
Physica A 471 (2017) 845–861

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Higher-order correlations in common input shapes the
output spiking activity of a neural population
Lisandro Montangie, Fernando Montani ∗
IFLYSIB, CONICET & Universidad Nacional de La Plata, Calle 59-789, (1900) La Plata, Argentina
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 49 y 115. C.C. 67, (1900) La Plata,
Argentina

h i g h l i g h t s
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• Neuronal inputs and the spiking outputs follow q-Gaussian statistics.
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a b s t r a c t

Recent neurophysiological experiments suggest that populations of neurons use a
computational scheme inwhich spike timing is regulated by common non-Gaussian inputs
across neurons. The presence of beyond-pairwise correlations in the neuronal inputs and
the spiking outputs following a non-Gaussian statistics elicits the need of developing a
new theoretical framework taking into account the complexity of synchronous activity
patterns. To this end, we quantify the amount of higher-order correlations in the common
neuronal inputs and outputs of a population of neurons. We provide a novel formalism,
of easy numerical implementation, that can capture the subtle changes of the inputs
heterogeneities. Within our approach, correlations across neurons arise from q-Gaussian
inputs into threshold neurons and higher-order correlations in the spiking outputs activity
are quantified by the parameter q.We present an exhaustive analysis of how input statistics
are transformed in this threshold process into output statistics, and we show under
which conditions higher-order correlations can lead to either bigger or smaller number
of synchronized spikes in the neural population outputs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Neurons primarily communicate with each other by generating sequences of action potentials. The spiking activity of
nearby cortical neurons is not independent and several studies have explored the importance of this correlated activity. A
great deal of attention has been devoted to answer the question of whether the information conveyed by the activity of an
ensemble of neurons is determined solely by the number of action potentials fired by each cell independently or correlations
across neurons may be also important for information transmission [1–17]. It has been proposed that pairwise correlations
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are important for information representation or processing in retina [18,19], thalamus [20] and cerebral [10,11,21] and
cerebellar cortices [22,23]. However, recent studies suggest that higher-order correlation structures are also quite crucial to
get a better understanding of how informationmight be transmitted in the brain [18,19,24–35]. In this framework, pairwise
modeling does not provide a fair description of the overall organization of neural interactions when considering neuronal
systems in general [18,19,24–35].

Several studies have pointed out the relevance of higher-order correlations (HOCs), as pairwise models do not explain
the variability in activity patterns at a more general level [27–34,36]. Indeed neurophysiological research has shown that
pairwise models fail to explain the responses of spatially localized triplets of cells [29–31,37] when describing the activity
of large neuronal populations responding to natural stimuli [31]. Deviations from the Pairwise Maximum Entropy (PME)
model indicate that HOCs have to be taken into account for modeling population statistics [24,38–40]. Thus, the intricacy of
the neurophysiological data highlights the need to develop a theoretical framework accounting for the statistical complexity
of synchronous activity patterns. Pattern probabilities for the so-called Dichotomized Gaussian (DG)model [24,37–41] were
developed using the cumulative distribution of multivariate Gaussians showing high precision fitting of the experimental
data, and therefore evidencing that HOCs are required to properly account for cortical dynamics. More specifically, in
the DG model binary patterns are generated by thresholding a multivariate Gaussian random variable, and correlations
between neurons arise from correlations in the underlying Dichotomized Gaussian distribution [24,37–41]. The DG model
can be interpreted as a phenomenological model of how pairwise correlations in the inputs to threshold neurons shape the
distribution of spike-counts in the population [42]. It has been extensively used to construct quantitative predictions on how
departures from pairwise models depend on common Gaussian like neuronal inputs [40] and to generate population spike
trains with specified mean and pairwise statistics [39,43] (via sampling from the latent Gaussian). However, it is important
to point out that the DG model does not explicitly quantify what is the amount of HOCs in the spiking population output. It
just produces HOCs in the spiking neuronal outputs that cannot be obtained by using pure pairwise models [38–40].

Neurophysiology research using whole-cell patch-clamp recordings in vivo has been used to measure subthreshold
membrane potential fluctuations, showing evidence of non-Gaussian presynaptic input distributions in the olfactory bulb
of the drosophila and the auditory cortex of rats [44,45]. Importantly, the existence of non-Gaussian membrane potential
dynamics implies sparse synchronous activity in the auditory cortex of rats and in presynaptic olfactory receptor neurons
of Drosophila. The subthreshold membrane potentials on single trials have been analyzed making inferences about the
underlying population network activity, finding that during both spontaneous and evoked responses it was highly non-
Gaussian. These dynamics suggest a computational scheme in which spike timing is controlled by common non-Gaussian
input across neurons [44,45]. The intricacy of the neuronal networks suggests therefore the need of taking into consideration
the non-Gaussian input connectivity across neuronal inputs. Thus, to gain a better understanding of how neural information
is processed in the brain, we need to account for HOCs in the input connectivity across neuronal inputs and spiking outputs.
To this end, we consider the q-Gaussian distribution [46], which is a generalization of the Gaussian distribution in the same
way that Tsallis entropy is a generalization of standard Boltzmann–Gibbs entropy [47]. This distribution is characterized by
a parameter q, which conveys departure from pure pairwise correlations.

