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Abstract 

Automatic Sign Language Translation (SLT) systems 

can be a great asset to improve the communication 

with and within deaf communities. Currently, the main 

issue preventing effective translation models lays in 

the low availability of labelled data, which hinders the 

use of modern deep learning models. SLT is a complex 

problem that involves many subtasks, of which hand- 

shape recognition is the most important. We compare 

a series of models specially tailored for small datasets 

to improve their performance on handshape recogni- 

tion tasks. We evaluate Wide-DenseNet and few-shot 

Prototypical Network models with and without trans- 

fer learning, and also using Model-Agnostic Meta- 

Learning (MAML). Our findings indicate that Wide- 

DenseNet without transfer learning and Prototipical 

Networks with transfer learning provide the best re- 

sults. Prototypical networks, particularly, are vastly 

superior when using less than 30 samples, while Wide- 

DenseNet achieves the best results with more samples. 

On the other hand, MAML does not improve perfor- 

mance in any scenario. These results can help to design 

better SLT models. 

Keywords: sign language, handshape recognition, 

DenseNet , prototypical networks, MAML , transfer 

learning, small datasets 

Resumen 

Los sistemas de traducción automática de lengua de 

señas (SLT, por sus siglas en inglés) pueden ser una 

gran ayuda para mejorar la comunicación con las co- 

munidades sordas así como también entre ellas. Ac- 

tualmente, el principal obstáculo para el desarrollo 

de modelos de traducción efectivos es la falta de 

datos etiquetados, que impide el uso de métodos de 

aprendizaje automático profundo modernos.La tra- 
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ducción de lengua de señas es un problema complejo 

que involucra varias subtareas, de las cuales el re- 

conocimiento de la forma de la mano es la más im- 

portante. En este trabajo, comparamos una serie de 

modelos especialmente adaptados para ser entrenados 

con pocas muestras en la tarea de reconocer formas de 

mano. Evaluamos los modelos WideDenseNet y Pro- 

totypical Networks, con y sin el uso de transferencia 

de aprendizaje, y también el model Model-Agnostic 

Meta-Learning (MAML). Nuestros resultados indican 

que el modelo Wide-DenseNet sin transferencia de 

aprendizaje y las Prototypical Networks con transfer- 

encia de aprendizaje obtienen los mejores resultados. 

Las Prototypical Networks son vastamente superiores 

cuando se utilizan menos de 30 muestras, mientras que 

Wide-DenseNet es superior en el resto de los casos. 

Por otro lado, MAML, que es un método diseñado 

específicamente para estos casos, no mejora el de- 

sempeño en ningún caso. Estos resultados pueden 

ayudar a diseñar mejor los componentes de un sistema 

de traducción de lengua de señas. 

Palabras claves: Lengua de señas, reconocimiento 

de formas de mano, DenseNet, Redes Prototipi- 

cas, MAML, Transferencia de aprendizaje, Datasets 

pequeños 

1 Introduction 

Sign languages (SL) are commonly used by deaf peo- 

ple. They employ handshapes and hand movements, as 

well as facial expressions and postures with the body 

to communicate meaning in an equivalent way to oral 

and written languages. 

Sign Language Translation (SLT) is a field in the 

intersection of computer vision and language transla- 

tion. SLT’s goal is to create systems that can translate 

videos of people speaking in sign language into an- 

other language, typically a textual language such as
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english or spanish [:, :, :,:]. 

Producing a model capable of SLT with high preci- 

sion would improve the quality of life of many people 

since an automatic interpreter would facilitate commu- 

nication between signers and non signers [°]. 

Sign language Translation presents an interesting 

challenge as the available data is limited compared to 

other problems such as speech recognition [::]. The na- 

ture of the problem (relatively small number of signers, 

multimodal input, regional differences) makes it hard 

to create new sign language datasets. Merging datasets 

from different regions or countries is very difficult. 

Each sign language has its own set of signs. Further- 

more, sign languages of different countries vary in 

their syntax and semantic, even . 

As mentioned before, signs are defined by various 

features, such as the facial expression of the signer, 

body pose, joint movement and handshape. Of these, 

handshapes are the most important features [*, *]. 

Therefore, SLT systems require a high level of perfor- 

mance in the handshape recognition subtask to func- 

tion properly. Currently, handshape data is available 

mostly as 2D RGB images, obtained from sign lan- 

guage videos or separately [ ., :*]. 

In this work we propose to evaluate and compare 

new methods devoted to deal with small datasets for 

handshape recognition tasks. 

We address the low availability of data by imple- 

menting a variety of state-of-the-art convolutional neu- 

ral network models and training techniques designed to 

tackle small labelled datasets. We compare two model 

architectures: Prototypical Network [*.] and DenseNet 

[+]. We train these models with (i) regular training, 

(ii) Transfer Learning and (iii) Model Agnostic Meta 

Learning (MAML) [::]. 

