
PREDICTION OF EVAPOTRANSPIRATION IN THE PAMPEAN PLAIN FROM CERES 
SATELLITE PRODUCTS AND MACHINE LEARNING TECHNIQUES
Facundo Carmona et al.
Meteorológica, Vol. 48 N°2 (2023), e021, julio-diciembre 2023
ISSN 1850-468X — https://doi.org/10.24215/1850468Xe021 
https://revistas.unlp.edu.ar/meteorologica/index
Centro Argentino de Meteorólogos
Buenos Aires - Argentina

PREDICTION OF EVAPOTRANSPIRATION IN THE PAMPEAN PLAIN FROM 
CERES SATELLITE PRODUCTS AND MACHINE LEARNING TECHNIQUES

Facundo Carmona1,2, Adán Faramiñán1,2, Raúl Rivas2,3, Facundo Orte1,4

1 Consejo Nacional de Investigaciones Científicas y Tácnicas (CONICET)
2UE CONICET - Instituto de Hidrología de Llanuras “Dr. Eduardo Jorge Usunoff” 
3Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA) 

4CEILAP-UNIDEF (CITEDEF-CONICET) 

(Manuscrito recibido el 22 de marzo de 2022, en su versián final el 17 de agosto de 2022)

ABSTRACT
A key aspect in agricultural zones, such as the Pampean Plain of Argentina, 
is to accurately estimate evapotranspiration rates to optimize crops and 
irrigation requirements and the floods and droughts prediction. In this sense, 
we evaluate six machine learning approaches to estimate the reference and 
actual evapotranspiration (ET0 and ETa) through CERES satellite products data. 
The results obtained applying machine learning techniques were compared with 
values obtained from ground-based information. After training and validating the 
algorithms, we observed that Support Vector machine-based Regressor (SVR) 
showed the best accuracy. Then, with an independent dataset, the calibrated 
SVR were tested. For predicting the reference evapotranspiration, we observed 
statistical errors of MAE = 0.437 mm d-1, and RMSE = 0.616 mm d-1, with 
a determination coefficient, R2, of 0.893. Regarding actual evapotranspiration 
modelling, we observed statistical errors of MAE = 0.422 mm d-1, and RMSE = 
0.599 mm d-1, with a R2 of 0.614. Comparing the results obtained with the machine 
learning models developed another studies in the same field, we understand that 
the results are promising and represent a baseline for future studies. Combining 
CERES data with information from other sources may generate more specific 
evapotranspiration products, considering the different land covers.
Keywords: Evapotranspiration, CERES, Machine Learning, Teledetection.

PREDICCIÓN DE LA EVAPOTRANSPIRACIÓN EN LA REGIÓN PAMPEANA 
POR MEDIO DE DATOS CERES Y TÉCNICAS DE APRENDIZAJE 

AUTOMÁTICO

RESUMEN
Un aspecto clave en zonas agrícolas, como la llanura Pampeana argentina, es poder 
estimar con precisión las tasas de evapotranspiración para optimizar cultivos y 
requerimientos de riego, como así también la predicción de inundaciones y sequías. 
En este sentido, se evaluaron seis algoritmos de aprendizaje automático para 
estimar la evapotranspiración de referencia y la evapotranspiración real (ET0 y 
ETa, respectivamente) utilizando productos de satélite CERES como datos de
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entrada. Los valores modelados, aplicando técnicas de aprendizaje automático, se 
compararon con aquellos obtenidos a partir de información de terreno. Después 
de entrenar y validar los algoritmos, observamos que el Regresor con Vectores de 
Soporte (SVR) mostraba la mejor precisión. A continuación, con un conjunto de 
datos independiente, se testearon los algoritmos SVR calibrados. Para la predicción 
de la evapotranspiración de referencia se observaron errores estadísticos de MAE = 
0.437 mm d-1 y RMSE = 0.616 mm d-1, con un coeficiente de determinación R2 

= 0.893. Por otro lado, al predecir la evapotranspiración real, observamos errores 
estadísticos de MAE y RMSE de 0.422 mm d-1 y 0.599 mm d-1, respectivamente, 
con un R2 de 0.614. Al comparar los resultados obtenidos con los algoritmos de 
aprendizaje automático con aquellos arrojados por estudios en la misma área, 
entendemos que los resultados aquí mostrados son prometedores y representan 
una linea de base para futuros trabajos. La combinación de datos de CERES con 
información de otras fuentes puede generar productos de evapotranspiración más 
específicos, considerando además las diferentes coberturas del suelo.
Palabras clave: Evapotranspiración, Aprendizaje Automático, CERES, 
Teledetección.

1. INTRODUCTION

Climate change alters the complex interplay 
between land and atmosphere, significantly 
impacting different processes in the global 
hydrological cycle (Martens et al., 2018). 
Evapotranspiration (ET) is a significant 
component of the hydrological cycle and one 
of the most important physical processes in 
natural ecosystems. It explains the exchange 
of water and energy between the soil, land 
surface, and the atmosphere (Jing et al., 2019; 
Ochoa-Sanchez et al., 2019; Chia et al., 2020a).