In this paper, we statistically characterize the population firing activity obtained from simultaneous recordings of
neurons across all layers of a simulated cortical microcolumn. We put special emphasis on how to perform computational
estimations efficientlywhen considering HOCs in the input connectivity, providing an appropriatemathematical framework
to quantify HOCs in the spiking output of the neuronal population. We take advantage of the fact that the q-Gaussian
distribution, in the heavy tail region, is equivalent to the Student’s t-distribution with a direct mapping between the
deformation parameter q and the degree of freedom of the Student’s t-distribution. This allows us to write the joint
probability distribution of firing of the population of neurons in terms of the Student’s t-distribution cumulative distribution
function accounting for beyond-pairwise correlations in their inputs, and, more importantly, to provide a robust estimation
of output statistics in terms of bivariate q-Gaussian distributions. Three types of models are considered: an independent
model which shows no correlations across spikes, a DG model that allows to generate HOCs in the output by considering
pairwise-correlated inputs, and a Dichotomized non-Gaussian model (q-DG) which accounts for HOCs in both the input and
output statistics. This scheme highlights the importance of both non-Gaussian common inputs and of the HOCs within the
output statistics, when describing the structure of cortical networks.

2. Methodology

2.1. The ECLT framework

Although inputs in the DGmodel are Gaussian distributed and, therefore, there are no interactions beyond second order
in their inputs, the nonlinear threshold spiking may give rise to statistical interactions of all orders in their spiking outputs
[24,37–41]. Thus, using the DG approach, common pairwise input could be used to produce HOCs in the output population
activity. This method has been developed within the Central Limit Theorem (CLT) framework, which ensures that the
probability distribution function of any measurable quantity is a normal Gaussian distribution, provided that a sufficiently
large number of independent random variables with exactly the samemean and variance are being considered [48]. Be that
as it may, the CLT does not hold if correlations between random variables cannot be neglected. However, in the presence
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of weak or strong correlations of any sort, the CLT has been generalized in recent publications by M. Gell-Mann, C. Tsallis,
S. Umarov, C. Vignat and A. Plastino [46,49–52]. They have shown that when a system with weakly or strongly correlated
random variables is being considered, if we gather a sufficiently large number of such systems together, the probability
distribution will converge to a q-Gaussian distribution [46,49–52].

In order to understand how neural systems perform computations and process sensory information, we need to
understand how the network structure of firing patterns across a population of neurons is built. Information in neural
populations is often encoded in the activity of large, highly interconnected ensembles, so that higher-order output statistics
can also be shaped and modulated by higher-order input statistics and their intrinsic circuit mechanisms [24,29,31,37]. In
order to take this into account, we have considered in Refs. [33,34] that each neuron is subject to aweighted sum of common
inputs which are q-Gaussian [53] due to the ECLT [46,50], in which the independence constraint for the independent and
identically distributed variables is relaxed to an extent defined by the q parameter [46,49–52,54]. In the framework of
q-algebra, the corresponding generalization of the CLT becomes possible and relatively simple. When a systemwith weakly
or strongly correlated random variables is being considered, if we gather a sufficiently large number of such systems
together, the probability distribution will converge to a q-Gaussian distribution [46,49–52]. We use the ‘‘natural extension’’
of the CLT proposed in [50], which accounts for cases in which correlations between random variables are non-negligible.
Thus, q-Gaussians are the probability density functions in the ECLT:

Gq(x;β) =

√
β

Cq
expq


−βx2


(1)

where expq is defined as the q-exponential [53]

expq(x) =


exp(x) if q = 1

[1 + (1 − q)x]
1

1−q if q ≠ 1 and 1 + (1 − q)x > 0
0 if q ≠ 1 and 1 + (1 − q)x ≤ 0

(2)

and the normalization factor Cq is given by

Cq =



2
√
πΓ


1

1−q


(3 − q)

√
1 − qΓ


3−q
2q−2

 for − ∞ < q < 1,

√
π for q = 1,
√
πΓ


3−q
2q−2


√
1 − qΓ


1

1−q

 for 1 < q < 3.

(3)

β is a positive real number and q is a (problem-dependent) positive real index. Notice that in the limit of q = 1 a normal

Gaussian distribution is recovered as limN→∞(1 +
1
N )

N
= e, which can be rewritten as limq→1 [1 + (1 − q)]

1
(1−q) = e.

Furthermore, when q = 2 the q-Gaussian corresponds to a Cauchy distribution, which is also known as the Lorentz
distribution.

Hence, perhaps undetectable, higher-order input correlationsmaywell have an important effect at population level [34].
Moreover, this extension is achievedwith the inclusion of just one extra parameter, the deformation parameter q, so that we
remain in a low dimensional space, avoiding the sampling size problem of a complete description of HOCs [55]. Importantly,
our approach converges to the DGmodel of Amari and collaborators when we consider the limit of the CLT framework (that
is, q → 1).

Furthermore, the q-Gaussian distribution is often favored for its heavy tails in comparison to the Gaussian for 1 < q < 3.
In the heavy tail region, the distribution is equivalent to the Student’s t-distribution (see Eq. (4)) with a direct mapping
between q and the degrees of freedom ν

Tν(x) =
Γ

ν+1
2


√
πνΓ


ν
2

 1 +
x2

ν

−
ν+1
2

. (4)

Student’s t-distribution is a well known and commonly used distribution in statistics, quantifying deviations from themean
in samples for which the standard deviation is unknown. In this sense, statistically it is a scaled reparametrization of the
Student’s t-distribution to describe small-sample statistics, where the parameters q and β are related to ν. Given a Student’s
t distribution with ν degrees of freedom, the equivalent q-Gaussian has

q =
ν + 3
ν + 1

with β =
1

3 − q
(5)

and inverse

ν =
3 − q
q − 1

, (6)
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but only if β =
1

3−q . Whenever β ≠
1

3−q , the function is simply a scaled version of Student’s t distribution. This transforma-
tion is important for its sampling properties and availability of software packages.

