SUPPLEMENTARY TABLES **Table 1S**: Structured models used to compare violacein release profiles from meshes. | Model Name | Equation | | |-------------------|--|--| | First Order model | $\log Q_t = \log Q_0 + \frac{k_i t}{2.303}$ | | | Higuchi model | $Q_t = K_H \sqrt{t}$ | | | Korsmeyer-Peppas | $\frac{Q_t}{Q_0} = K_k t^n$ | | | Hixon and Crowell | $\sqrt[3]{Q_0} - \sqrt[3]{Q_t} = K_s t$ | | | Baker-Lonsdale | $\frac{3}{2} \left\{ 1 - \left(1 - \left[\frac{Q_t}{Q_0} \right] \right)^{\frac{2}{3}} \right\} - \frac{Q_t}{Q_o} = K_b t$ | | **Table 2S**: Characterization of nanostructured lipid carriers by dynamic light scattering. Hydrodynamic diameters (D_H), polydispersity index (PdI) and Z-potential (ζ) for NLC formulation with (NLC-ViolLip) and without Lip (NLC-Viol). | Samples | D _H (nm) | PdI | ζ | |----------------|---------------------|-------|--------| | NLC-Viol | 154.3 | 0.241 | -9.78 | | NLC-Viol-Lip | 151.5 | 0.319 | -8.08 | | p-value (n= 3) | 0.7584 | 0.017 | 0.0342 | **Table 3S**: Entrapment efficiency by direct and indirect method and drug cargo per mesh matrix | Samples | Entrapment efficiency (%) | | | Viol/Matrix (μmol/mg) | |---------------|---------------------------|--------|--------------------------|------------------------| | | Indirect | Direct | Average ($\pm \sigma$) | Direct | | Mesh-Viol | 97.2 | 90.3 | 93.8 (± 3.5) | 4.67 x10 ⁻⁴ | | Mesh-Viol-Lip | 95.8 | 88.8 | 92.3 (± 3.5) | 4.59 x10 ⁻⁴ | Note: σ , standard deviation. **Table 4S**: Data obtained by ImageJ analysis on SEM images of meshes before and after drug release. | Samples | Average mesh gap
area (μm²) | Mesh gap area
square root (μm) | Grey histogram standard deviation | |----------------------------------|--------------------------------|-----------------------------------|-----------------------------------| | Mesh before drug release | 283,028 (n= 12) | 532.0 | 35.45 | | Mesh-Viol after drug release | 424,590 (n= 10) | 651.6 | 40.13 | | Mesh-Viol-Lip after drug release | 660,549 (n= 8) | 812.7 | 48.25 | Table 5S: Adjusted R² for models fitted to Viol release profiles in Mesh-Viol and Mesh-Viol-Lip | Model (pH= 7.4) | R ² adj | | | |-------------------------|--------------------|---------------|--| | Μοσεί (β11– 7.4) | Mesh-Viol | Mesh-Viol-Lip | | | First Order model | 0.83 | 0.69 | | | Higuchi model | 0.94 | 0.29 | | | Korsmeyer-Peppas | 0.95 | 0.95 | | | Hixon and Crowell | 0.72 | 0.42 | | | Baker-Lonsdale | 0.95 | 0.89 | | ## **SUPPLEMENTARY FIGURES** **Figure 1S**: Kinetic of Viol release from Mesh-Viol (●), and Mesh-Viol-Lip (○) at pH= 5.0 and 37°C. Peppas model fit of Mesh-Viol (——) (Adj r2=0.90), Mesh-Viol-Lip (− − −) (Adj r2=0.87). Figure 2S. Derivative of weight versus temperature for Mesh-Viol-Lip, Mesh-Viol, MM (myristyl myristate), Chi-MMW (medium molecular weight chitosan), HPMC (hydroxy propyl methyl cellulose) and P188 (Poloxamer P188). Mesh-Viol and Mesh-Viol-Lip were incubated in phosphate release buffer (pH= 7.4) for 24h before performing the analysis.