DenseNet is a well known state-of-the-art model 

that has shown good performance for image classifi- 

cation even in cases where there is a low amount of 

labelled data[ -]. When the amount of available data 

is reduced even further, few-shot learning techniques 

are required. We chose Prototypical network as our 

specialised few-shot learning model. Prototypical net- 

works are models based on metric learning, optimising 

a distance function between classes in an embedded 

space to classify each sample. 

Our contributions consists not of proposing new 

techniques for dealing with small datasets, but perform- 

ing a comparison of current state of the art techniques 

for improving model performance in these conditions: 

prototypical networks for few shot learning, transfer 

learning and model-agnostic meta-learning (MAML). 

In the following section we summarise previous 

efforts on training Convolutional Neural Networks 

(CNNs) on handshape datasets. Section 3 describes 

the datasets and section 4 describes models and tech- 

niques we employed in our experiments, which are 

detailed along with results in Section 3, and Section $ 

contains the conclusion of our work. 

-36- 

2 Related work 

Recent years have seen the rise in the use of deep learn- 

ing models for sign language recognition, specifically 

the use of convolutional neural networks to extract 

image features or classify hand images. 

[:] trained a CNN to recognise handshapes from 

the RWTH handshape dataset, which contains 3200 

labelled samples and 50 different classes. The model 

was based on a pre-trained network with a VGG ar- 

chitecture, and employed a semi-supervised scheme to 

take advantage of approximately one million weakly 

labelled images, achieving an accuracy of 85.50%. To 

the best of our knowledge, Koller’s work was the first 

to include a technique to overcome the lack of labelled 

data in the specific context of handshape recognition. 

[::] employed a radon transform as a feature for an 

ad-hoc classifier that employed clustering as a quan- 

tization step and K nearest neighbours for the final 

classification. They tested the model on the LSA16 

dataset, which contains only 800 examples, obtaining 

an accuracy of 92.3%. [. |] evaluated several CNNs on 

the LSA16 and RWTH datasets, including both vanilla 

and pretrained models. The use of pretrained models 

helps to alleviate the lack of labelled data, specially if 

the pretrained convolutional filters are general enough 

to exploit for other tasks such as handshape recogni- 

tion. Their best models achieve an accuracy of 95.92% 

for LSA16 and 82.88% for RWTH, the latter without 

an unsupervised pretraining scheme. 

[::] obtained an accuracy of 99.20% with a sim- 

ple neural network and a custom dataset they created 

which contains 6000 examples and 10 classes. [::] 

trained a deep CNN on the Hand Gesture Dataset LPD, 

which contains 3250 images of only 6 classes, also 

obtaining a very high accuracy (99.73%). 

[: +] evaluated a CNN on a custom dataset with 

36 classes, 8 subjects and 57000 sample images, ob- 

taining an accuracy of 94.17%. However, the samples 

correspond to video sequences and therefore are highly 

correlated; while there are approximately 2000 images 

per class, there are only eight image sequences, one 

for each subject. Since each image sequence contains 

approximately 250 images which are highly correlated, 

they only consider eight image per sequence per class. 

[ : *] used the Jochen Triesch Database (JTD), which 

contains 72 samples for each the 10 classes, and the 

the NAO Camera Hand Posture Database, containing 

4 classes and 400 examples per class. They trained 

a simple CNN with a multichannel image containing 

the results of the Sobel operator as input, obtaining an 

F-score of 94% and 98% in each dataset perspective. 

[ :«:] trained a simple CNN with only 6 layers using 

the ASL Finger spelling dataset, obtaining an accuracy 

of 80.34%. The dataset consists of 60000 images of 

25 different classes, but they were captured as videos 

so they are also highly correlated as in the previous 

case.
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[: -] performed experiments with Wide-DenseNet 

and Prototypical Networks on the CIARP, LSA16 and 

RWTH datasets using vanilla models. In both cases, 

they also quantify the impact of data augmentation 

on accuracy. Their best models obtain an accuracy of 

99.26% on LSA16, 94.00% on RWTH and 100.00% 

on CIARP. This work is the third ([: :, :]) and last 

instance we found where a specific strategy was em- 

ployed to compensate for the lack of data. 

This review confirms our previous statement that, 

while CNN are being consistently applied to hand- 

shape recognition tasks, most of these datasets are 

small and ad-hoc. In some cases datasets are so small 

that it is very easy to obtain near-perfect performance 

with simple models. Additionally, many datasets are 

recorded specifically for the purpose of testing a single 

model. 