In the case of bivariate q-Gaussian distributions [50], the definition is

Gq(x; ρ) =
1

Kq

1 − ρ2

expq


−

∥x∥2

1 − ρ2


(7)

for x real 2-dimensional column vectors, where ρ is the pairwise correlation and the normalization factor Kq is given by

Kq =



π(6 − 4q)Γ


2−q
1−q


(1 − q)Γ


2−q
1−q + 1

 for − ∞ < q < 1

π for q = 1
π(6 − 4q)Γ


1

q−1 − 1


(1 − q)Γ


1
q−1

 for 1 < q <
3
2
.

(8)

It should be considered that this bivariate distribution further restricts the possible values of the deformation
parameter q.

2.2. A simple application of the ECLT within the information geometry framework

In the information geometry framework [55,56], neuronal firing in a population of sizeN is represented as a binary vector
x = (x1, . . . , xN), where xi = 0 if neuron i is silent in some time window1T and xi = 1 if it is firing. Then, for a given time
window, we consider the set the probability distribution of binary vectors, {p(x)}, which consists of 2N probabilities

p(x) = Prob{x1 = i1, . . . , xN = iN} = pi1...iN (9)

subject to the normalization
i1,...,iN=0,1

pi1...iN = 1. (10)

As proposed by Amari and co-workers (see, for instance, Refs. [55,56]), the set of all the probability distributions {p(x)}
forms a (2N

− 1)-dimensional manifold SN . This approach uses the orthogonality of the natural and expectation parameters
in the exponential family of distributions. It is also useful for analyzing neural firing in a systematic manner based on
information geometry. Any such probability distribution can be unequivocally determined using a ‘‘coordinate system’’.
One possible coordinate system is given by the set of 2N

− 1 marginal probability values:

ηi = E[xi] = Prob{xi = 1}, i = 1, . . . ,N (11)
ηij = E[xixj] = Prob{xi = xj = 1}, i < j (12)
...

η123...N = E[x1 . . . xN ] = Prob{x1 = x2 = · · · = xN = 1}. (13)

These are called the η-coordinates [56]. Moreover, provided p(x) ≠ 0, any such distribution can be expanded as in
Ref. [55]

log p(x) =

N
i=1

xi θi +

i<j

xixj θij +

i<j<k

xixjxkθijk +


i<j<k<l

xixjxkxl θijkl + · · · + x1 · · · xN θ1...N − ψ, (14)

where there are in total 2N
− 1 different θ correlation coefficients that can be used to determine univocally the probability

distribution. The θ forms a coordinate system, named θ-coordinates.
In the following paragraphs we provide an intuitive explanation the connection between ECLT with the information

geometry framework. Let us now consider a q-Gaussian distribution of x, with mean µ and variance σ . Note that in the
literature, the latter can be also found as q-mean and q-variance. ψ denotes a normalization constant.

Gq(x;µ, σ) = expq


−β


x − µ

σ

2

− ψ



=


1 + (q − 1)


β


x − µ

σ

2

− ψ

 1
1−q

, (15)
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which can be rewritten as

Gq(x;µ, σ) = exp


1

1 − q
ln


1 + (q − 1)


β


x − µ

σ

2
− ψ


(16)

and using the definition for the logarithmic function

ln (1 + x) = −

∞
n=1

(−1)n+1

n
xn (17)

then

Gq(x;µ, σ) = exp


−

∞
n=1

(−1)n+1

n
(q − 1)n−1


β


x − µ

σ

2

− ψ

n

= exp


−β


x − µ

σ

2

exp


ψ −

∞
n=2

(−1)n+1

n
(q − 1)n−1


β


x − µ

σ

2

− ψ

n
. (18)

This expression can be rearranged as

Gq(x;µ, σ) = exp


−


β


x − µ

σ

2


+ Ψ̃ (x, q)


, (19)

where

Ψ̃ (x, q) = ψ −

∞
n=2

(−1)n+1

n
(q − 1)n−1


β


x − µ

σ

2

− ψ

n

. (20)

Thus, this suggests that in ECLT framework correlations are taken into account through the parameter q which acts as a
‘‘colored noise’’ in Ψ̃ (x, q).

2.3. The dichotomized q-Gaussian model

A population ofN neurons, if we assume spike trains to be discretized into sufficiently small time bins such that each time
bin contains atmost one spike, can be represented by a collection ofN binary sequences. That is, each neuron can either spike
or not at any given time and thus the population can be in any of 2N different states. Estimating the full joint distribution
over these 2N patterns becomes rapidly infeasible for increasing numbers of neurons N , due to combinatorial explosion.
However, it is often possible to measure the first and second moments of the given distribution. These are the firing rates
of individual cells and their pairwise correlations. The DG model allowed to generate spike trains from a population of N
neurons where these moments have been specified. However, the distribution of the sum of inputs to that population was
assumed to be Gaussian and thus, not to include possible beyond-pairwise correlations [38–40]. Thus, we would like to be
able to relax the non-Gaussianity ‘‘constraints’’ in the common input distributions in order to take into account the impact
of HOCs.