ET is used widely in many fields such 
as agronomy, hydrology, climatology, and 
environmental science (Miralles et al., 2011; 
Xiang et al., 2020). It represents an important 
indicator for the management and planning 
of water resources, and for such a reason, 
its estimation is essential in the study 
of hydrological processes. In this sense, 
physically-based indirect methods arise from 
the difficulty of obtaining field measurements 
precisely using several equations to estimate the 
evapotranspiration rates from meteorological 
data. Such is the case of the FAO-56 
Penman-Monteith method (FAO56-PM) 
for estimating reference evapotranspiration 

(ETo), which is recommended for irrigation 
scheduling worldwide because it generally 
shows the best results under various climatic 
conditions (Nema et al., 2017; Xiang et al., 
2020). Accurate calculations of ETo are the 
prerequisite for obtaining the upper limit 
on crop water requirements (potential crop 
evapotranspiration) and the fundamental 
basis for formulating agricultural irrigation 
systems (Lewis and Allen, 2017). However, 
the conditions encountered in the field differ 
generally from the ’’standard conditions”defined 
in the FAO-56 Penman-Monteith requirements 
(Allen et al., 1998). The effects of soil water 
stress reduce the evapotranspiration rates 
(non-standard conditions), and its consideration 
allows to obtain the actual evapotranspiration, 
ETa. Therefore, monitoring the total available 
water by computing the daily water balance for 
the root zone is needed.

On the other hand, due to advances in 
remote sensing technology and methods, 
numerous models were developed to obtain 
evapotranspiration products with satellite 
data that can offer unique spatial-temporal 
variations. Remote sensing technology appears 
to remove the limitation of spatial coverage 
when estimating ET (Chia et al., 2020b). 
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Methods based on satellite data include: i) 
energy balance methods; ii) methods based 
on the relationship between vegetation index 
and surface temperature; iii) methods based on 
the Penman-Monteith equation; iv) methods 
based on the Priestley-Taylor equation; v) 
empiric methods and vi) soil water balance 
methods (Zhang et al., 2016; Carmona et 
al., 2018; Degano et al., 2020). In this sense, 
the estimation of ET crucial, especially when 
dealing with agricultural regions, such as the 
Pampean Region of Argentina (PRA). In fact, 
there is a growing development of application 
methods to estimate the evapotranspiration in 
the PRA (Walker et al., 2018; Carmona et al., 
2018; Degano et al., 2020).

Machine learning techniques are increasingly 
being considered for ET estimation at different 
scales, including remote sensing data. When 
adequate and reliable experimental data are 
available, a promising alternative approach 
for estimating evapotranspiration rates is 
provided by machine learning algorithms, 
which are particularly suited to address 
non-linear regression problems depending 
on many variables (Granata et al., 2020). 
Artificial Intelligence (AI) based approaches 
have emerged as an alternative solution to 
map the relationships between meteorological 
parameters and evapotranspiration, even with 
limited knowledge of the real interactions 
between variables (Chia et al., 2020b). Among 
several machine learning models, evolutionary 
computing has demonstrated a remarkable 
progression in the modelling of ET0. In this 
sense, Jing et al. (2019) presented an interesting 
review of the implementation of evolutionary 
computing models to estimate ET0 employing 
meteorological data (2007-2019). There are 
few examples of AI methods applying remote 
sensing data in comparison with those that 
use meteorological data. Yang et al. (2006) 
proposed a model predicting continental-scale 
evapotranspiration by combining Moderate 
Resolution Imaging Spectrometer (MODIS), 
AmeriFlux data and support vector machine 
technique (RMSE = 0.62 mm d-1, and R2 

= 0.75). Lu and Zhuang (2010) developed an 
artificial neural networks model to estimate the 
daily evapotranspiration (R2 = 0.52 - 0.86), 
using remote sensing data from the MODIS, 
meteorological data, and eddy covariance flux 
data. Chen et al. (2013) developed an artificial 
neural network model from AmeriFlux data, 
and land surface products derived from remote 
sensing data (R2 = 0.77, and RMSE = 0.62 
mm d-1). Zhang et al. (2018) explored three 
machine learning algorithms (support vector 
machine, back-propagation neural network, 
and an adaptive neuro-fuzzy inference system) 
for estimating ET0 from remote sensing data. 
Their results suggest that the land surface 
temperature (LST) could be used to accurately 
estimate ET0 with high correlation coefficients 
(R2 = 0.897 - 0.915) and show that the surface 
reflectance data slightly improve the model’s 
accuracy.

