
Journal of Computer Science & Technology, Volume 23, Number 2, October 2023

- ORIGINAL ARTICLE -

Intermediate Task Fine-Tuning in Cancer Classification
Clasificación de Cancer mediante Transferencia de Conocimiento con Tarea Intermedia

Mario Alejandro García1 ®, Martín Nicolás Gramática1 ®, and Juan Pablo Ricapito1 ®

1https://www.pathlake.org/

1 Universidad Tecnológica Nacional Facultad Regional Córdoba, Argentina
{mgarcia, mgramatica} @frc.utn.edu.ar

Abstract

Reducing the amount of annotated data required to 
train predictive models is one of the main challenges 
in applying artificial intelligence to histopathology. In 
this paper, we propose a method to enhance the per­
formance of deep learning models trained with limited 
data in the field of digital pathology. The method re­
lies on a two-stage transfer learning process, where an 
intermediate model serves as a bridge between a pre­
trained model on ImageNet and the final cancer classi­
fication model. The intermediate model is fine-tuned 
with a dataset of over 4,000,000 images weakly labeled 
with clinical data extracted from TCGA program. The 
model obtained through the proposed method signifi­
cantly outperforms a model trained with a traditional 
transfer learning process.

Keywords: deep learning, digital pathology,
histopathology, intermediate task fine-tuning, trans­
fer learning

Resumen

Reducir la cantidad de datos etiquetados necesarios 
para entrenar modelos predictivos es uno de los princi­
pales desafíos para la aplicación de la inteligencia arti­
ficial en patología digital. En este trabajo se propone 
un método para mejorar la capacidad de predicción de 
redes neuronales profundas entrenadas con cantidades 
limitadas de imágenes de patología digital. El método 
es un proceso de transfer learning de dos etapas, donde 
se utiliza un modelo intermedio como puente entre un 
modelo preentrenado con ImageNet y un modelo fi­
nal de clasificación de cáncer. El modelo intermedio 
es ajustado con un dataset de más de 4.000.000 de 
imágenes débilmente etiquetadas con datos clínicos 
extraídos del programa TCGA. El modelo obtenido a 
través del método propuesto mejora significativamente 
los resultados de un modelo ajustado con el proceso 
tradicional de transfer learning.

Palabras claves: ajuste fino con tarea intermedia, 
aprendizaje profundo, histopatología, patología digital, 
transferencia de conocimiento.

1 Introduction

Artificial intelligence (AI), mainly through deep learn­
ing (DL), has made great advances in medicine in 
recent years. These advances, carried out in research 
laboratories, have had very little impact on clinical 
practice. The challenges that still need to be overcome 
for AI to achieve clinical value have been widely dis­
cussed [1, 2, 3, 4, 5, 6]. One of the main barriers is 
the difficulty (or cost) of obtaining large amounts of 
expertly annotated multicentre data.

AI in medicine has recently attracted a lot of inter­
est through automated image analysis in the area of 
histopathology. One example is PathLAKE 1, one of 
five state-established histopathology and AI centers in 
the UK. In digital histopathology, images are managed 
using a special technology called virtual microscopy 
or, more commonly, whole-slide imaging (WSI). In 
this context, a slide is a gigapixel image of tissue stored 
in a hierarchical structure. A broader overview of the 
topic can be found in [5, 7].

Obtaining labelled data in histopathology is chal­
lenging due to the size of the slides. Deep neural 
networks, the state of the art in image pattern recog­
nition, are models with many internal parameters and 
therefore require a large amount of data to train with­
out overfitting. In this context, the main challenge 
for AI in histopathology is to reduce the amount of 
data required for training or to automatically/semi- 
automatically label data.

Due to the promising results of the first AI applica­
tions, the size of the datasets has increased. However, 
even though collecting large numbers of slides is a 
manageable task for pathology laboratories and medi­
cal centers, labeling remains an obstacle [3]. Labeling 
can mean both manual annotation of image regions 
(such as identifying tissue regions or the location of 
specific cell types) and clinical annotation (such as 
assessing molecular subtypes, treatment response, and 
survival). Collecting manual image annotations is a 
tedious task that requires domain expertise. Clinical 
annotations, on the other hand, require access to pathol­
ogy reports and electronic patient records, either from 
a hospital (to retrieve information on grades, molecu- 
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lar subtypes, or treatment response) or from a regional 
or national registry (to retrieve survival information), 
and can only be provided by clinical researchers or 
authorized data managers. Clinical labeling of slides 
is usually easier to accomplish than manual annotation. 
This has resulted in large clinical datasets. Neverthe­
less, it is expected that building AI models using only 
clinical annotations will not be possible or efficient for 
all medical imaging diagnostic applications. There­
fore, manual labeling will continue to be necessary, 
and techniques will need to be developed to efficiently 
utilize and produce these annotations.

