0.26 0.27 0.85 0.68 0.75 0.85 0.68 0.75 

Happy 0.35 050 041 0.56 0.65 0.60 0.51 0.76 0.61 

Relaxed 0.31 0.38 0.34 0.38 044 041 0.54 041 0.47 

Sad 0.36 0.15 0.21 040 0.35 0.38 0.56 0.53 0.55 

Average 0.33 0.32 031 0.55 0.53 0.53 0.62 0.60 0.59 
  

Table 4: Precision, recall and Fl score for audio-based 

  

  

  

  

classification 

Audio(Bi-GRU) Audio(CNN) 

P R F P R F 

Aggressive 0.69 0.74 0.71 0.52 0.44 0.48 

Happy 0.56 044 049 0.62 0.76 0.68 

Relaxed 0.49 0.59 0.53 0.53 0.59 0.56 

Sad 0.50 047 048 0.85 0.68 0.75 

Average 0.56 0.56 0.55 0.63 0.62 0.62 
  

both Word2Vec and GloVe. An accuracy of 44.15% 

is obtained for the Word2Vec classification. The 

model’s performance is analyzed with various combi- 

nations of embedding dimension and maximum word 

length. Among all the combinations, the combina- 

tion (100,100) has the highest accuracy of 50.73% for 

GloVe, compared to others. Figures 4 show the perfor- 

mance of the Word2Vec and GloVe systems for vari- 

ous combinations of embedding dimension and maxi- 

mum word length. The performance of Word2Vec and 

GloVe embedding techniques are compared. In both 

methods, the highest accuracy is reported for aggres- 

sive and happy. It is important to note that the GloVe 

model performs better than the Word2Vec model. 

Table 5: Precision, recall and F1 score for lyric-based 

  

  

  

  

classification 

Lyrics(Word2Vec) Lyrics(GloVe) 

P R F P R F 

Aggressive 0.63 0.50 0.56 0.70 0.76 0.73 

Happy 0.49 0.59 0.53 0.56 0.44 0.49 

Relaxed 0.34 041 0.37 047 041 0.44 

Sad 0.33 0.26 0.30 033 041 0.37 

Average 0.45 044 044 052 0.51 0.51 
  

As a fusion model, audio and textual features are 

combined to build a hybrid model. The metrics are 

tabulated in Table 6. Average precision, recall, and 

Fl scores of 0.67, 0.64, and 0.63 and 0.67, 0.65, and 

0.65 are reported for multi-modal classification with 
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Word2Vec and GloVe, respectively. It is worth noting 

that the metrics got improved in the fused model. From 

these results, the performance will be improved if we 

use both acoustic and lyrical features. The overall 

accuracy of our hybrid model based on Word2Vec 

and GloVe are 63.97% and 65.44%, respectively. The 

efficacy of the multi-modal system can be inferred by 

comparing the three confusion matrices. 

Table 6: Precision, recall and F1 score for 

multi-modal classification 

  
Multi-modal(Word2Vec) Multi-modal(GloVe) 
  

  

  

P R F P R F 

Aggressive 0.69 0.59 0.63 0.76 0.56 0.64 

Happy 0.59 0.56 0.58 0.67 0.65 0.66 

Relaxed 0.84 0.47 0.60 0.56 0.65 0.60 

Sad 0.57 0.94 0.71 0.67 0.76 0.71 

Average 0.67 0.64 0.63 0.67 0.65 0.65   

As mentioned in Section 2, we carried out experi- 

ments to see the effect of attention on the proposed 

task. First, we attempted a self-attention-based music 

mood classification system. The word clouds shown 

in Figure 2 expresses the frequent and dominant words 

for each mood. The attention mechanism provides 

more attention weight to these words. Similarly, the 

model also pays attention to a song’s dominant features 

for acoustic features. Paying attention to the relevant 

textual and acoustic features helps to predict the mood 

of a song more precisely and hence improves the per- 

formance of the multi-modal system. The performance 

matrices for multi-modal music mood classification 

using the self-attention mechanism are shown in Table 

7. 