We model therefore a multivariate, N-dimensional binary random variable X ∈ {0, 1}N with mean µ and covariance
matrix 6. A sample from the q-DG distribution is obtained by first drawing a sample from a N-dimensional q-Gaussian
random variable U and then thresholding it into 0 and 1. That is,

Xi = 1 if and only if Ui > 0 where U ∼ Gq(h, A), (21)

zero otherwise.
This thresholding operation will change the moments of the output, so X will, in general, not have the same mean

and covariance as U . The moments of the output are given by the means µi = ⟨Xi⟩ and pairwise covariances Σij =

⟨Xi Xj⟩ − ⟨Xi⟩⟨Xj⟩. However, the effect of the truncation can be calculated [57], as is the case for the Dichotomized Gaussian
model, and corrected for. Samples from X are constructed by generating samples from U (with mean h and covariance A),
and thresholding it at 0, i.e. setting Xi = 1 if and only if Ui > 0.

We can choose the mean h and covariance A of U such that after truncation, X has the desired moments µ and 6. For an
easier algorithmic implementation, we exploit the equivalence, if conditions are met, between q-Gaussian distributions and
Student’s t-distributions. Assuming (without loss of generality) unit variances for U , the mean spiking probabilities µ and
covariance 6 of X are given by

µi = Φq(hi), (22)
Σii = Φq,2(hi,−hi, 0), (23)
Σij = Φq,2(hi, hj, Aij)− Φq,2(hi, hi, 0). (24)
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Here, Φq(.) is the cumulative distribution function of a univariate q-Gaussian with mean 0 and unit variance from now on
referred to as q-Normal, andΦq,2(., .; ρ) the cumulative distribution function of a bivariate q-Gaussian with unit variances
and correlation coefficient ρ (bivariate q-Normal). Both distributions are characterized also by the deformation parameter
q. Note that Eq. (24) is only valid when i is different from j, and that in this equation we have considered the approach that
Σij is the cumulative distribution function of a bivariate q-Gaussian minus cumulative distribution function when taking a
null covariance matrix Aij = 0. This allows us to quantify the amount of correlations in the outputs.

To be able to define q-Normal distributions (that is, for the variance of a q-Gaussian to be the unit) the deformation param-
eter qmust be restricted to the range [1, 5/3). In this range, they can be directly mapped to scaled Student’s t-distributions
Tν . To have a unit variance, β =

1
5−3q . Under this condition, the degree of freedom would still be ν =

3−q
q−1 and the scale

parameter is ζ 2
=

5−3q
3−q , such that

Nq(x) = Gq


x;

1
5 − 3q


=

1
ζ

Tν


x
ζ



≡
Γ

ν+1
2


πζ 2νΓ


ν
2

 1 −
1
ν


x
ζ

2
−

ν+1
2

. (25)

In the next section we show how to perform the estimations of the input and output statistics of a population of neurons.

2.4. Entropy and Kullback–Leibler divergence

In information theory [58], entropy is a quantity that measures how interesting a set of responses is. Given a distribution
of neural responses, if each one of those responses is identical, or if only a few different responses appear, the data set is
relatively uninteresting. Computing entropy then gives a sense of variability in the firing rate distribution. In general, the
entropy of a random variable X following a probability density function p(x) is defined as

S(X) = −


p(x) log p(x). (26)

Since we are interested in quantifying entropy differences [40], we define a normalized differential of entropy1Sq in terms
of the deformation parameter q as

1Sq(X) =
Sq(X)− S1(X)

S1(X)
. (27)

That is, it is the difference of the entropy value for a given q and the entropy value in the case of q = 1, normalized to the
latter.

Onemethod available to test for the presence of HOCs is bymeasuring the distribution of population activity inmulti-unit
recordings and fitting the deformation parameter q of such distribution, which represents the amount of HOCs present in
the distribution of firing. To this end, we consider the Kullback–Leibler divergence (KL-divergence) [59], which constitutes
an Information Theory quantity and is a measure of the ‘‘distance’’ between two probability distributions:

DKL(p∥p0) =


p(x) log

p(x)
p0(x)

. (28)

In words, it is the expectation of the logarithmic difference between the probabilities p and p0, where the expectation is
taken using the probabilities p. Another interpretation is of the difference between two entropies, as it is also regarded as
a relative entropy. It is not a true metric since it does not obey the triangle inequality, and in general DKL(p∥p0) does not
equal DKL(p0∥p). It gives a sense of the inefficiency of assuming that the distribution is p0 when the true distribution is p.
Thus, using the KL-divergence allows us to quantify how statistically different from the q = 1 (that is, Gaussian) case a given
measured distribution is.