The aim of this paper is to analyze the behavior 
of DL models trained by a two-stage transfer learning 
process. In the first stage, weakly labeled data from the 
intermediate domain is used to train an intermediate 
model, and in the second stage, the labeled data for the 
target tasks is used to train the final models.

2 Background

We use the notation and definition of Pan and Yang 
[8] regarding Transfer Learning. Firstly, we define 
“domain” and “task”.

A domain D is composed of two parts: a feature 
space X and a marginal probability distribution P(X), 
where X = {x1,...,xn} e X. In the task of image 
classification, X is the space of all images in the do­
main, x; is the ith image, and X is a particular training 
dataset. In general, if two domains are different, they 
may have different feature spaces or different marginal 
probability distributions.

Given a specific domain D = {X,P(X)}, a task 
T = {Y, f (•)} is composed of two components: a 
label space Y and a predictive function f (•), which 
is not known but can be learned from training data, 
consisting of pairs {x;,y¡}, where x; e X and yi e Y. 
The function f (•) can be used to predict the label of a 
new input instance x.

To define the concept of transfer learning, a source 
domain DS and a target domain DT are considered. 
More specifically, we denote the source domain data 
as Ds = {(xS1, yS1),..., (xs„S, ys„S)}, where xs¡ e Xs is 
the ith input instance and ySi is its corresponding class 
label. In the case of image classification, xSi is an im­
age that belongs to class ySi. Similarly, we denote tar­
get domain data as Dt = { (xt1 , yr1 ),..., (xt„t, yrnT)}, 
where xTi e XT and yTi e YT. In most cases, 0 < 
nT Y ns.

Given a source domain Ds and task TS, a target 
domain DT, and task TT, transfer learning aims to 
improve the learning of the target predictive function 
fT(•) in Dt using knowledge from Ds and TS, where 
Ds = Dt or TS = TT.

The condition TS = TT implies that YS = YT or 
that P(Ys\Xs )= P(Yt |Xt ).

In the present work, the kind of transfer learning 
used is called inductive. This is the case when the 

target task is different from the source task. In this 
case, some labeled data from the source domain are 
used to induce a predictive model fT (•).

The most commonly used approach in DL is knowl­
edge transfer through parameters. Parameter transfer 
approaches assume that individual models for related 
tasks should share some parameters or hyperparame­
ter distributions. Specifically, in network-based deep 
transfer learning, a pre-trained network in a source 
domain fs(), including its structure and parameters, 
is partially reused and transferred to a new neural net­
work fT(•) used in the target domain [9].

3 Objectives

In this paper, we intend to reduce the amount of data 
needed for cancer classification in histopathology im­
ages by using clinically labeled data and a double 
transfer learning process, where the model trained to 
recognize clinical data acts as a bridge between the 
original model and the target model.

To achieve this, a deep neural network fT(•) is 
trained on the TT task, recognizing patterns on im­
ages of the Dt dataset. The training process has two 
stages: (1) The parameters of the pre-trained model 
fs(•) on the dataset Ds to perform the task ts are 
taken, and then fitted to perform the intermediate task 
T on the dataset Di obtaining the fI(•) model; (2) 
Finally, the parameters of fI(•) are transferred to fT(•) 
and fitted to perform the task fT(•) on the dataset Dt.

To investigate the behavior of the process under dif­
ferent conditions, two experiments are conducted with 
distinct target tasks (TTH and TTd ) and datasets (DTh 
and DTd ). In both experiments, Ds corresponds Im- 
ageNet dataset, while Di is a dataset extracted from 
The Cancer Genome Atlas (TCGA)2. The classes yIi 
represent tissue types in WSI tiles, and thus can be 
considered as clinical data rather than annotations. It 
is worth noting that DTh was also sourced from TCGA, 
thereby suggesting a high proximity between the do­
mains DI and DTh . DTd is composed of WSI tiles 
obtained from a different source and featuring distinct 
size, therefore DTd is further from DI.