We can observe that attention networks have in- 

creased the performance of hybrid models. Class ag- 

gressive, relaxed, and sad are predicted better com- 

pared to class happy in both Word2Vec and GloVe- 

based hybrid models. The metrics are improved to 

0.75, 0.74, and 0.73 for the Word2Vec model and 

0.78, 0.76, and 0.77 for the GloVe model, respec- 

tively for self-attention. The overall accuracy ob- 

tained for the attention-based Word2vec hybrid model 

is 73.52 %, and that for the attention-based GloVe
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Figure 4: Performance of the Word2Vec system and GloVe system for various combinations of embedding 

dimension and Maximum word length 

Table 7: Performance metrics for multi-modal with 

attention classification 

  
Multi-modal 

with attention 

Multi-modal 

with attention 

  

  

  

(Word2Vec) (GloVe) 

P R F P R F 

Aggressive 0.79 0.65 0.71 0.92 0.68 0.78 

Happy 0.64 0.85 0.73 0.67 0.76 0.71 

Relaxed 0.77 0.71 0.74 0.73 0.79 0.76 

Sad 0.78 0.74 0.76 0.80 0.82 0.81 

Average 0.75 0.74 0.73 0.78 0.76 0.77 
  

hybrid model is 76.47%. Hence, attention networks 

play an essential role in improving the performance 

of classification tasks. Next, we analyze the perfor- 

mance of transformer-based models. As mentioned 

before, Transformers employed multi-head attention; 

therefore they catch semantic relationships between 

input vectors in multiple ways because the heads work 

parallelly. Performance metrics of the BERT-based 

model and XLNet-based model are shown in Table 8. 

The overall accuracy of the BERT-based and XLNet- 

based models is 58.08% and 57.25%, respectively. The 

average precision, recall, and Fl score of the BERT- 

based model is 0.59, 0.58, and 0.58, and that of the 

XLNet-based model is 0.59, 0.57, and 0.57. The high 

performance is obtained for class aggressive in the 

BERT model. While class Aggressive has the highest 

precision and Fl score for the XLNet-based model, 

class Happy has the highest recall value. 

We also analyze the performance of transformer- 

based multi-modal systems. Table 9 shows the per- 

formance of the CNN+BERT-based multi-modal sys- 
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Table 8: Performance metrics for uni-modal 

transformer based classification 

  

  

  

  

BERT XLNet 

P R F P R F 

Aggressive 0.90 0.76 0.83 0.88 0.65 0.75 

Happy 0.56 0.68 0.61 0.57 0.76 0.65 

Relaxed 0.43 0.29 0.35 048 0.38 0.43 

Sad 0.47 0.59 0.52 0.45 0.50 0.47 

Average 0.59 0.58 0.58 0.59 0.57 0.57 
  

tem and Bi-GRU+BERT-based multi-modal system. 

The average precision, recall, and Fl score of the 

CNN+BERT model are 0.73, 0.71, and 0.71. While 

the Bi-GRU+BERT-based model acquired an average 

precision value of 0.76, an average recall value of 0.74, 

and an average Fl score of 0.74. The overall accuracy 

of the CNN+BERT model is 71.31%, and that of the 

Bi-GRU+BERT model is 73.5%. For both models, the 

highest precision and F1 score are for class aggressive 

and class sad, respectively. The highest recall value 

is obtained for relaxed in the CNN+BERT model and 

sad in the Bi-GRU+BERT model. 

Table 10 shows the performance of our proposed 

model. The overall accuracy is increased to 77.94%. 

The average precision, recall, and Fl score obtained 

are 0.78. The highest precision, recall, and Fl score 

of 0.94, 0.88, and 0.91 are reported for the class ag- 

gressive. Class happy also obtained better results com- 

pared to other systems. The confusion matrices of 

four models, audio-based, textual-based, multi-modal- 

based, and proposed transformer-based models, are 

given in Figure 5.
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Figure 5: Confusion matrix for classification system,(a) audio-based, (b) lyrics(GloVe) based, (c) multi-modal, (d) proposed 

transformer-based 

Table 9: Performance metrics for multi-modal 

transformer-based classification 

  

CNN+BERT Bi-GRU+BERT 
  

P R F P R F 

Aggressive 0.88 0.65 0.75 0.92 0.65 0.76 
  

Happy 0.64 0.62 0.63 061 074 0.67 
Relaxed 0.63 0.85 0.72 0.65 0.76 0.70 
Sad 0.78 0.74 0.76 087 079 0.83 
  

Average 0.73 0.71 0.71 0.76 0.74 0.74 
  

BERT stacks several levels of attention, each of 

which makes use of the results of the layer before it. As 

it progresses through the model’s deepest layers, BERT 

is able to create extremely detailed representations by 

repeatedly composing word embeddings. 