In this paper, we used a normalized version of this quantity. The normalized KL-divergence is defined as the difference
between the KL-divergence of a distribution fq for a given pairwise correlation and the pairwise independent case for a
given value for the deformation parameter q and the KL-divergence of a distribution f1 of such pairwise correlation and the
independent case for q = 1. That is,

∆q = DKL

fq(ρ)∥fq(0)


− DKL (f1(ρ)∥f1(0)) . (29)

3. Results

3.1. Linking input and output HOCs

Aswe have discussed in the previous sections, we consider that correlations across neurons arise from q-Gaussian inputs
into threshold neurons. That is, we develop in a following a non-Gaussian Dichotomized model which accounts for the
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HOCs in the inputs and outputs of a neuronal population. Eq. (24) provides the relationship between the correlations of the
non-Gaussian input and the correlations of the binary threshold neurons. The mean values hi can be found by inverting the
Eq. (22). That is, we can calculate these quantities using

hi = Φ−1
q (µi), (30)

since it can be shown thatΦq(.) is invertible in the range considered.
DeterminingΣij can be achieved by finding a suitable value such that

Σij −

Φq,2(hi, hj, Aij)− Φq,2(hi, hj, 0)


= 0. (31)

Despite this apparent simplicity, a careful analysis of the range of possible covariance matrices is needed. When dealing
with simulated random variables with covariance matrices that are not directly estimated from experimental data but
constructed by other considerations, not every positive definite symmetric matrix can be used as the covariance matrix of a
multivariate binary distribution. This is a general property of the binary distributions and not a weakness of the particular
model. Thus, there is not straightforward rule for determining the suitability of any given covariance matrix. In comparison
to the Gaussian distribution, the independent bivariate q-Gaussian cumulative distribution function is not the product of
individual cumulative distribution functions. Thus, feasible covariances are not only bounded by the value of means of the
output but also by the deformation parameter of the input. For example, for two binary random variables X1 and X2 with
means µ1 and µ2, the covariance is then bounded by the values [39]

max

−µ1,2, µ1 + µ2 − (1 + µ1,2)


≤ Cov(X1, X2), (32)

Cov(X1, X2) ≤ min

µ1 − µ1,2, µ2 − µ1,2


(33)

where µ1,2 = Φq([Φ
−1
q (µ1),Φ

−1
q (µ2)], 0). This provides a different set of constraints for the covariance. To show that Eq.

(24) has a solution for anyµi,µj andΣij = Cov(Xi, Xj) that satisfies the conditions above, we need to show that we can find
an α such that

Φq,2(hi, hj, α) = Covij + Φq,2(hi, hi, 0). (34)

AsΦq,2 is continuous in α, and it satisfies that

Φq,2(hi, hj,−1) ≤ Covij + Φq,2(hi, hi, 0) ≤ Φq,2(hi, hj, 1) (35)

we have well established the bounds of the cumulative distribution function of the bivariate q-Gaussian. In the next section,
we take advantage of recent mathematical progress on q-geometry to show how to estimate Φq([a, b], ρ) in the current
framework.

3.2. Estimations of the bivariate q-Gaussian cumulative distribution function

The standard bivariate q-Gaussian cumulative distribution function is defined by

Φq([a, b], ρ) =

Γ


1

q−1


(q − 1)

πΓ


1
q−1 − 1


(6 − 4q)


1 − ρ2

 a

−∞

 b

−∞

dy dx

1 +


q − 1
6 − 4q


x2 + y2 − 2ρxy

1 − ρ2

 1
1−q

, (36)

where a, b ∈ R and q ∈ [1, 3/2). In comparison to the univariate q-Gaussian distribution, its bivariate counterpart cannot
be easily mapped into a Student’s t-distribution. Furthermore, this integral cannot be solved analytically. Thus, since this
function is not included in common numerical packages, we need to simplify this expression to be able to obtain accurate
numerical values.

First, we use the so-called Hilhorst transform [53,60] to rewrite Eq. (36) as

Φq([a, b], ρ) =

Γ


1

q−1


(q − 1)

πΓ


1
q−1 − 1


(6 − 4q)


1 − ρ2


∞

0
ds s


s2

2

 1
q−1

e−
s2
2

×

 a

−∞

 b

−∞

dy dx e
−

s2
2


q−1
6−4q


x2+y2−2ρxy

1−ρ2

=
22− 1

q−1 (q − 1)

Γ


1

q−1 − 1

(6 − 4q)


∞

0
ds s

2
q−1 −1e−

s2
2 Φ


s


q − 1
6 − 4q

[a, b], ρ


. (37)
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Φ(x, ρ) corresponds to the bivariate gaussian cumulative distribution function of xwith correlation coefficient ρ. Then, by
taking the derivative with respect to ρ we obtain

dΦq([a, b], ρ)
dρ

=
22− 1

q−1 (q − 1)

Γ


1

q−1 − 1

(6 − 4q)


∞

0
ds s

1
q−1 e−

s2
2
e
−

s2
2


q−1
6−4q


a2+b2−2ρab
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. (38)

With the change of variables r = s


1 +
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6−4q
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,
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dρ
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, (39)

since


∞

0 dr r
2

q−1 −1e−
r2
2 = 2

1
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Γ


1

q−1


. This formula can be integrated with respect to ρ to produce

Φq([a, b], ρ) = Φq([a, b], s)+

Γ


1

q−1


(q − 1)

πΓ


1
q−1
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 ρ

s
dr
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q−1
6−4q
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 1
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√
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, (40)

where s = sign(ρ) and so,

Φq([a, b], s) =


Φq (min{a, b}) if s = 1
max{0,Φq (min{a, b})− Φq (min{a, b})} if s = −1 (41)

withΦq (·) defined as the univariate q-Gaussian distribution. To implement Eq. (40) numerically in an algorithm, the change
of variables r = sin(θ) is desired. Thus, the bivariate q-Gaussian cumulative distribution function is calculated as

Φq([a, b], ρ) = Φq([a, b], s)+

Γ


1

q−1


(q − 1)

πΓ


1
q−1


(6 − 4q)

 sin−1 ρ

s π/2
dr

1 +


q − 1
6 − 4q


a2 + b2 − 2ab sin θ

cos2 θ

 1
1−q

. (42)

Note that the cumulative distribution function quantifies the amount of beyond-pairwise correlations in inputs through the
parameter q.