2https://www.cancer.gov/ccg/research/ 
genome-sequencing/tcga

On the other hand, DTd comprises WSI image tiles 
obtained from a different source and features distinct 
dimensions compared to Di, leading to a greater dis­
similarity between domains, denoted as DTD and DI 
respectively.

The performances of fT(•) and fT(•) are compared. 
fT(•) is obtained by a direct transfer learning process, 
i.e., without going through the intermediate model. 
The performance is expected to improve because ns » 
nI » nT and the input data xIt are closer to xTi than xSi 
data.
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4 Related Work

Phang et al., working in the field of natural language 
processing, proposed an approach similar to ours 
and called it Supplementary Training on Intermedi­
ate Labeled-data Tasks (STILTs) [10]. The procedure 
consists of three steps: (1) train a language model 
on unsupervised data; (2) next, train the model on an 
intermediate task for which sufficient labeled data is 
available; (3) finally, fine-tune and evaluate the model 
for the target task.

In the field of medical imaging, Niu et al. [11] 
diagnose COVID-19 on computed tomography (CT) 
images of the lungs using a similar approach which 
they call Distant Domain Transfer Learning (DDTL) 
and which is inspired by the Transitive Transfer Learn­
ing (TTL) proposed by Tan et al. [12]. They use data 
from four non-medical source domains, chest X-rays 
as an intermediate domain, and CT images of the lungs 
as the target domain. Intuitively, the target domain is 
closer to the intermediate domain than to the source 
domain, similar to our work.

5 Materials and Methods

5.1 Data

5.1.1 Target dataset DTh : HIUTR

The target dataset DTh is Histology Images from Uni­
form Tumor Regions in TCGA Whole Slide Images 
(HIUTR)3 [13] created by Komura et al. [14]. It 
consists of 1,608,060 images of 32 types of cancer 
in hematoxylin-eosin stained tissues. The images 
were taken from 7,951 patients, and there may be 
more than one slide per patient. The images are avail­
able at six magnification levels: 0: 0.5 : Um/pixel, 1: 
0.6 : Um/pixel, 2: 0.7 : Um/pixel, 3: 0.8 : Um/pixel, 
4: 0.9 : Um/pixel, and 5: 1.0 : Um/pixel. The can­
cer types and the number of samples for each one are 
shown in Table 1. The original names are kept to 
facilitate comparison with other works.

3https://zenodo.org/record/5889558#.ZFeOIHbMK00

Two pathologists analyzed the downloaded images 
and removed those that did not meet certain quality 
criteria, such as out-of-focus images or staining issues. 
They then labeled the images by marking uniform 
tumor regions on each slide. The images in the dataset 
are the tiles extracted from the labeled regions.

As an example, one of the images from HIUTR is 
shown in Figure 1.

In Table 1, it is clear that the classes are not balanced. 
The type of cancer with the lowest occurrence has 360 
instances, while the most common one has 14,070. 
Regarding magnifications, the number of images is 
uniformly distributed.

Table 1: HIUTR dataset classes.

# Class Samples

1 AdrenocorticaLcarcinoma 2880
2 Bladder_Urothelial_Carcinoma 5900
3 Brain _Lower_Grade_Glioma 13760
4 Breast_mvasive_carcinoma 14070

05 Cervical_squamous_cell_carcinoma_and... 3600
6 Cholangiocarcinoma 540
7 Colon_adenocarcinoma 4920
8 EsophageaLcarcinoma 1850
9 Glioblastoma_multiforme 13840
10 Head_and_Neck_squamous_cell_carcinoma 6690
11 Kidney_Chromophobe 1360
12 Kidney _renal_clear_cell_carcinoma 6780
13 Kidney_renaLpapillary_celLcarcinoma 3930
14 Liver_hepatocellular_carcinoma 4860
15 Lung_adenocarcinoma 9600
16 Lung_squamous_cell_carcinoma 9340
17 Lymphoid_Neoplasm_Diffuse_Large_B... 360
18 Mesothelioma 1260
19 Ovarian_serous_cystadenocarcinoma 1420
20 Pancreatic_adenocarcinoma 2210
21 Pheochromocytoma_and_Paraganglioma 720
22 Prostate_adenocarcinoma 5440
23 Rectumadenocarcinoma 970
24 Sarcoma 8070
25 Skin_Cutaneous_Melanoma 5750
26 Stomach_adenocarcinoma 5660
27 Testicular_Germ_Cell_Tumors 3500
28 Thymoma 2100
29 Thyroid_carcinoma 6540
30 Uterine_Carcinosarcoma 1240
31 Uterine_Corpus_Endometrial_Carcinoma 7380
32 Uveal-Melanoma 890