Therefore, there is a lack of a common pool of 

datasets used as standard benchmarks for handshape 

recognition models. Finally, many datasets are not 

readily available, given that the authors have not pub- 

lished the data and do not provide any means of ob- 

taining it [: ]. 

3. Datasets 

We selected three datasets, LSA16 [?::], RWTH- 

PHOENIX-Weather (RWTH) [::] and CIARP [: ] (Ta- 

ble £). These well-known datasets contain RGB im- 

ages whose setting varies greatly and possess different 

quantities of examples or distributions of samples per 

class. In this way we can evaluate the models in a 

variety of contexts. 

We note that the RWTH and LSA16 are both pub- 

licly available and current models have been shown to 

achieve less than perfect accuracy for these datasets. 

While the dataset in [ :.:] (denoted CIARP in this pa- 

per) has been solved completely, it is interesting and 

complementary because it targets general handshapes 

instead of those specific to sign language. 

We briefly describe the main characteristics of each 

dataset. 

3.1 LSA16 

LSA16 [:::] contains images of 16 handshapes of the 

Argentinian Sign Language (LSA). The dataset is bal- 

anced, with 50 images per class, where each handshape 

class was performed 5 times by 10 different signers. 

This gives a total of 800 images of size 32x32. The 

subjects wore coloured hand gloves and dark clothes 

on a white background. There is only one hand in each 

image. The hands are centred and segmented from the 

background. 

3.2 RWTH 

RWTH [::] is composed of a selection 3359 hand- 

shapes of 45 classes. The images, of size 132x92, 
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were cropped from videos of the sign language inter- 

preters at the German public TV-station PHOENIX. 

The interpreters wore dark clothes in front of an arti- 

ficial grey background. This is a challenging dataset 

since many images possess significant movement blur, 

others contain both hands of the interpreter and hands 

are not always perfectly centered. 

The dataset is highly imbalanced with some classes 

having just 1 sample while others have as many as 

529 samples. We removed classes that had less than 

40 samples following [ : :], to guarantee a minimum 

amount of images per class for the networks to learn. 

3.3 CIARP 

CIARP [: ¿] contains 6000 images of size 38x38 ac- 

quired by a single colour camera. The images are split 

into 10 classes so that each class has 600 samples. 

The hands are centred and were segmented from the 

background, which was replaced by black pixels. The 

combination of small image size and low amount of 

classes makes this problem relatively easy when com- 

pared to LSA16 and RWTH. Finally, the classes in 

the dataset correspond to handshapes which are not 

strictly based on sign language, but are similar enough 

so that the comparison remains valid. 

4 Architectures and Techniques 

We compare two different base classification mod- 

els to analyse their ability to learn from these small 

handshape datasets: Prototypical Networks [::] and 

DenseNet [ * ]. 

Prototypical Networks was designed explicitly to 

deal with small sample sizes. On the other hand, 

DenseNet is currently a state-of-the-art model in image 

classification with convolutional neural networks, and 

while it has not been explicitly designed for small 

datasets, it has shown exceptional performance in 

many different tasks. 

Therefore, we also evaluate DenseNet models 

trained with Model-Agnostic Meta-Learning (MAML) 

[:] and Transfer Learning [:::] training techniques, 

in addition to the traditional training process (Table 

2). These techniques have been designed or can be 

adapted for small sample size settings. 

Transfer Learning is a well known technique to 

jump-start the training of neural networks for a prob- 

lem A using datasets from a different problem B. The 

weights of a network trained on B are used as initial 

weights in the training of the network for A. Retrain- 

ing the network for A is called finetuning, and may 

retrain only a subset of the weights of the network. 

However, it still may require large amounts of data for 

the finetuning phase. 

Finally, MAML is a meta-learning technique for 

few-shot learning, that involves learning subtasks. In 

this context, each subtask corresponds to a different
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Table 1: Main statistics for the three datasets: RWTH, LSA16 and CIARP 

  

  

Dataset Samples Classes Balanced Origin Best Accuracy 

RWTH 3359 45 No TV images 94.00% [17] 

LSA16 800 16 Yes Created specifically for SLT 99.26% [17] 

CIARP 6000 10 Yes General handshapes (not SLT specific) 100.00% [17] 
  

  
Figure 1: Sample images from the LSA16 (first row), RWTH-PHOENIX-Weather (second row) and CIARP (third 

row) datasets. Each image corresponds to a different class of each dataset. 

class, therefore allowing the training of the model 

for new classes as an adaptation in the meta-learning 

scheme. 

Table 2 shows a summary of the model and train- 

ing schemes we utilised. The DenseNet model was 

trained via a normal gradient descent optimisation 

procedure, optionally pre-initialising the weights via 

transfer learning. We also used MAML to train the 

DenseNet for better adaptation with a small dataset. Fi- 

nally, Prototypical Networks only used a normal train- 

ing scheme, without Transfer Learning or MAML. 