Each attention head develops a different attention 

pattern since the attention heads do not share pa- 

rameters. There are 12 layers and 12 heads in the 

BERTpasg, for 12 x 12 = 144 different attention pro- 

cesses. Using the BertViz library [34], we visually 

observed the attention weights of BERT model. Figure 

6 shows the visualization of attention for all heads. 

Each cell in the diagram displays the attention pattern 

for a specific head (depicted by a column) in a specific 
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Figure 6: Attention visualization of the first four layers for 

two lines of a song “that all changed into lies that drop like 

acid rain” and “you washed away the best of me”
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[SEP] 
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[SEP] 
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Figure 7: Attention variation of two sentences “that all changed into lies that drop like acid rain” and “you washed 

away the best of me” among various layers and heads. The lines show the attention from each token (left) to every 

other token (right). Darker lines indicate higher attention weights. 

Table 10: Performance metrics for proposed 

multi-modal transformer based classification 

  

  

  

Class Precision Recall Fl score 

Aggressive 0.94 0.88 0.91 

Happy 0.82 0.82 0.82 

Relaxed 0.64 0.68 0.66 

Sad 0.74 0.74 0.74 

Average 0.78 0.78 0.78 
  

layer (indicated by row). The attention patterns are 

specific to the input text. As seen in the illustration, 

BERT results in various attention patterns. 

Figure 7 accurately displays two sentences” atten- 

tion variations across various layers and heads. In 

this figure, attention visualizes as lines connecting 

the word being updated (left) with the word being at- 

tended to (right). Weights near one show very dark 

lines, whereas weights close to zero show faint lines or 

are not visible at all. Colour intensity indicates atten- 

tion weight. The [SEP] symbols are unique separator 

tokens denoting a sentence boundary, and the [CLS] 

symbol is added to the front of the input and used for 

classification tasks. 

Figure 8 shows the graphical representation of the 

systems’ precision, recall, and Fl score. The x-axis 

shows the models M1, M2,..etc, which means model 1, 

model 2,...etc. Y-axis represents performance matrices 
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precision, recall, and Fl score. The figures show that 

our proposed model performs better among the 13 deep 

learning models discussed. The overall accuracies 

provided by music mood classification systems are 

given in table 11, and it is visually represented in 

Figure 9. The Table and Figure show the gradual 

increase in the performance of the transformer-based 

multi-modal music mood classification system. 

In all our tests, a significantly higher number of 

songs from Q1 and Q2 were correctly classified when 

compared to Q3 and Q4. This seems to indicate that 

emotions with higher arousal are easier to differentiate 

with the selected features. Out of the two, Q2 obtained 

the highest F1-Score. This goes in the same direction 

as the results obtained in [35], and might be explained 

by the fact that several excerpts from Q2 belong to the 

heavy-metal genre, which has very distinctive, noise- 

like, acoustic features. 

To reaffirm the importance of the proposed ap- 

proach, the classifiers are compared using the widely 

used statistical test, namely, McNemar’s statistical hy- 

pothesis test [36]. This test was adopted as per the find- 

ings of Dietterich in [37]. The skill measure adopted 

for comparing the models is classification accuracy. 

The contingency table is constructed based on the suc- 

cess(1)/failure(O) measure of the two models being 

compared. It is of the form, 

[n1 1 n01 | 

| 210 700
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Figure 8: Recall, precision, Fl score of 13 (M1-M13) music mood classification systems. Red circled points 

indicate the performance of our model. 
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Figure 9: Comparison of overall accuracy of 13 (M1-M13) music mood classification systems 

where nl] indicates the count of the moods of the 

songs that were correctly classified by both the models 

and n10 indicates the count of the moods correctly clas- 

sified by model 1 but misclassified by model 2. Sim- 

ilarly, the other two counts, 701 and 700 are defined. 

Thus the total number of samples in the test set would 

be the sum of these, as n = n00+701+710+4 711. 