5.1.2 Target dataset DTD: DeepHisto

The target dataset DTD is DeepHisto4 [15]. It consists 
of 40,777 images of 5 classes, 3 glioma subtypes, 
necrosis and normal brain tissue. The images are 
tiles of hematoxylin-eosin stained WSI collected at 
the National Center of Pathology (NCP), Luxembourg 
National Health Laboratory. WSIs were acquired with 
an average slide resolution of 0.25um/pixel.

Region annotation of WSIs was done by a patholo­
gist, and the regions of interest are further divided into 
square 512 x 512 tiles, each of them associated with 
a particular class denoting the respective tumor entity, 
normal brain tissue or necrosis (Table 2).

Tiles are further divided into training and test sub­
sets patient-wise.

As an example, an image from DeepHisto is shown 
in Figure 2.

4https://zenodo.org/record/7941080
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Table 2: DeepHisto dataset classes.

Class Samples

Astrocytoma 4220
Glioblastoma 1874
Oligodendroglioma 1874
Necrosis 479
Normal brain tissue 32330

Figure 1: Image of an case of the Glioblas- 
toma_multiforme class at magnification level 3, from 
the HIUTR dataset.

Figure 2: Image of an case of the Oligodendroglioma 
class from the DeepHisto dataset.

5.1.3 Intermediate dataset Di : PathoNet

The intermediate dataset, PathoNet5 [16], was created 
for this work. It consists of 4,462,126 images divided 
into 12 classes (tissues). These images were extracted 
from the TCGA program, like HIUTR, but no annota­
tions were made, only the tissue type was taken from 
the program metadata.

5https://zenodo.org/record/8116751

For each tissue, 400,000 256 x 256 pixel images 
were randomly selected and downloaded from 400 
WSIs. An automated cleaning process was then per­
formed to eliminate cases with excessive white content 
and blurred images.

Table 3 shows the final number of images for each 
class.

Table 3: PathoNet dataset classes.

Class Samples

Bladder 386770
Brain 393168
Breast 380050
Bronchus and lung 385738
Colon 296685
Corpus uteri 391476
Kidney 388139
Liver and intrahepatic bile ducts 393195
Prostate gland 369125
Skin 383206
Stomach 368673
Thyroid gland 325931

As an example, one of the images from PathoNet is 
shown in Figure 3.

5.2 Performance metrics
The most common performance measure for this kind 
of problem is accuracy. While accuracy would be 
a good choice for a case with balanced classes, we 
decided to use F-score as the primary metric because 
it is sensitive to biases caused by differences in data 
sets. To apply F-score in multiclass classification, we 
performed a one-vs-all (OVA) calculation, where the 
metric value is calculated for each class by simulating
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Figure 3: Image of an case of Brain class from the 
PathoNet dataset.

a binary classification of the class of interest against 
the rest. After calculating the value for each class, the 
mean across all classes is calculated.

In addition to the F1 OVA, we calculated the recall 
OVA and the accuracy OVA to study their behavior. 
Differences between the metrics could indicate that 
some models are more prone to bias, for example due 
to class imbalance. We also calculated absolute ac­
curacy to allow comparison with other studies and to 
monitor during training.

Figure 4: Model configuration diagrams. White layers 
fit their weights and gray layers do not.

Table 4: Accuracy of fI model in tissue prediction on 
PathoNet.

Training configuration Accuracy

ImageNet-C1 0.8089
ImageNet-C4 0.6877
Random-C1 0.7572

6 Experiments

6.1 Neural network

Throughout the experiments, the behavior of a ResNet- 
18 model was analyzed. Five distinct configurations of 
the neural network were employed: (C1) all trainable 
weights; (C2) trainable weights from the second stage 
to the end; (C3) trainable weights from the third stage 
to the end; (C4) trainable weights from the fourth stage 
to the end; (C5) only the trainable output layer. Figure 
4 shows the five configurations graphically.