The National Weather Service (SMN, for 
its acronym in Spanish) of Argentina has a 
weather stations network that allows estimating 
the evapotranspiration and validating related 
satellite products. From the information 
provided by the SMN and other meteorological 
stations, the Agricultural Risk Office (ORA, 
for its acronym in Spanish) of Argentina works 
to monitor the soil water reserve in grasslands 
and cultivation areas. ORA provides the values 
of ET0 from meteorological data and ETa 

estimations from water balance computation on 
the root zone.

In this study, we propose to use CERES 
(Clouds and the Earth’s Radiant Energy 
System) satellite products data as input 
variables and Machine Learning techniques for 
estimating evapotranspiration in the PRA. We 
train and test several techniques, particularly 
linear regression methods, decision trees, among 
others, and an artificial neural network for 
predicting ET0 and ETa with CERES products 
data. Ground data provided by the ORA were 
used to train, validate, and test the machine 
learning algorithms.
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2. MATERIALS AND METHODS

2.1. Study area and ground data

PRA is an extensive and fertile plain of 
approximately 600,000 km2 that encompasses 
several Argentine provinces. This region 
presents low elevation, and typical regional 
topographic gradients (<0.1%). It is 
located within the region of subtropical 
and mid-latitudes or temperate climates, 
characterized by long periods of drought and 
floods, which affect the availability of water, 
and the productivity of agricultural systems, 
among other human activities. According 
to Aliaga et al. (2017), the climate in PRA 
can be divided into eight climate zones: 
Continental (C), Subtropical (ST), Temperate 
Highland of Ventania Hills (THVH), Temperate 
Oceanic (TO), Temperate Very Humid (TVH), 
Warm-Highland of Pampean Hills (WHPH), 
Warm-humid (WH), and Semiarid (SA). 
ET0 and ETa values calculated by the ORA 
were used from this broad region. These 
measurements are based on information from 
24 sites placed in seven climate zones of the 
PRA, as depicted in Fig. 1 and Table 1. Due to 
a lack of quality information, the SA zone was 
not considered.

2.2. Reference crop evapotranspiration

The ET0 values were estimated by ORA from 
the FAO56-Penman-Monteith method (Allen et 
al., 1998):

0,408A(Rn - G) + 7 (/3'"."2;3) «2^ - &a)

Figure 1: Pampean Region of Argentina, 
climates zones (in red text and different 
weft patterns), and spatial distribution of 
the meteorological stations used (yellow 
points) (modified from Aliaga et al. 
(2017)).

2.3. Actual evapotranspiration

The ETa was calculated by ORA with a soil 
water balance method. It consists of assessing 
the incoming and outgoing water flux into the 
vegetation root zone over some time period. ETa 

can be deduced from the change in soil water 
storage over time (Eq.2) (Allen et al., 1998; 
Degano et al., 2021). The daily water balance 
used to calculate soil water storage considers the 
following terms:

The ET0 values were estimated by ORA from 
the FAO56-Penman-Monteith method (Allen et 
al., 1998):

Sf + Exf = Si + Exi + P - RO - DP - ETa (2) 

4

ET° = A + 7 (1 + 0,34u2)

(1) 
where ET0 is the daily reference crop 
evapotranspiration in mm d- * 1, A is the slope 
of the saturation vapour pressure-temperature 
curve (kPa C-1), Rn is the net radiation (MJ 
m2 d-1), G is the soil heat flux (MJ m2 d-1), 
is the psychrometric constant (kPa C-1), Ta is 
the daily mean air temperature (°C), u2 is the 
mean daily wind speed at 2 m (m s-1), es is the 
saturation vapour pressure (kPa), and ea is the 
actual vapor pressure (kPa).
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where Sf and Si are the final and initial 
soil water storage, Exf and Exi are the 
final and initial excess water accumulated on 
the surface, P is the rainfall, RO is the 
surface runoff, and DP is the deep percolation. 
Subsurface horizontal movements of water have 
been neglected, generally of a lower order than 
the vertical ones. Soil moisture content can 
be at its maximum retention capacity or field 
capacity (in which the extraction of water by 
the vegetation occurs without any difficulty), 
or it can drop to values below the permanent 
wilting point, in which the vegetation is it would 
wither without resilience even in a saturated 
atmosphere. The difference between wilting 
point and field capacity is the available water. 
The ability of a soil to store water depends on 
the amount and size of its pores, that is, on 
its structure, texture, and content of organic 
matter. When soil moisture is less than field 
capacity, the ETa is less than its potential 
value. It decreases as the level of water stress 
to which the vegetation is subjected increases. 
Finally, ETa can be obtained from potential crop 
evapotranspiration, and the initial soil storage 
is expressed as a fraction of the field capacity 
(Degano et al., 2021).