3.3. Homogeneous population model

We provide in the following the derivation of the asymptotic spike count distribution for a large homogeneous (for
analytical tractability) population of neurons for the q-DG model in terms of the Student’s t-distribution, as alternative of
the one previously presented in [34]. This provides amuch easier implementation of the algorithmswhen quantifying HOCs.

We consider a pool of N neurons where each unit has a membrane potential ui subject to a joint q-Normal distribution.
Given the N-dimensional q-Gaussian random variable U , where A = I(1 − α)+ α1N1N

T , then

ui = h +
√
1 − αvi +

√
αε. (43)

The variables vi are independent random variables subject to Nq and ε corresponds to Gaussian noise. Then, the ui are
independent for a given ε. Within the q-DG model, the binary patterns X are generated by X = 1 (see Section 2.1). The
input statistics are chosen such that the outputs X have mean µ and covariance 6. Since we here focus on homogeneous
populations then µi = µ andΣij = σ , and we take the pairwise correlation coefficient as

ρ =
σ

µ(1 − µ)
. (44)

By symmetry, all activity patternswith the same number of spikes are equally likely. Such a homogeneous populationmodel
is fully characterized by the number of neurons that spike synchronously, i.e. the population spike count distribution k. In
this sense, in a population of N neurons, we can define r = k/N as the proportion of neurons spiking at any time. Let us
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now consider the probability of exactly k = N · r neurons firing within a given time window 1T across a population of N
neurons as

P{k} = Prob{x1 = x2 = · · · = xk = 1, xk+1 = · · · = xN = 0}, (45)

where the spiking of neuron xi is constrained by their membrane potential as previously explained. Note that in the
Eq. (45) we have presented the compact form of the probability, however all possible combinations are taken into account
to compute the probability as in [33,34]. The probability of having a certain pattern with k spikes is given by the expectation
value taken with respect to the random variable ε, and P{·|ε} is the conditional probability for ε. This allows us to calculate
the probability of having r = k · N neurons firing, separating the contribution of neurons that are spiking P{u > 0|ε}k from
those that are silent P{u ≤ 0|ε}N−k, as

P{k} = Eε [P{u1; · · · ; uk > 0, uk+1; · · · ; uN ≤ 0|ε}]

≡ Eε


N
k


(P(u > 0|ε))k (P(u ≤ 0|ε))N−k


. (46)

Then, for each neuron,

P(ui > 0) = P

vi <

√
αε + h

√
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= Φq

√
αε + h

√
1 − α


≡

1
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αε + h

ζ
√
1 − α


= Fq(ε). (47)

Here, Tν is the cumulative distribution function of a Student’s t-distribution with ν degrees of freedom, and ζ is the scale
parameter. The asymptotic rate distribution for the homogeneous population, using the saddle–node approximation [33,34,
38,40,61], can be then derived. Under this approximation, the joint distribution of firing can be estimated as

fq(r) ∼= N P{r = k/N}

= N Eε


N
k

 
Fq(ε)

k 1 − Fq(ε)
N−k
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1
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, (48)

where zq(ε) = r log


Fq(ε)
r


+ (1 − r) log


1−Fq(ε)
1−r


, and ε0 the value of ε that maximizes zq. That is, ε0 = F−1

q (r), which
implies that r = Fq(ε0), where r can take values between [0, 1] and ε0 is defined for all real numbers. The first derivative of
zq(ε)with respect to ε yields

z ′

q(ε) =
r

Fq(ε)
−

1 − r
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, (49)

and hence the second derivative is

z ′′

q (ε) = −


r

Fq(ϵ)
2 +

1 − r
1 − Fq(ε)

2
 

F ′

q(ε)
2

+


r

Fq(ε)
−

1 − r
1 − Fq(ε)


F ′′

q (ε). (50)

As we are working within the saddle-point approximation, the parameter ε0 maximizes zq(ε), and thus [33],

ε = ε0 =⇒ z ′

q(ε0) = 0 ∧ Fq(ε0) = r. (51)

Then,
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q (ε0) = −


1
r
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1
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2
. (52)

Considering Eq. (47), we can easily calculate previous quantities in terms of the cumulative distribution function of a
Student’s t-distribution since its derivative is well known. Therefore, the probability density for the homogeneous q-DG
distribution is

fν(r) = ζ


1 − α

α


1 +
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ν (ζ r)

2
ν

 ν+1
2

exp


−
ζ

2
1 − α

α
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ν (ζ r)−
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√
1 − α

2

, (53)
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Fig. 1. Raster plots of synthetically generated multi-neuron firing patterns within the DG formalism (q = 1) and considering different output correlations
ρ. (a) ρ = 0, (b) ρ = 0.05, (c) ρ = 0.1 and (d) ρ = 0.2.

or, in terms of the deformation parameter q, it can be written as

fq(r) =


(1 − α)(5 − 3q)

α(3 − q)
exp−1

q

−


q − 1
3 − q
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2 . (54)

3.4. Numerical results

In the following, we present a careful comparison of our currentmethodwith the DGmodel [24,38–40]. This is important
to investigate how the quantification of HOCs in the neuronal inputs of the q-DG model differs from the DG model
[24,39,40]. Quantifying the degree of HOCs through the parameter q can help to further understand how information is
processed in cortical networks, and to obtain a deeper knowledge of the nonlinear spiking dynamics within a neuronal
ensemble. In the DGmodel, correlations between neurons arise from Gaussian inputs into threshold neurons, and therefore
have no interactions beyond second order [24,39,40]. In contrast, in our model correlations between neurons may also arise
from non-Gaussian inputs into threshold neurons (Gaussian inputs are recovered by taking the limit of the deformation
parameter q → 1).