6.2 Model f¡ training

The tissue prediction model for the PathoNet dataset 
was obtained by fine-tuning the weights of a neural 
network (fs) pre-trained with ImageNet. Two con­
figurations, C1 and C4, were used. Furthermore, to 
compare the performance, an adjustment from random 
weights (without taking the parameters of fS) was car­
ried out.

Table 4 presents the accuracy results for the three 
configurations.

6.3 Model fTH training

The model fTH predicts the type of cancer on the HI- 
UTR dataset.

In order to analyze the behavior under different con­
ditions, the five configurations (C1-C5) were used to 
fine-tune fTH.

Each model was trained in two ways: (A) with one 
stage of transfer learning, transferring parameters from 
a pre-trained model using ImageNet to the final model; 
(B) with two stages of transfer learning, using the 
intermediate model as a bridge between the source and 
target models.

The loss function was weighted according to the 
number of cases for each HIUTR class in order to 
reduce the effects of class imbalance.

20% of the HIUTR dataset was set aside for test­
ing. As the source of both the HIUTR and PathoNet 
datasets is the same, a process was defined to ensure 
that individuals with images in the HIUTR test dataset 
did not have images in either the HIUTR training 
dataset or the PathoNet dataset.
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6.4 Model fTD training
fTD predicts the glioma subtype on the DeepHisto 
dataset. The training process is similar to that con­
ducted with fT[1, with the following differences:

In the initial trials, it was noticed that the model fI 
with C1 configuration (ImageNet and random) did not 
serve as a suitable starting point for fTD . Therefore, the 
experiments for this model were exclusively conducted 
using the ImageNet-C4 configuration of fI.

Data splitting (test and training data) is defined in 
the dataset documentation.

6.5 Code availability
The source code is available at https://github. 
com/PatologiaDigitalUTN/itft

7 Results

7.1 Model fTH

Table 5 contains the mean metric values for three train­
ing epochs of each case and table 6 contains the devia­
tions of these metrics. We took epochs 1-3 for train­
ing methods B and 3-5 for methods A because these 
represent the best iterations from each group before 
overfitting. We selected three epochs instead of one in 
order to show the variability in the network’s output. 
It can be seen that cases with training method B con­
sistently outperform cases with training method A for 
the same configuration. For method B, the weights of 
fI fitted with the ImageNet-C1 configuration were em­
ployed as a starting point. Starting from Random-C1 
and ImageNet-C4 configurations did not surpass the 
performance achieved by method A.

Table 5: Mean metrics values for three training epochs 
of each case of fTH.

Case F-score Acc OVA Recall Accuracy

A-C1 0.540 0.760 0.533 0.615
B-C1 0.614 0.802 0.614 0.686
A-C2 0.496 0.741 0.496 0.568
B-C2 0.613 0.800 0.610 0.687
A-C3 0.487 0.739 0.491 0.574
B-C3 0.601 0.795 0.601 0.677
A-C4 0.438 0.715 0.446 0.526
B-C4 0.604 0.791 0.593 0.677
A-C5 0.290 0.659 0.338 0.359
B-C5 0.484 0.757 0.529 0.554

Table 7 shows the average improvement of method 
B over method A in all metrics for each configuration.

The source data from column F-Score in table 7 is 
shown in Figure 5.

In all cases, three epochs were used to compute the 
means. In model trainings B-C1, B-C2, B-C3 and BC-

Table 6: Average absolute deviation of each metric for 
three training epochs of each case of fT[1.

Case F-score Acc OVA Recall Accuracy

A-C1 0.0108 0.0040 0.0077 0.0089
B-C1 0.0017 0.0009 0.0018 0.0013
A-C2 0.0219 0.0123 0.0240 0.0313
B-C2 0.0078 0.0033 0.0064 0.0044
A-C3 0.0030 0.0023 0.0047 0.0026
B-C3 0.0013 0.0020 0.0040 0.0014
A-C4 0.0011 0.0009 0.0018 0.0034
B-C4 0.0034 0.0005 0.0010 0.0022
A-C5 0.0015 0.0027 0.0054 0.0022
B-C5 0.0013 0.0003 0.0007 0.0013

Table 7: Average improvement of training method B 
over training method A for each configuration.