2.4. CERES products

As input variables within machine learning 
algorithms, CERES_SYN1deg_Ed3A satellite 
products available at the CERES website 
(http://ceres.larc.nasa.gov) were used (Rutan et 
al., 2015, NASA/LARC/SD/ASDC, 2017). The 
”SYN”(Synoptic Radiative Fluxes and Clouds) 
means that this version provides radiation data 
on clear and all-sky conditions, the ”1deg” 
means it has a 1-degree spatial resolution, and 
the ”Ed3A” is the version number (Smith et 
al., 2011; Jia et al. 2016). Considering that 
the main driving forces on the ET process 
are available energy, aerodynamic effects, and 
soil water storage (for ETa), we chose as 
input variables the CERES products mentioned 
in Table 2. The solar radiation (Rs^) and 
incoming longwave radiation (Rl\_) represent 
the radiative term that provides the available 

energy to the soil-water-plant system. The Tskin 

is proportional to the energy output from the 
system, increasing when the evaporative fraction 
is reduced due to a less water availability in 
the soil. The auxiliary data W (as an indicator 
of the water available in the atmosphere) and 
u10 represent the aerodynamic terms in the 
evapotranspiration process, and the atmospheric 
pressure (patm) influences the psychrometric 
constant. In addition, the theoretical solar 
radiation (Rs^0) indicates the maximum solar 
radiation available due to cloud-less conditions. 
As the solar radiation varies throughout the 
year, it also gives us information about the 
time of the year in the study area. Geographic 
location also was considered in the machine 
learning algorithms.

2.5. Machine learning algorithms

Multilayer Perceptron (MLP), Random 
Forest (RF), Support vector machine-based 
regressor (SVR), XGBoost regressor (XGBR), 
Generalized Linear Models (GLM), and 
K-Nearest Neighbor regressor (KNN) 
algorithms were selected in order to compare 
each performance. These were executed using 
the Scikit-learn library in Google Colaboratory 
(COLAB). Scikit-learn is a Python module 
for machine learning built on top of SciPy 
and is distributed under the 3-Clause BSD 
license (Pedregosa et al., 2011), and COLAB 
is a free online cloud-based Jupyter notebook 
environment that allows to train machine 
learning and deep learning models.

MLP is an artificial neural network that 
optimizes the squared loss using LBFGS or 
stochastic gradient descent. It consists of three 
types of layers. The input layer receives the 
input signal to be processed. The output layer 
performs the required task such as prediction 
and classification. An arbitrary number of 
hidden layers placed between the input and 
output layer are the accurate computational 
engine of the MLP. As a feed-forward network 
in a MLP, the data flow from the input to the 
output layer (Kisi, 2007; Kisi, 2008; Landeras et
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Station Climate zone Lat Lon Altitude T RH ulO P

(°) (°) (m) (°C) (%) (kmh-1) (mmy-1)

Concordia ST -31.2 -58.0 38 18.9 72 9.3 1377
Paraná WH -31.8 -60.5 87 18.2 72 11.3 1148
Gualeguaychú TVH -33.0 -58.6 21 17.9 74 9.5 1119
Pilar WHPH -31.7 -63.9 338 17.1 69 8.9 797
Marcos Juárez WH -32.7 -62.2 110 17.0 75 10.5 912
Rio Cuarto WHPH -33.1 -64.1 421 16.4 67 15.7 859
Villa Reynolds WHPH -33.7 -65.4 486 15.6 70 11.4 706
Junin TVH -34.6 -60.9 81 16.0 73 12.1 1044
Bolivar TVH -36.2 -61.1 93 15 68 14.9 967
Venado Tuerto TVH -33.7 -62.0 113 16.9 66 13.5 978
Laboulaye C -34.1 -63.4 137 15.9 72 10.6 903
El Trébol WH -32.5 -61.7 96 18.2 65 13.5 1004
Rosario TVH -32.9 -60.8 25 17.5 74 11.4 1022
Pergamino TVH -33.9 -60.6 65 17.1 68 14.2 1080
Las Flores TO -36.1 -59.1 38 15.2 71 14.8 1011
Dolores TO -36.3 -57.7 9 14.9 79 9.6 928
Azul TO -36.8 -59.8 147 14.5 71 15.2 960
Tandil TO -37.2 -59.3 175 13.5 75 13.3 879
Balcarce TO -37.8 -58.3 120 14.0 73 16.9 934
Coronel Suárez THVH -37.4 -61.9 233 13.5 72 15.6 806
Pigíié THVH -37.6 -62.4 304 13.6 69 11.1 612
Benito Juárez THVH -37.7 -59.8 207 13.7 70 16.9 909
General Pico C -35.7 -63.8 145 16.2 69 12.0 863
Santa Rosa C -36.6 -64.3 191 15.5 66 10.0 746

Table I: Station city, climate zone, geographic location, and weather characteristics of the sites 
used. T: Mean annual air temperature, RH: Relative Humidity, u10: wind speed at 10 m, P: 
Rainfall. Climate data from SMN of Argentina (period 1981-2010).