In the following subsections we briefly describe 

each of these models and training techniques. 

Table 2: Models and training schemes evaluated. 

  

Training schemes DenseNet Prototypical Networks 
  

Normal Training Y Y 

Transfer Learning Y x 

MAML Y x 
  

4.1 Wide-DenseNet 

We selected a DenseNet based architecture as it is a 

state-of-the-art model in many domains and can handle 

small datasets with low error rate [19]. 
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DenseNet [7] works by concatenating the feature- 

maps of a convolutional block to the feature-maps 

of all the previous convolutional blocks and using 

the resulting set of feature-maps as input for the next 

convolutional block. In this way, each convolutional 

block receives all the collective knowledge of the previ- 

ous layers maintaining the global state of the network 

which can be accessed. 

We employed a variation on DenseNet called Wide- 

DenseNet which follows the strategy used by wide 

residual networks [20]. Wide-DenseNet consists on 

decreasing the depth of the network and increasing the 

width of the layers. This way the model can be trained 

faster by optimising feature reuse and obtain highers 

accuracy in some takss. 

Additionally, we use Squeeze and Excitation blocks 

(SE blocks) [21] to improve the performance of the 

Wide-DenseNet model. Convolutional networks con- 

struct informative features by combining both spatial 

and channel-wise information within local receptive 

fields at each layer. On the other hand, the SE blocks 

improve the relevance of the representations by mod- 

elling the interdependency between channels in order 

to perform feature recalibration. Additionally, these 

blocks can improve the performance of most convo- 

lutional models with a very low computational cost. 

Therefore, we use SE blocks between dense and tran- 

sition blocks, as shown in Figure 2.
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Figure 2: Wide-DenseNet using 2 dense blocks and SE blocks. 

4.1.1 Transfer Learning 

Gathering new training data for deep neural networks 

can be an expensive and time consuming task. Transfer 

learning provides a way to utilise already available 

data from a source domain and transfer the acquired 

knowledge from this source domain to a target domain. 

By performing transfer learning we can obtain much 

better initialisations of the parameters of the model 

before training in the target domain. 

In the past, transfer learning has been used for 

handshapes, sign language and gesture recognition 

[22][11][23] demonstrating the advantages of this tech- 

nique. 

In this work, we employ network-based [18] transfer 

learning. In this type of transfer learning a part of the 

network pretrained on the source domain is reused 

for the training in the target domain. The objective 

is for the neural network to acquire good priors from 

the source domain and transfer this knowledge to the 

target task. 

To obtain a good performance from transfer learn- 

ing the source dataset usually has to be larger than the 

target dataset. Since the information extracted from 

the target dataset has a higher value than the informa- 

tion from the source dataset, the data from the target 

dataset will be more helpful in fitting the target task. In 

addition to this, it is important for the source domain to 

be related to the target domain. If the relation between 

both domains differ too much it is possible to get a 

negative transfer which can diminish the performance 

obtained by using transfer learning [24]. 

4.1.2 Model-Agnostic Meta-Learning 

Similarly to Prototypical Networks, Model-Agnostic 

Meta-Learning (MAML) [8] is a technique designed 

to tackle the problem of few-shot learning. MAML 

learns how to improve a model so that it can learn 

a new task in only a few steps by training on many 

different tasks, commonly phrased as learning to learn. 

MAML does this by learning over multiple tasks and 

updating the parameters of the models based on the 

improvement obtained after training on each task. 

More formally, given a set of tasks T each consisting 

of a loss function L and a set of elements with their 
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corresponding labels. MAML requires a distribution 

over tasks p(T) that we want to adapt to. Given those 
distributions, we proceed with the next two steps, task 

training and meta training. In the task training we 

sample K tasks. For each task T;, the model is trained 

on a set of elements extracted from the task distribution 

using the loss function L; belonging to T;. With the 

updated parameters the model is then tested on new 

data from T;. Once tested on each task the loss obtained 

from these tests will be added and utilised as loss for 

the initial model on the meta training obtaining a new 

initial model with better initial parameters that will 

grant a bigger improvement for each task on fewer 

steps. 

We made some modifications on the original 

MAML to work with bigger datasets in a supervised 

way. Each task T; is split in 2 subsets, a training subset 

Tt and a meta training subset Tm. The subsets are 

composed of datasets D = x,y where x is an image and 

y the label of that image. Each subset has an equal 

size b and its labels are mirrored y € Tt == y€ Tm. 

Each dataset with size n has 37 tasks T. We consider 

our model as a function fg with parameters 0. In each 

training iteration @ will change to 6’. Each iterations 

consists of 2 steps, a training and a meta training step. 