Conf. F-score Acc OVA Recall Accuracy

C1 13.82% 5.47% 15.18% 11.53%
C2 23.61% 7.94% 22.94% 20.83%
C3 23.47% 7.68% 22.43% 17.89%
C4 37.94% 10.63% 33.03% 28.66%
C5 66.78% 14.95% 56.37% 54.14%

4, the best result is obtained in the first epoch (then 
overfit) and the first three epochs were used to calculate 
the metrics. In cases A-C1, A-C2, A-C3, and AC-4, 
the best results are obtained near the fifth epoch, and 
the third, fourth, and fifth epochs were used to compute 
the metrics. In cases A-C5 and B-C5, where only the 
output dense layer is trained, the models are more 
stable and take longer to overfit, therefore the data 
were taken from the three epochs before overfitting.

Table 12 shows the confusion matrix of fTH B-C1, 
epoch 3.

In Figure 6, the training evolution for cases A-C1 
and B-C1 is shown. Notice that the lowest error for 
B-C1 is reached at the end of the first epoch. The same 
occurs for B-C2, B-C3, and B-C4.

7.2 Model fTD

As mentioned earlier, results surpassing the perfor­
mance of process A (one-stage transfer learning) were 
not achieved when starting from fI with the ImageNet- 
C1 configuration. In this case, fTD tends to overfit. 
Additionally, unsatisfactory outcomes were obtained 
for the Random-C1 configuration, fTD underfits. The 
results presented in the remaining section pertain to 
the ImageNet-C4 configuration of fI. Figure 7 shows 
a sample of training for the three configurations of fI 
and the C5 configuration of fTD .

Configurations C1 to C4 of fTD tend to overfit, and 
the training process becomes unstable as more parame-
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Table 8: Confusion matrix of frH B-C1 epoch 3. Codes (#) correspond to those in Table 1. Columns correspond to 
predicted classes and rows to true classes.