al., 2008; Izadifar and Elshorbagy, 2010; Abbe et 
al., 2022). RF regressor is an ensemble method 
that combines the predictions from multiple 
decision trees on various sub-samples of the 
dataset to make a more accurate prediction than 
the individual models (Breiman, 2001; Ok et al., 
2012; da Silva Junior et al., 2019). SVR uses the 
same principles as the support vector machine 
for classification. The basic idea behind SVR is 
to find the best fit line. The best fit line is the 
hyperplane with the maximum number of points 
(Kisi and Cimen, 2009; Fan et al., 2018; Chia 
et al., 2020a; Faraminan et al., 2021). XGBR 

is a decision tree-based ensemble algorithm 
that uses a gradient boosting framework. It 
works as Newton-Raphson in function space 
unlike gradient boosting which works as gradient 
descent in function space, a second-order Taylor 
approximation is used in the loss function 
to make the connection to Newton Raphson 
method (Chen and Guestrin, 2016). The 
idea behind boosting is to generate multiple 
”weak”prediction models sequentially, and each 
of these takes the results of the previous 
model to generate a ”stronger” model, with 
better predictive power and greater stability
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Variable Description Source Units

Ssi Shortwave Flux Down, All-sky conditions CERES Wm-1

Rsi0 Shortwave Flux - Down, Clear-sky conditions CERES Wm-*

Rh Longwave Flux Down, All-sky’ conditions CERES Wm-2

Skin Temperature CERES K

P'sm Surface pressure CERES - Auxiliary Data tip a

w Total Column Precipitable Water CERES - Auxiliary Data cm

Wind Speed at 10 m CERES - Auxiliary Data m s_1

lot, Ion Latitude and Longitude center location of CERES pixel degrees

Table II: Variables, descriptions, sources, and units of the CERES products used.

in its results (Chen and Guestrin, 2016; Han 
et al., 2019; Putatunda and Rama, 2018). 
Finally, GLM expands the general linear model. 
The dependent variable is linearly related 
to the factors and covariates via a specified 
link function (Faraminan et al., 2022). And 
KNN makes a prediction based on the local 
interpolation of the targeted variable in the 
k-nearest neighbours (Yamac and Todorovic, 
2020).

2.6. Methodology

The flowchart in Figure 2 depicts the 
methodology used to evaluate the machine 
learning models and find the best models. The 
first step was to establish a connection with the 
databases. Considering the CERES products 
data for each exact location of the validation 
sites and the ET0 and ETa values provided 
by the ORA, we elaborated a data set of 22 
columns x 119,729 rows, where each column 
represents a variable (response or exploratory) 
or a data type, and each row represents a 
daily mean value of each variable from 2000 to 
the 2013 year. The next step was to prepare 
the data as input to the machine learning 
regression algorithms. The whole dataset was 
pre-processed and split into training, validation, 
and testing. The data for the period 2000-2009 
(^70% of whole dataset) was used as training 
and validation dataset. A random split 80/20 
training/validation on 2000-2009 dataset was 

employed to find the best configuration for 
each model (MLP, RF, SVR, XGBR, GLM and 
KNN algorithms). The remaining data for the 
period 2010-2013 (^30% of whole dataset) was 
reserved as testing dataset. The models were 
trained using different variables sets of CERES 
products as input. After analyzed the accuracy 
of each model using the validation dataset, the 
testing dataset was then used to evaluated the 
performance of the previous models (Results in 
Table 3). Finally, the performance of the best 
models developed with daily data for both ET0 

and ETa, is evaluated in; i) different climate 
zones (Results in Table 4), ii) different temporal 
scales (averaged 8, 16 and 30 days, Results in 
Table 5).

2.7. Performance metrics

Three typical metrics were used in this study to 
assess the performance of the retrieved models. 
Also, a plot of observations against the predicted 
values illustrates how the points match the 
1:1 line to evaluate each model’s performance. 
The scatter plot allows for a visual inspection 
of each model’s performance (performance is 
better the closer the values are to the line). 
The Root-mean-square error (RMSE) and the 
mean absolute error (MAE) were used to 
evaluate the models’ errors. The RMSE has 
been used as a standard statistical metric to 
measure model performances in meteorology, 
air quality, and climate research studies. The

7
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Figure 2: Flow chart of ET0 and ETa models. The data processing is shown, where from the 
exploratory and response variables the predictive models are obtained.