In the training step we start by storing the value of @ 

in 6’, then 0 is updated to fit Tt;. In the meta training 

step the new @ is used to calculate the gradients with 

Tm; : VLi(fo(Tmi)) and these gradients are applied 
to 6’ in each iteration. 

4.1.3 Prototypical Networks 

Prototypical Networks [6] is a meta-learning model for 

the problem of few-shot classification, where a clas- 

sifier must generalise to new classes not seen in the 

training set, given only a small number of examples of 

each new class. Few-shot learning models are gener- 

ally measured by their performance on n-shot, k-way 

classification tasks. In this setting, a model is given a 

set of query samples Q belonging to a new, previously 

unseen class. Afterwards, the model receives a support 

set S that contains n examples, chosen from k different 

unseen classes. Finally, the algorithm has to determine 

the classes of Q, given the samples of S. 

Prototypical Networks apply an inductive bias in
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Figure 3: Prototypical Networks given a set of query samples and support set 

the form of class prototypes to improve few-shot per- 

formance. Their key assumption is the existence of an 

embedding in which samples from each class cluster 

around a single prototypical representation which is 

simply the mean of the individual samples. In this 

fashion, we can generalise n-shot classification in the 

case of n > 1 as classification by simply choosing the 

label of the class prototype that is closest. 

Schemes for few shot classification tasks like Proto- 

typical Networks can also be of use for training models 

with small datasets. 

5 Experiments 

We performed experiments with the models described 

in section 4 and the datasets described in section 3. 

Given that the datasets are small we perform an 

initial stratified split, using 25% of the data for testing. 

We also defined validation subsets for each training, 

with 10% of the samples of that subset, to perform 

model dependent hyperparameter optimization. 

We performed experiments using the embedding 

architectures and configurations described in the fol- 

lowing subsections. To analyse the impact of the size 

of the dataset, we limit the training sample sizes (while 

keeping the validation and test sets constant) to 5, 10, 

15 and 20 samples per class. We also include the sce- 

narios of 30, 40 and 100 samples per class for CIARP 

and 30 and 40 for RWTH since they have a larger num- 

ber of samples. In the case of RWTH, classes that do 

not have at least 40 samples in the training subset are 

removed for the whole process. This difference in the 

number of samples was forced by the distribution of 

each dataset, but the comparison can be made directly 

in the cases of 5 to 30 samples. 

The same data augmentation was used for each ex- 

periment, with which the best results were obtained 

in previous works [17]. We applied normalization 

feature-wise by subtracting the mean and dividing by 

the standard deviation of each feature. As data augmen- 

tations, we used horizontal flipping, random rotations 

from 0º to 10º and random spatial resampling. The 

resampling is performed by reducing each image by 

10% or 20% in width and height. 
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5.1 Proposed methods 

We describe the 4 different approaches or methodolo- 

gies we evaluate to obtain models that work well with 

small datasets, including a model with a normal train- 

ing scheme as baseline. 

5.1.1 Normal training 

Based on the results obtained in previous works [17], 

we use Wide-DenseNet in the following way. We 

include SE blocks after each dense and transition 

block. We trained the models using a batch size of 

32, an initial learning rate of 1079 and 200 epochs 

with early stopping using a maximum patience of 55. 

The resulting model used a growth rate of 64 and two 

dense blocks with 6 and 12 layers respectively, for all 

datasets. 

5.1.2 Transfer Learning 

We performed experiments with every dataset to figure 

out which Transfer Learning configuration is more 

convenient. For each dataset, experiments are carried 

out varying the dataset used to train the base model. 

With this approach, it is possible to define a dataset 

matrix to evaluate which dataset is the best option. 

Our base architecture consists of a sequential model 

with a pretrained Wide-DenseNet model, followed 

by global average pooling, a hidden dense layer with 

a ReLU nonlinearity and finally a softmax classifier. 

Since CIARP contains only gray scale images, for that 

dataset a 3x3 convolutional layer was prepended to 

the model to generate 3 feature maps from the single 

original grayscale channel. 

Furthermore, in this set of experiments CIFAR10 

[25] and MNIST [26] are also used to train base mod- 

els. In this way, we can analyse the impact of using a 

general purpose dataset instead of a handshape dataset 

for transfer learning. 

5.1.3 Prototypical Networks 

As mentioned in section 4.1.3, we can use Prototypical 

Networks’ ability to work with small datasets even 

if all samples are labelled. Based on the results ob-
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tained in early experimentation, we use Prototypical 

Networks with the following configuration. 

Our Prototypical Networks employ an embedding 

architecture composed of four convolutional blocks. 

Each block comprises a 64-filter 3 x 3 convolution, 

followed by a batch normalisation layer, a ReLU acti- 

vation and 2x2 max-pooling. 