First, we consider the asymptotic regime to investigate the effect of HOCs in the common inputs and the spiking outputs
of a population of neurons. Figs. 1 and 2(a)–(d) show the raster plots when considering q = 1 (DG model) and in the case
with a non-Gaussian distributions with a deformation parameter of q = 1.35, respectively, for ρ = 0, ρ = 0.05, ρ = 0.1
and ρ = 0.2. We are considering beyond-pairwise correlations when the values of the deformation parameter q are larger
than one. This leads to a higher amount of synchronization among spikes and the effect becomes more pronounced as ρ
increases. That is, having q = 1.35 induces a more considerable amount of synchronized spikes, as it can be observed by
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Fig. 2. Same as in Fig. 1 but considering q-DG formalism with q = 1.35. (a) ρ = 0, (b) ρ = 0.05, (c) ρ = 0.1 and (d) ρ = 0.2. Note that in comparison
with Fig. 1, higher values of spike synchronization are visible at simple sight due to the larger amount of input correlation.

a simple comparison between the raster plots of Figs. 1 and 2. The latter provide a first insight of how input correlations
may affect the spiking output activity. However, a more accurate analysis is needed to precisely quantify the effect of HOCs.
Fig. 3(a) and (b) show the joint distributions of firing Eq. (54) when considering a Gaussian distribution (q = 1) and a
non-Gaussian distribution with q = 1.35, respectively, taking ρ = 0, ρ = 0.05, ρ = 0.1 and ρ = 0.2. As expected, a
larger deformation parameter prompts larger excursions of synchronized spikes [33,34]. Second, we precisely analyze how
HOCs affect the output correlations. More specifically, we quantify how correlations between the discharges of neurons are
affected by HOCs between their inputs, and whether they could produce deviations from pure pairwise modeling (i.e. the
DGmodel). In order to do so, we provide a detailed analysis of how the output spike correlations deviate from the DGmodel
as the deformation parameter q increases when considering different values of mean and variance in the neuronal inputs.
Eq. (24) elicits a characteristic relationship between the pairwise correlations of the inputs and the pairwise correlations
of the binary threshold neurons. That is, given the same amount of input correlation α, the correlation of the output ρ will
grow monotonically with their firing rates. Fig. 4(a), (b) and (c) show the dependence of the output correlation ρ versus
input correlation α, when considering different values of the firing rate µ = 0.1, µ = 0.25 and µ = 0.5, respectively, for
q = 1, q = 1.1, q = 1.2 and q = 1.3. Note that increasing the amount of HOCs in the input connectivity leads to slightly
lower values of synchronized spikes in the neural population output. However, larger values of the firing rate increase the
amount synchrony.

In order to gain a better understanding of how cortical cells may transform correlation between their synaptic inputs
currents into correlation between their output spike trains, we also need to investigate the output correlation ρ as function
of the firing rateµ. Eq. (24) also provides a means for obtaining this relationship when input correlations are kept constant.
Fig. 5(a), (b), and (c) show how the output correlation ρ varies as function of the firing rate µ, for different values of the
input correlation α = 0.1, α = 0.2 and α = 0.3, respectively, for q = 1, q = 1.1, q = 1.2 and q = 1.3. Importantly, as it can
appreciated from the previous figure, HOCs in the inputs yield a lower amount synchronywhen considering small firing rates
(µ < 0.15). When µ = 0.15 the output correlation is equal to the one that is obtained in the DG model. In contrast, when
the firing rate value becomes higher (µ > 0.15), that leads to larger excursions of synchronized spikes as the deformation
parameter q grows. The relationship between output correlation and firing rate is sensitive to input heterogeneities and,
even when the higher-order input correlation remains fixed, the output correlation increases with the firing rate. However,
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Fig. 3. Joint distribution of firing as function of the normalized number of spikes (semi-log in the Y axis). (a) Considering q = 1 and µ = 15 for ρ = 0,
ρ = 0.05, ρ = 0.1 and ρ = 0.2. (b) Considering q = 1.35 and µ = 0.15 for ρ = 0, ρ = 0.05, ρ = 0.1 and ρ = 0.2.

it displays a complex behavior as the order of correlation in their inputs becomes higher than two. That is, HOCs induce
more synchronous silent firing when µ < 0.15, while for higher values of µ the degree of synchrony grows nonlinearly.

Finally, we want to determine the effect of HOCs in common input on the entropy of the population. Fig. 6 shows that
the degree of chaos results strongly dependent on HOCs. That is, Fig. 6 illustrates that the porcentual increment of entropy
grows with the parameter q, using Eq. (27). Furthermore, in Fig. 7 we show how statically different, using Eq. (29), the joint
distribution of firing is when considering HOCs. Note that the relative KL-divergence grows as the degree of correlation
becomes higher, quantifying the inefficiency of incorrectly assuming that the distribution is the one that corresponds to
f1(ρ) when the true distribution is fq(ρ). Thus, the amount of information in the spiking output of a neural population
cannot be computed without knowing the correlational structure in their inputs, which is quantified by the deformation
parameter q.