MAE is another useful measure widely used 
in model evaluations. While they have both 
been used to assess models’ performance for 
many years, there is no consensus on the most 
appropriate metric for model errors. While the 
MAE gives the same weight to all errors, the 
RMSE penalizes variance as it gives errors with 
larger absolute values (Chai and Draxler, 2014). 
While both statistics were used as made by other 

researchers in similar studies (and we consider 
both so that the results obtained are easily 
comparable with those other studies), RMSE 
was selected for comparing the errors between 
different algorithms due that RMSE penalizes 
larger errors more severely, and usually is better 
at revealing models performance differences. 
Finally, the coefficient of determination (R2) 
was used to show the goodness of fit.
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3. RESULTS AND DISCUSSION

3.1. Evaluation of machine learning 
algorithms

In the Experiment (a), where Rs^, Rl±, and 
Tskin CERES products were considered as input 
variables to predict ET0, the MLP model shows 
the best results with MAE = 0.556 mm d-1, 
RMSE = 0.749 mm d-1, and R2 = 0.826 (Figure 
3a). In contrast, the RF model shows the worst 
results, with MAE = 0.578 mm d-1, RMSE = 
0.784 mm d-1, and R2 = 0.809 over validation 
dataset.

In the second Experiment (b), where W, patm 

and U10 CERES products were incorporated 
as input variables, the statistical errors (MAE 
and RMSE) decreased between 8 and 15%. 
Furthermore, an improvement in 3 to 5 % 
accuracy was evidenced. In this case, the SVR 
shows the best results with MAE = 0.505 mm 
d-1, RMSE = 0.679 mm d-1, and R2 = 0.857.

In the Experiment (c), the theoretical solar 
radiation is incorporated as an input variable. 
In this case, all the models improved their 
performance. Similarly, the SVR also shows the 
best results in the validation, with MAE, RMSE 
and R2 of 0.478 mm d-1, RMSE = 0.659 mm 
d-1, and R2= 0.865, respectively.

Finally, in Experiment (d), all models improve 
their performance by including the location 
(latitude and longitude) as input variables. The 
SVR shows the best statistical results when 
comparing the ET0 predicted values with those 
calculated using the PM-FAO56 method (MAE 
= 0.444 mm d-1, RMSE = 0.609 mm d-1, 
and R2= 0.885). Comparing the results of the 
Experiments (a) and (d), we observed that 
statistical errors decreased from 14 to 29 %, and 
the accuracy improved from 4 to 8 %.

For the prediction of ETa, the machine 
learning algorithms were trained similarly to 
the ET0 models. The MLP model following 
the experiment a) also shows the best results 

with MAE = 0.460 mm d-1, RMSE = 0.630 
mm d-1, and R2 = 0.560 (Figure 3b). With 
more input variables, both RF and SVR were 
ranked as the best algorithms in the following 
experiments. The SVR machine-learning model 
showed statistical values of MAE = 0.400 mm 
d-1, RMSE = 0.562 mm d-1, and R2 = 0.650 
for the Experiment (d).

It is interesting to note that the performances of 
RF, SVR and KNN models improve significantly 
as more input variables are incorporated into the 
training process. Contrary, the GLM algorithm 
only is suitable when the number of variables 
is low (Experiment (a)). Concerning actual 
evapotranspiration, the GLM model improves 
its statistical errors by ~5 %, while, for example, 
RF improves by up to 20 % by adding more 
input variables. Table 3 presents a statistical 
summary of the results obtained in the four 
experiments with the six machine learning 
algorithms over the validation dataset, while 
Figure 3 show a ranking of the models 
considering the accuracy for each experiment .

Fig. 4 shows the comparisons between ET0 

predicted values with machine learning 
algorithms (Experiment (d)) and those 
values obtained using the PM-FAO56 method. 
Similarly, Fig. 5 shows the comparisons between 
ETa predicted and those obtained by soil water 
balance. From Figures 4 and 5, it is possible 
to observe that all models developed tend to 
underestimate both the reference and actual 
evapotranspiration for higher ET values (ET0 

> 6 mm d-1, and ETa > 3 mm d-1). However, 
this characteristic is more evident in the 
GLM model. The SVR, RF and MLP models 
generally show better performance, and we 
found that these have a more remarkable ability 
to predict evapotranspiration with CERES 
data.

3.2. Final testing and complementary 
analysis

After training and validating the algorithms 
with the daily data set between 2000 and
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input MAE RMSE r! MAE RMSE r!
variables (mm d*‘) (mmd4) (-) (mm d ') (mm d' ) (-)