We used the same encoder for embedding both sup- 

port and query points. All of our models were trained 

with the ADAM [':] optimiser. We used an initial 

learning rate of 1073 and cut the learning rate in half 

every 2000 episodes. 

We trained the networks using the Euclidean dis- 

tance in the 1-shot and 5-shot scenarios with training 

episodes containing 16, 20 and 10 classes (for LSA 16, 

RWTH and CIARP respectively) and 5 query points 

per class when possible. We computed classification 

accuracy for our models by averaging over 1000 ran- 

domly generated episodes from the test set. 

In early experimentation, we found that the differ- 

ence in the results obtained in 1-shot and 5-shot sce- 

narios for these datasets was very large. On the other 

hand, 5-shot scenarios gave better results. Therefore, 

we only used 1-shot learning in the experiments in 

which the minimum number of examples per class 

does not allow using 5-shot learning. 

5.1.4 MAML 

In this case, we test the performance of MAML applied 

to training scenarios similar to those used with Wide- 

DenseNet in the experiments described above. We 

trained a Wide-DenseNet model using the MAML 

technique over one task before doing the meta-learning. 

That task corresponded to a short training process on 

a D dataset following the process described in section 

4.1.2, Then we use the trained model to initialise the 

weights for a new model. The new model is treated as 

a new task. Our model was trained on one task and we 

used this previous knowledge to initialise the weights 

of the model for a new task, using a training process 

similar to the used for the experiments we performed 

using Transfer Learning. 

5.2 Results 

We present the results of the experiments for various 

training set sizes, ordered by dataset (Tables 3, 4 and 

5). 

The results of the experiments using MAML and 

transfer learning are grouped according to the dataset 

with which the pretrained model is created. 

In the case of RWTH, the Full RWTH column corre- 

sponds to an unbalanced set of RWTH which contains 

all samples. In this case, models were trained using 

weight classes to offset this imbalance. 
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5.3 Analysis 

We analyse and compare the results obtained by each 

method for all datasets. 

Wide-DenseNet For all three datasets, we notice the 

low accuracy obtained in the subsets of 5 samples and 

how the accuracy rapidly increases when the number 

of samples increases. However, in most cases using 

the full training dataset, that is, training a normal Wide- 

DenseNet CNN model, obtains the best performance. 

Transfer Learning Transfer learning schemes also 

appear to have problems with very few data samples, 

as little as 5 or 10. Furthermore, using a handshape 

dataset to train the base model instead of a general 

purpose one such as CIFAR 10 seems not to improve 

the accuracy. 

Only in the case of CIARP the use of transfer learn- 

ing gives significantly better results than those ob- 

tained by a Wide-DenseNet trained from scratch. This 

is curious, since CIARP’s images are grayscale, and 

the models were not pretrained on grayscale data. In 

LSA16 and RWTH, transfer learning seems to pro- 

duce only a slight accuracy improvement on occasions, 

while it decreases the model’s performance in most 

cases. While MNIST as a pretraining dataset does not 

achieve the best results in any case, the performance 

is very similar to those obtained with other pretraining 

datasets, indicating that the natural image or hand- 

shape image prior provided by other datasets are not 

significantly superior or important for pretraining. 

Protypical Networks Prototypical Networks have a 

greater accuracy than the rest of the models for the 5 

and 10 samples scenarios for both RWTH and CIARP, 

and also the other splits in the case of LSA16. In the 

case of CIARP, it achieved a very good performance 

if not the best in all cases, and similar results to those 

obtained by Wide-DenseNet. 

Regarding RWTH,, it is clear that Prototypical Net- 

works cannot take advantage of large sample sizes and 

the accuracy does not increase predictably as the num- 

ber of samples do. It is also possible that Prototypical 

Networks obtained the lowest accuracy because the 

images of the hands were unsegmented, difficulting ob- 

taining good class prototypes because of the difficulty 

of modeling backgrounds. In this case, the accuracy 

of Wide-DenseNet is slightly higher than Prototypi- 

cal Networks model when the number of samples per 

class, N, is larger than 15. 

MAML In general, MAML achieves low accuracy 

in the subsets of 5 samples and the accuracy increases 

when the number of samples is larger. 

In the case of CIARP, the use of MAML gives sig- 

nificantly better results than those obtained by Wide- 

DenseNet for those cases in which the number of train-
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Table 3: Accuracy of various convolutional neural network based models on CIARP. 