4. Discussion and conclusions

As we have discussed in the previous sections, within the DGmodel common inputs have no interactions beyond second
order [38–40]. More specifically, in the DG model HOCs in the spiking output are evaluated by investigating how the
probability distribution generated by this model differs from the distribution one would obtain with a pure pairwise model
(i.e. Ising). In order to do so, different means and variances in the common inputs are considered [38–40]. Thus, despite
that the DG model captures several features of beyond-pairwise correlations in the spiking output, it does not explicitly
quantify them. It just captures HOCs in the population firing distribution that cannot be produced by pure pairwise models
[38–40,24]. Inputs are modeled by correlated Gaussians, with mean h and covariance A chosen such that the output X has
mean µ and covariance 6.

In this paper, we present a natural extension of the DGmodel by including HOCs within the neuronal input. Importantly,
we also quantify the amount of synchronization in the spiking outputs thought ρ and the deformation parameter q.
That is, our model naturally quantifies the degree of HOCs in the common neuronal input and in the spiking output. In
order to efficiently account for the complex structure of HOCs in a neural population, we build a model that considers all
nonlinearities present through the deformation parameter q.We show that, in comparisonwith the DGmodel, in the current
approach the input ismodeled by a correlated q-Gaussianwithmean h and variance A, which are chosen such that the output
X has mean µ and pairwise variance 6. This allows us to precisely quantify the amount of correlations that are generated
from higher-order interconnectivity of the common overlapping neuronal inputs throughout the deformation parameter
q. Moreover, output pairwise and higher-order spike synchronization in the neuronal ensemble is quantified by ρ and q,
respectively. It is important to remark on the three major differences between the approaches we developed in [33,34]
and our current theoretical model: first in this paper we explicitly provide an exhaustive analysis of how input statistics
are transformed in this thresholding process into output statistics; second we supply an efficient formalism and numerical
implementation for the model accounting for HOCs in the neural population inputs and outputs, and third, we show under
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Fig. 4. Output correlation ρ versus the input correlation α, taking q = 1, q = 1.1, q = 1.2 and q = 1.3, when µ is fixed. (a) Considering µ = 0.1. (b)
µ = 0.25. (c) µ = 0.5. Note that higher values of q increases the degree of the output synchronization ρ as the firing rate µ becomes larger.

which conditions HOCs in the common inputs can lead to either bigger or smaller number of synchronized spikes in the
neural population output.

Summarizing we develop a model, in which correlations across neurons arise from q-Gaussian inputs into threshold
neurons generating HOC spiking outputs. It is therefore an extension of the DGmodel proposed by Amari [38–40], where the
inputs to the model are Gaussian distributed and thus have no interactions beyond second order in their input. Our current
theoretical formalism relies on recent progress made on the ECLT, and using mathematical tools of non-extensive statistical
mechanics [46,49–53,56,62,63], we provide a flexible framework for efficient simulation and modeling of correlated spike
trains with specified HOCs, even if their origin and source are unknown. Furthermore, it can be implemented numerically
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Fig. 5. Output correlation ρ as function of the firing rate µ, taking q = 1, q = 1.1, q = 1.2 and q = 1.3. (a) Considering a fixed input correlation α = 0.1.
(b) Input correlation α = 0.2. (c) Input correlation α = 0.3.

with ease as we expressed the joint probability distribution of firing in terms of the widely used Student’s t-distribution.
Moreover, in ourmodel, not only a change in themean inputmodifies interactions of all orders but also the amount of HOCs q
does, and therefore it can help us gain further understanding of the role of higher-order interactions in stimulus coding. The
current approach captures higher-order redundancies which increase as the q parameter becomes larger, leading to a higher
amount of randomness as the entropy grows and thus an increased amount of chaos. Importantly, through the divergent
KL-divergence we quantify the inefficiency of incorrectly assuming that the distribution is made by the DG model showing
that HOCs have an important effect at population level. Given the ubiquity of common input in sensory systems, the model
thus gives quantitative predictions for the conditions under which HOCs will be important, quantifying the inefficiency of
incorrectly assuming that neurons have just pairwise correlations in their common inputs.
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Fig. 6. Porcentual increment of entropy as function of the deformation parameter q as in Eq. (27) considering different output correlation values ρ = 0.01,
ρ = 0.1, ρ = 0.15 and ρ = 0.3. Note that the amount chaos increases as higher-order input correlations become more relevant.

Fig. 7. The normalized Kullback–Leibler divergence versus the deformation parameter q, given different output correlation values ρ = 0.01, ρ = 0.1,
ρ = 0.15 and ρ = 0.3 (the reference distribution is taken as ρ = 0 for each value of ρ, and it is normalized to the distribution with q = 1 as in Eq. (29)).

The current formalism also provides a robust and conceptually adequate framework for generating synthetic spike trains
with a wide range of different firing rates and HOCs’ structures. Generation of spike trains by binarizing a multivariate
q-Gaussian random variable is possible even for large populations of neurons and for spike count statistics with arbitrary
marginal distributions. This provides an efficient methodology to generate spike trains with an specified higher-order
correlation structure. Our technique can be applied to experiments in neurophysiology including microstimulation of
populations of neurons, opening up the possibility of investigating natural stimulations that might generate with different
correlation structures and to study their effect in driving neural responses.
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