0.556 0.749 0.326 0.460 0630 0.560

O.57S 0.784 0.309 0.480 0656 0.524

w Rs ¡,R¡ ¡, and
0.578 0.757 0.822 0.459 0 631 0.559

0.554 0.752 0.824 0.464 0.632 0.557
Tj#n

0.576 0.771 0.815 0.475 0.645 0.539

0.575 0.731 0.811 0.480 0655 0.525

Mean 0.570 0.766 0.818 0.470 0.641 0.544
SD 0.012 0.015 0.007 0.010 0.012 0.017

0.504 0.692 0.852 0.450 0.622 0.572

0.505 0.692 0.851 0.444 0611 0.536

0>) ■Rs . - Rb- 0.505 0.679 0.857 0.437 0609 0.589

z'tm-. P atm-. 0.507 0.693 0.851 0.449 0616 0.580

W, and u jo 0.531 0.717 0.840 0.464 0.634 0.555

0.515 0.707 0.845 0.455 0.628 0.563

Mean 0.511 0.697 0.849 0.450 0.620 0.574
SD 0.011 0.013 0.006 0.009 0.010 0.013

0.4S6 0.674 0.359 0.437 0610 0.588

Rs ¡-Rs ¡o. 0.478 0.662 0.364 0.427 0.595 0.608

(0 0.478 0.659 0.865 0.427 0.598 0.603

Patm, W, and 0.487 0.674 0.859 0.437 0.606 0.594

>¡10 0.518 0.705 0.846 0.454 0.624 0 569

0.492 0.633 0.855 0.443 0617 0.578

Mean 0.490 0.676 0.858 0.437 0.608 0.590
SD 0.015 0.017 0.007 0.010 0.011 0.015

0.439 0.619 0.331 0.411 0.575 0.634

Rs ¡.Rs ¡0, 0.444 0.621 0.330 0.401 0.562 0.650

(d) 0.444 0.609 0.885 0.400 0 562 0.650

Pam? W, Mjp, 0.460 0.642 0.872 0.420 0.580 0.627

lot, and Ion 0.506 0.688 0.853 0.452 0.622 0.572

0.448 0.629 0.877 0.415 0.530 0.627

Mean 0.457 0.634 0.875 0.417 0.580 0.627
SD 0.025 0.028 0.011 0.019 0.022 0.029

Table III: Performance comparison of the machine learning algorithms over validation dataset. 
Experiments (a) - (d), where the input variables used are shown. SD: Standard deviation.

2009, we observed that SVR model show 
the best results, and RF and MLP models 
have almost similar performances. Therefore, 
as a complementary analysis, we take the 
best developed model (SVR for both reference 
and actual evapotranspiration) to analyze the 
statistics errors using the independent testing 
dataset (2010-2013) into different data subsets 
considering the different climate zones. Table 4 
shows the results obtained.

In Carmona et al. (2018), Priestley-Taylor (PT) 
and PM FAO56 equations were adapted to 
predict the reference evapotranspiration with 
CERES data. Its results were between 0.6 - 
0.8 mm d-1, 0.8-1.1 mm d-1, and 0.769-0.783 
for MAE, RMSE, and R2, respectively. 
In this novel study, statistical errors were 
significantly improved when using machine 
learning algorithms. We observed that the 
ML algorithms are better coupled to local 
conditions than classical models. For predicting

10
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Climate zone N(n) MAE
(mm d_1)

daily ETo
RMSE

(mm d_1)
R2

(-)

MAE
(mm d_1)

daily ETa
RMSE

(mm d_1)
R2

(-)
C 4188 (3) 0.519 0.730 0.866 0.438 0.628 0.626
ST 1396(1) 0.390 0.556 0.910 0.413 0.576 0.624
THVH 4038 (3) 0.437 0.613 0.891 0.428 0.613 0.595
TO 6888 (5) 0.317 0.447 0.926 0.357 0.518 0.669
TVH 8294 (6) 0.401 0.551 0.912 0.475 0.680 0.580
WHPH 4140 (3) 0.558 0.804 0.850 0.434 0.614 0.587
WH 3851 (3) 0.438 0.607 0.893 0.407 0.563 0.617

Mean 0.437 0.616 0.893 0.422 0.599 0.614
SD 0.075 0.110 0.025 0.033 0.048 0.028

Table IV: Performance of the best-trained machine learning algorithms (for both reference and 
actual evapotranspiration) in the different climate zones considering the Test dataset. N: number 
of daily values, n: number of validation sites in each climate zone.

the reference evapotranspiration, we observed 
mean statistical errors over the Test data set 
of 0.437 mm d-1, 0.616 mm d-1, and 0.893 
for the MAE, RMSE, and R2, respectively. 
Deviations of MAE and RMSE values of ^20 % 
were observed for the different climate zones. 
The best results were obtained in the TO zone.

TO zone is the wettest zone, the second 
windiest, and where wet and dry events of low 
intensity and long duration are common (Aliaga 
et al., 2017). This good performance can be 
explained because the ET is closer to potential 
rates in the TO zone, with Tskin (used as input 
variable) close to air temperature (required in 
ET0). On the other hand, the climate zones of 
the western of the PRA (C and WHPH) showed 
higher statistics errors.

In predicting ETa, we observed mean statistical 
errors over the Test data set of 0.422 mm 
d-1, 0.599 mm d-1, and 0.614 for the MAE, 
RMSE, and R2, respectively. Also, the best 
results were obtained in the TO zone. However, 
worse statistics values were observed in TVH 
zone (centre location of the PRA). Bohn et 
al. (2020) observed that this zone has different 
hydrogeological characteristics related to the 

errors indicated in our work. We suggest that 
the water table can generate effects on the 
difference in evapotranspiration (mainly recent 
evapotranspiration) according to the climatic 
cycle, which would affect the process, increasing 
the error and the difference between the errors 
of ET0 and ETa.