  

  

Method 5 samples 10 samples 15 samples 20 samples 30 samples 40 samples 100 samples 360 samples 

DenseNet 10.00 + 0.00 10.00 + 0.00 37.26 + 36.81 76.07 + 37.87 82.71 + 38.35 99.83 + 0.28 99.95 + 0.04 99.83 + 0.24 

MAML 11.12 + 2.24 26.53 + 33.07 80.23 + 35.13 98.85 + 0.99 99.71 + 0.15 99.56 + 0.34 99.94 + 0.04 99.01 + 0.66 

CIFAR 10 Pretraining 

MAML 
Transfer Learning 

10.47 + 0.94 

11.69 + 3.39 

10.00 + 0.00 

27.24 + 33.54 

95.51 + 2.15 

98.44 + 0.47 

98.41 + 1.16 

98.71 + 0.72 

99.73 + 0.30 

99.61 + 0.21 

98.92 + 1.72 

99.64 + 0.31 

99.96 + 0.02 

99.92 + 0.05 

99.44 + 0.38 

99.59 + 0.19 

MNIST Pretraining 

MAML 
Transfer Learning 

10.00 + 0.00 

10.00 + 0.00 

12.70 + 3.27 

10.00 + 0.00 

80.13 + 35.07 

97.31 + 1.36 

98.91 + 0.47 

99.25 + 0.37 

99.64 + 0.16 

99.30 + 0.48 

99.74 + 0.16 

99.70 + 0.31 

99.97 + 0.04 

99.95 + 0.04 

99.43 + 0.64 

99.21 + 0.51 

LSA16 Pretraining 

MAML 
Transfer Learning 

11.38 + 2.65 

11.19 + 2.38 

11.44 + 2.49 

10.01 + 0.02 

80.10 + 35.07 

97.82 + 0.93 

98.95 + 0.64 

99.07 + 0.45 

99.50 + 0.62 

99.73 + 0.33 

99.93 + 0.08 

99.93 + 0.06 

99.30 + 0.61 

99.73 + 0.26 

99.51 + 0.45 

99.51 + 0.24 

  

  

  

MAML 10.00 + 0.00 10.00 + 0.00 97.75 + 0.52 99.07 + 0.63 99.64 + 0.18 99.65 + 0.17 99.97 + 0.02 99.08 + 0.73 

Transfer Learning 10.24 + 0.49 10.03 + 0.04 98.59 + 0.83 98.33 + 1.16 99.58 + 0.20 99.74 + 0.16 99.85 + 0.09 99.42 + 0.40 

ProtoNet 91.45 + 2.44 94.48 + 1.78 95.70 + 0.66 97.63 + 0.68 98.38 + 0.27 99.21 + 0.28 99.82 + 0.05 99.41 + 0.16 

Table 4: Accuracy of various convolutional neural network based models on LSA16. 

Method 5 samples 10 samples 15 samples 20 samples 30 samples 

DenseNet 6.56 + 0.63 92.80 + 2.89 92.81 + 2.82 95.31 + 1.23 96.13 + 0.00 

MAML 6.35 + 0.20 93.95 + 1.53 93.54 + 1.60 95.72 + 1.00 97.81 + 0.38 

CIFAR10 Pretraining 

MAML 

Transfer Learning 

6.25 + 0.00 

6.25 + 0.00 

92.18 + 1.47 

92.91 + 2.66 

95.63 + 2.60 

94.79 + 1.14 

97.08 + 0.77 

97.91 + 0.46 

94.06 + 1.76 

93.75 + 2.30 

MNIST Pretraining 

MAML 6.45 + 0.41 92.91 + 0.96 

Transfer Learning 6.25 + 0.00 92.60 + 2.07 

94.17 + 2.45 

93.43 + 1.73 

95.63 + 1.16 

95.41 + 2.42 

97.18 + 0.41 

97.08 + 0.62 

CIARP Pretraining 

MAML 6.77 + 0.65 92.08 + 2.51 

Transfer Learning 6.25 + 0.00 92.70 + 1.77 

94.58 + 1.16 

92.60 + 1.87 

96.14 + 1.34 

96.67 + 1.12 

96.97 + 1.25 

96.24 + 1.48 

RWTH Pretraining 

MAML 6.87 + 0.76 92.81 + 0.51 

Transfer Learning 6.97 + 1.45 74.79 + 34.27 

ProtoNet 94.15 + 1.27 94.64 + 1.23 

94.47 + 2.29 94.37 + 2.58 96.24 + 1.00 

93.43 + 2.56 95.62 + 1.21 96.97 + 0.89 

95.50 + 1.01 97.20 + 0.74 98.38 + 0.22 
  

ing examples is less than 40, therefore the use of this 

method is advantageous. Considering this and the re- 

sults obtained in LSA16, the use of Transfer Learning 

on those datasets means an advantage over the accu- 

racy obtained by Wide-DenseNet model. 