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 4894 91 163 38 16 0 0 16 11 3 11 0 83 502 1 58 0 18 0 3 1 17 0 85 269 17 0 1 0 1 0 1
2 109 5004 218 667 5 95 4 190 423 80 582 2 11 146 244 299 1034 33 218 17 13 0 298 98 442 304 185 312 13 31 65 129 94
3 200 131 24458 80 33 0 2 6 1139 35 17 143 7 8 54 3 8 8 6 24 6 0 1 67 114 0 549 8 8 5 81 132 18 1 4 0
4 31 903 54 20010 464 167 226 216 31 224 14 47 64 338 501 687 47 581 200 72 73 459 6 282 531 257 146 134 307 225 989 4
5 14 279 58 198 3512 15 75 227 8 251 0 12 200 48 167 723 16 84 9 11 53 30 2 58 92 294 0 91 55 76 810 2
6 0 85 0 163 0 266 0 20 0 12 4 0 15 209 2 26 0 12 0 45 0 97 0 0 0 122 0 0 2 0 0 0
7 0 6 4 57 48 0 5615 163 0 62 0 11 38 44 567 268 8 57 18 184 0 152 1733 2 0 156 11 1 11 0 74 0
8 3 570 0 177 114 12 22 1569 20 588 8 0 1 83 20 254 0 32 151 10 7 14 24 21 92 223 7 34 14 0 55 5
9 184 242 3549 34 81 1 29 107 20798 181 1 16 216 31 61 56 5 18 1 7 5 163 1 1023 237 75 137 6 9 252 3 11
10 13 659 47 43 688 5 241 610 68 8321 5 16 11 82 356 1599 6 68 4 19 47 54 4 99 202 340 22 28 19 30 43 1
11 20 2 15 14 0 0 0 0 0 52 1860 243 223 153 2 2 0 24 14 0 8 67 0 0 1 0 56 0 2 0 12 0
12 6 4 26 24 15 0 52 0 226 460 308 11771 376 191 131 46 0 0 0 8 0 146 0 171 0 11 3 0 9 6 0 0
13 8 164 30 41 79 0 1 5 58 53 173 846 4715 289 447 330 0 1 34 81 27 275 0 31 12 25 5 7 176 4 29 4
14 54 200 32 178 67 9 3 126 9 181 60 108 167 8132 75 224 0 11 0 0 24 210 0 31 40 85 1 3 64 0 103 3
15 0 91 49 277 126 19 461 101 32 297 3 236 377 33 12073 3263 34 71 32 175 124 195 38 86 148 564 69 8 65 11 419 3
16 1 363 55 239 682 15 163 451 77 697 29 186 198 246 2300 12742 35 74 22 66 3 146 57 161 244 222 10 98 24 103 244 37
17 0 82 185 35 2 0 9 1 0 0 0 0 6 0 2 6 483 65 0 0 0 14 17 48 63 50 4 1 0 0 1 6
18 26 106 33 307 20 22 0 0 84 46 0 1 202 342 150 204 0 547 1 75 2 109 1 75 54 27 0 0 10 0 14 2
19 31 117 0 42 92 6 2 6 0 11 0 0 0 94 17 84 0 16 2248 3 2 33 0 0 75 5 27 1 17 50 41 0
20 4 90 1 2 77 30 47 204 1 82 0 14 221 94 277 89 0 55 14 2889 2 109 16 50 23 169 25 0 10 20 5 0
21 273 31 42 0 0 0 0 0 1 1 0 1 3 65 14 1 0 0 0 2 1075 11 0 75 1 0 0 3 11 0 0 0
22 0 3 27 99 10 35 80 1 3 2 0 54 146 36 281 119 0 1 41 100 30 9553 4 0 0 66 9 1 8 2 9 0
23 0 0 0 48 15 0 1498 5 0 8 0 0 1 0 25 5 0 25 25 0 0 23 308 0 0 43 0 0 117 0 94 0
24 88 614 206 175 242 7 3 61 89 264 0 234 77 143 55 429 102 135 2 94 111 110 0 12132 399 28 100 26 3 4 287 0
25 92 428 142 225 535 0 104 329 133 342 1 0 164 216 208 254 23 27 2 1 81 36 5 161 6918 10 174 130 34 64 203 528
26 1 108 8 374 357 16 476 302 4 345 4 207 55 196 688 609 10 11 7 152 0 222 114 87 152 6063 98 14 11 9 187 3
27 6 70 2 118 32 11 14 24 0 56 0 0 28 12 75 3 2 4 0 1 1 18 0 126 18 475 5925 2 0 6 11 0
28 0 154 10 57 206 0 0 13 1 99 0 0 10 19 3 132 167 0 2 1 0 54 0 180 20 10 97 2875 1 2 207 0
29 14 19 9 245 28 19 9 106 7 140 12 36 223 49 183 49 0 14 1 9 1 283 0 69 74 93 0 73 11460 2 303 0
30 80 31 150 199 6 0 16 12 30 23 0 0 7 0 132 55 26 0 84 19 1 0 0 24 190 43 74 2 1 1110 345 0
31 91 326 36 747 556 1 506 259 8 27 8 1 283 99 809 524 18 13 290 62 24 298 52 39 304 267 37 98 255 235 8584 3
32 0 106 28 6 4 0 0 31 0 29 0 0 37 8 1 16 0 1 1 0 80 0 0 1 190 0 1 0 0 1 0 1439

Figure 5: F-score OVA on test data by training mode 
and configuration.

Figure 6: Training evolution of cases A-C1 and B-C1 
of frH. The solid line shows the training loss calculated 
in each batch. The dots indicate the test loss at the end 
of each epoch.
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Figure 7: Training evolution of fTD B-C5 with 
ImageNet-C1, Random-C1 and ImageNet-C4 configu­
rations for fI . The solid line shows the training accu­
racy in each batch. The dots indicate the test accuracy 
at the end of each epoch (151 batches). Figure 8: Training evolution of fTD A-C1, A-C4 and 

A-C5 on three executions by configuration. The solid 
line shows the test mean loss by epoch (151 batches). 
The dots indicate individual loss by epoch.ters are released, likely due to the relatively small size 

of the dataset. An illustrative example with process 
A on configurations C1, C4, and C5 is presented in 
Figure 8. Configuration C5 exhibits the highest stabil­
ity and best performance, albeit it is dependent on the 
epoch of fine-tuning of fI from which the parameters 
are taken. The subsequent results are based on the C5 
configuration of fTD.