When doing the statistical hypothesis test, the null 

hypothesis(H0) is defined as the condition n01 = 10, 

that is the two models have the same error rate or the 

same proportion of misclassifications. McNemar’s test 

checks for the marginal homogeneity in the contin- 

gency table by testing if there is a significant differ- 

ence between the counts n01 and 710. This is done 

using the test statistic £, defined in [36] to include the 

-3]- 

continuity correction term —1 in the numerator as, 

_ ({n01 —n10| — 1)? 
(= (n01 +n10) 7) 

This test statistic has a Chi-Squared distribution with 

1 degree of freedom, and if HO is accepted, then the 

probability that 1 > X7 0,95 = 3.841459 is less than 
o = 0.05. This test is implemented in Python using 

the mcnemar() function of the Statsmodels module 

The p-value calculated from f statistics is compared 

with an alpha value to make the final decision as 

¢ p> dad: fail to reject HO, both models have a 

similar proportion of errors on the test dataset. 

e p< a: reject HO, there is a significant difference 

in the proportion of errors, indicating one is better 

than the other.
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Table 11: Overall accuracy of fourteen systems of the experiment. 

  

  
Model Scheme Overall Accuracy (in%) 

MO Acoustic+Textual features (SVM) 59.55 

M1 Acoustic features (Bi-GRU) 56.00 

M2 Acoustic features (CNN) 61.76 

M3 Textual features (Word2 Vec+Bi-GRU) 44.15 

M4 Textual features (GloVe+Bi-GRU) 50.73 

M5 Multi-modal fusion (Word2 Vec+B1-GRU) 63.97 

M6 Multi-modal fusion (GloVe+Bi-GRU) 65.44 

M7 Multi-modal fusion with single attention (Word2 Vec+Bi-GRU) 73.52 

M8 Multi-modal fusion with single attention (GloVe+Bi-GRU) 76.47 

M9 BERT 58.08 

M10 = XLNet [27] 57.25 

M11  CNN+BERT [28] 71.32 

M12 | Bi-GRU+BERT 73.50 

M13  Proposed multi-modal transformer-based 77.94 
  

Proposed Model Proposed Model 
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Figure 10: Contingency tables given by the proposed model (M13) against the multi-modal fusion(M6) model(left) and the 

CNN+BERT(M11) model(right) 

The contingency tables obtained from the McNemar 

test done on the proposed model against the Multi- 

modal fusion (M6) and the CNN+BERT model (M11) 

are shown in the left and right figures in Fig. 10, respec- 

tively. We can find the difference in the proportions 

of the errors by looking at the values corresponding to 

n01 and n10. A large difference is visible, which in- 

dicates the effectiveness of using the proposed model 

against the baseline systems. On calculating the test 

statistics, =6.244 and t=4.170 were obtained, respec- 

tively, which resulted in p-values of 0.012 and 0.041. 

Hence H0 is rejected in both cases on taking @ = 0.05, 

which proves that the margins of accuracy score gained 

by the proposed system are statistically significant. 

4 Conclusion 

In this research, we proposed a multi-modal music 

mood classification system based on transformers 

that outperformed all other state-of-the-art methods. 

Acoustic features are extracted from songs, and the 

model is trained using Bi-GRU and CNN to obtain a 

testing accuracy of 56.00% and 61.76%. Lyrics fea- 

tures extracted using Word2Vec and GloVe and trained 

using the Bi-GRU model to provide an accuracy of 

-32- 

44.15% and 50.73%, respectively. Multi-modal archi- 

tecture considering the combinations of audio with 

lyrics-Word2vec and audio with lyrics-Glove are con- 

catenated and trained using the Bi-GRU model. An 

accuracy of 63.97% and 65.44% is obtained for this 

model. Then, we integrated an attention mechanism 

into this multi-modal architecture, and the accuracy in- 

creased to 73.52% and 76.47%, respectively. Later, we 

implemented various transformer models and proposed 

a multi-modal transformer-based music mood classifi- 

cation system. Our proposed model outperformed all 

models with an overall accuracy of 77.94%. By analyz- 

ing the results, we can conclude that multi-modal yield 

better results than uni-modals. A multi-modal archi- 

tecture that incorporates the attention mechanism im- 

proves the system. Furthermore, multi-head attention- 

based transformer multi-modal architecture achieved 

the highest accuracy. Multi-modal architecture im- 

plementing different transformer variants, considering 

different data sets, etc, can be done as future works. 
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