Summary From the obtained results, we can see that 

the performance of the Wide-DenseNet based models 

generally increases as more training examples are pro- 

vided, as expected. The use of MAML paired with 

Transfer Learning only helps on CIARP and LSA16, 

with 15-30 samples, but not at all in the case of RWTH, 

in LSA 16 it helps only slightly in that case. On the 

other hand, Prototypical Networks models do not show 

a significant increase in performance as the number of 

samples increases from 5 to 30, but provide the best 

accuracy for small sample sizes (less than 40 samples). 

6 Conclusions 

We have performed experiments to evaluate the ac- 

curacy of Prototypical Networks, Wide-DenseNet, 

-42- 

MAML and Transfer Learning on three handshape 

recognition datasets. For every dataset, our models 

demonstrated state-of-the-art performance. All mod- 

els achieve near-perfect accuracy on CIARP, even with 

very few samples per class. This shows that the dataset 

is too simple as a benchmark for handshape recogni- 

tion. While it has more samples than the other datasets 

(6000), they are too homogeneous and do not have 

enough variation. 

Wide-DenseNet without transfer learning and Pro- 

totypical Networks showed the best results. Wide- 

DenseNet saw better performance on bigger and more 

complex datasets, while Prototypical Networks was 

the best choice when facing very small training sam- 

ples sizes. Prototypical Networks offers good perfor- 

mance even when the available training data is really 

low (5 to 10 samples for each class) but when more 

data is added to the training set a traditional model 

such as Wide-DenseNet trained from scratch performs 

better in most cases. MAML and transfer learning 

did not offer significant improvements for the tasks 

we used for evaluation. However, it is interesting that
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Table 5: Accuracy of various convolutional neural network based models on RWTH. 

  

  

Method 5 samples 10 samples 15 samples 20 samples 30 samples 40 samples Full RWTH 

DenseNet 10.32 + 2.48 17.78 + 17.08 46.66 + 19.17 64.59 + 3.81 71.20 + 2.24 71.85 + 3.84 96.05 + 0.96 

MAML 9.20 + 1.97 9.86 + 1.29 25.38 + 19.31 30.51 + 24.03 67.81 + 1.99 67.13 + 1.55 95.54+ 1.21 

CIFARIO Pretraining 

MAML 

Transfer Learning 

8.36 + 0.62 8.66 + 1.75 

10.73 + 1.59 

9.69 + 1.94 

17.78 + 17.21 18.25 + 16.33 

38.90 + 24.40 

48.19 + 21.08 

64.56 + 7.86 

65.76 + 6.50 

64.53 + 3.18 

66.28 + 4.67 

96.08 + 0.37 

95.29 + 1.22 

MNIST Pretraining 

MAML 9.80 + 1.27 9.80 + 2.03 28.33 + 21.66 

Transfer Learning 9.89 + 1.49 17.32 + 15.89 21.12 + 18.70 

51.12 + 21.42 

37.13 + 24.93 

66.93 + 3.13 

64.91 + 3.54 

69.07 + 4.66 

63.66 + 3.86 

95.73 + 0.56 

96.16 + 0.58 

CIARP Pretraining 

MAML 

Transfer Learning 

9.83 + 2.80 

9.31 + 1.90 

17.59 + 16.62 

18.30 + 16.49 

19.15 + 18.97 

25.79 + 21.30 

38.57 + 23.35 

39.07 + 24.93 

66.50 + 3.05 

64.26 + 5.42 

66.36 + 3.02 

66.69 + 3.15 

96.00 + 0.35 

95.57 + 1.06 

LSA16 Pretraining 

MAML 10.98 + 3.66 15.16 + 11.85 28.57 + 23.10 

Transfer Learning 8.33 + 0.00 17.15 + 15.69 28.93 + 24.06 

ProtoNet 48.93 + 3.02 48.53 + 1.59 48.87 + 1.60 

46.96 + 19.03 67.18 + 4.49 64.42 + 3.58 95.48 + 1.29 

46.22 + 20.08 66.58 + 5.00 62.89 + 10.14 95.48 + 0.30 

46.73 + 1.14 47.58 + 1.33 50.36 + 6.82 47.09 + 0.10 
  

using transfer learning with a model pretrained on CI- 

FAR10, a general purpose object dataset, outperforms 

models pretrained on RWTH, which is a handshape 

dataset. 

In future work, we will focus on comparing with 

other datasets to better understand the relationship be- 

tween models and dataset complexities for hand-shape 

recognition. We also see the need to compare with 

the use of MAML models pretrained with different 

tasks, combining datasets to achieve it. Finally, we in- 

tend to also compare methods that employ unlabelled 

data for pretraining, and investigate the possibility of 

merging data sets from different sign languages to aug- 

ment the sample size, as well as identify the types 

of data augmentation that lead to an improvement in 

state-of-the-art models. 
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