Table 9 displays the mean metric values for 30 (last 
10 epochs of 3 trainings) training epochs per case. It is 
evident that the performance is enhanced and surpasses 
process A when the weights from the initial epochs 
of the fI training are utilized. Table 10 contains the 
deviations of metrics in Table 9.

Table 9: Mean metrics values for thirty epochs of 
training of fTD. The last number in Case column is the 
training epoch of fI.

Table 11 shows the average improvement of method 
B over method A in all metrics for C5, Figure 9 depicts 
the data from the F-score column in Table 9 and Table 
12 shows an example of confusion matrix.

Case F-score Acc OVA Recall Acc

BC-5-1 0.859 0.921 0.856 0.938
BC-5-2 0.795 0.876 0.777 0.917
BC-5-3 0.859 0.916 0.847 0.941
BC-5-4 0.784 0.883 0.787 0.911
BC-5-5 0.705 0.851 0.727 0.894
BC-5-6 0.744 0.865 0.753 0.897
BC-5-7 0.728 0.850 0.726 0.897
AC-5 0.796 0.874 0.773 0.926

Figure 9: F-Score OVA on test data by training mode, 
configuration and epoch of fI.
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Table 10: Average absolute deviation of metrics in 
Table 9.

Case F-score Acc OVA Recall Acc

BC-5-1 0.0102 0.0057 0.0105 0.0034
BC-5-2 0.0090 0.0050 0.0097 0.0018
BC-5-3 0.0059 0.0038 0.0071 0.0021
BC-5-4 0.0116 0.0056 0.0107 0.0032
BC-5-5 0.0051 0.0028 0.0050 0.0024
BC-5-6 0.0099 0.0042 0.0079 0.0023
BC-5-7 0.0048 0.0034 0.0060 0.0022
AC-5 0.0111 0.0075 0.0139 0.0037

Table 11: Average improvement of method B over 
method A in all metrics for C5 configuration in training 
of fTD. The last number in Case column is the training 
epoch of fI.

Case F-score Acc OVA Recall Acc

BC-5-1 7.85% 5.35% 10.81% 1.27%
BC-5-2 -0.22% 0.22% 0.63% -1.01%
BC-5-3 7.88% 4.79% 9.64% 1.60%
BC-5-4 -1.57% 1.04% 1.87% -1.69%
BC-5-5 -11.43% -2.60% -5.96% -3.45%
BC-5-6 -6.54% -1.03% -2.51% -3.18%
BC-5-7 -8.59% -2.74% -6.04% -3.16%

8 Conclusions

The two-stage transfer learning process using PathoNet 
dataset to fit the coefficients of the intermediate model 
significantly improved the classification of images ex­
tracted from TCGA program (HIUTR). For DeepHisto 
the improvement is also significant, although it was 
not achieved as directly as in the first case.

It is concluded that the proposed methodology is 
promising in cases where there are few annotated med­
ical images, but a sufficient volume of images with 
general clinical labels can be accessed.

9 Discusion and future work

While the proposed method achieved improvements 
in both tasks, the outcomes varied. tTh demonstrated 
enhancement across all five configurations studied, 
utilizing the C1 configuration for fine-tuning the in­
termediate task. On the other hand, Ttd could only 
be explored under the C5 configuration and achieved 
improvements when utilizing the initial epochs of 
fine-tuning the intermediate task under C4 configu­
ration. The datasets DTH and DTD differ in two dimen­
sions: their proximity to domain DI and the amount 
of data available. Further experiments with alterna­
tive datasets are necessary to investigate the individual 
effects of these factors.

Table 12: Confusion matrix of fTD B-C5 epoch 30 
from fI epoch 2. Columns correspond to predicted 
classes and rows to true classes.

Astro. 465 0 0 0 0
Gliob. 15 148 0 9 69
Necrosis 0 2 80 7 1
Normal 18 2 5 2916 6
Oligo. 107 5 0 1 318

In the results over HIUTR dataset, it is also ob­
served that cases A-Cx reduce the performance as the 
coefficients of the model are frozen, while cases B-Cx 
(except B-C5) maintain the same accuracy. This be­
havior could indicate that the encoding achieved in all 
three initial stages of the model is common to the two 
tasks adjusted on TCGA program data (TI and TTh ). 
T¡ aims to detect tissues and tTh detects cancer types.
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