It is helpful to contrast our results concerning 
other backgrounds regarding the estimation 
of ET by satellite data in the PRA. For 
example, Rivas and Caselles (2004) proposed 
and evaluated a simplified equation to estimate 
spatial reference evapotranspiration from 
remote sensing-based surface temperature. Its 
results were analyzed using 58 NOAA-AVHRR 
images of the TO zone and showed errors 
of 0.60 mm d-1. Rivas and Carmona (2013) 
applied a semi-empirical model to estimate 
ETa over pasture and soybean using LandSat 
satellite images and meteorological observations 
in Tandil (TO zone). The observed errors 
for pasture and soybean were 0.98 mm d-1 

and 1.40 mm d-1. Marini et al. (2017) used 
regression analysis between MODIS products 
(Land Surface Temperature and Normalized 
Difference vegetation Index - NDVI) and 
information from meteorological stations for

11
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Figure 3: Ranking of the algorithms used 
in the different experiments ((a) - (d)) 
considering the RMSE values. a) Ranking 
of the machine learning algorithms to 
predict ET0, and b) Ranking of the 
machine learning algorithms to predict 
ETa.

estimating the evapotranspiration in the 
southwest of the Buenos Aires Province 
(Argentina). Its results showed values of R2 

of 0.696 and 0.841 to predict ET0, and ETa, 
respectively. More recently, Walker et al. (2018) 
presented a formulation to derive the actual 
evapotranspiration from in situ and microwave 
data. Its model was calibrated with observed 
data in the Southern Great Plains - USA 
(SGP) area (RMSE = 0.88 mm d-1, and R2 = 
0.80) and then was applied in a highly humid 
period in the PRA with results near to potential 
rates (RMSE = 1.6 mm d-1 comparing the 
model with potential evapotranspiration values 
of corresponding to three sites of warm and 
warm-humid zones).

In addition, to evaluating the models on a 
daily scale, it is helpful to show the statistical 
errors of the trained models on other commonly 
used time scales. We evaluated the statistical 
errors of the best model for time averaged data 
every 8, 16 and 30 days. This time resolution 
also allows us to compare the results obtained 
with other models evaluated in the PRA. 
Analyzing of 8 and 16 days averaged data are 
interesting since they allow the comparison with 
ET products from satellite sensors with better 
spatial resolution, such as MODIS products 
(with spatial resolution between 250 m and 1 
km). Table 5 shows the performance metrics at 
different temporal scales. We observed that the 
RMSE is about 0.30 mm d-1 considering the 
mean monthly for the ETo prediction, while the 
RMSE is around 0.44 mm d-1 for ETa.

The ET0 monthly errors obtained in this study 
were significantly better than those observed 
in Carmona et al. (2018), who reflect values 
between 0.37 - 0.53 mm d-1, and 0.47 - 0.64 
mm d-1 for MAE, and RMSE, respectively, and 
0.916 - 0.936 for R2. On the other hand, Degano 
et al. (2019) evaluated the correspondence 
between MOD16A2 product (Mu et al., 2013) 
and reference evapotranspiration in PRA. Their 
results showed a systematic overestimation of 
MOD16A2 product, with RMSE = 2.4 mm d-1 

and R2 = 0.86. Subsequently, Degano et al. 
(2021) corrected the systematic errors of the 
MOD16A2 products and then evaluated the 
actual evapotranspiration on extensive soybean 
crops in the PRA. The statistical errors for 
predicting the actual evapotranspiration for 8 
days- MODIS products on soybean showed 0.44 
mm d-1, 0.58 mm d-1, and 0.85 for MAE, 
RMSE, and R2, respectively. The performance 
obtained in this work is comparable to those 
obtained with more complex and higher spatial 
resolution satellite products.

4. CONCLUSIONS

In this study, there were developed and 
evaluated different machine learning models to 
predict reference and actual evapotranspiration

12



Prediction of evapotranspiration in the Pampean Plain ...

Figure 4 ET0 models, Experiment (d): predicted ET0 values versus those obtained with ET0 

PM-FAO56 method over Validation dataset.

ETo ETa

Temporal scale MAE RMSE R2 MAE RMSE R2

Table V: Performance of the best-trained machine learning algorithms considering average values 
every 8, 16 and 30 days on Test dataset.

using different set of CERES satellite 
products as input. Multilayer Perceptron 
(MLP), Random Forest (RF), Support vector 
machine-based regressor (SVR), XGBoost 
regressor (XGBR), Generalized Linear Models 
(GLM), and K-neighbors regressor (KNN) 
machine learning algorithms were used to 
trained the models and then were compared 
with ground observations corresponding to 

agro-meteorological stations distributed in 
seven climate zones of the Pampean Region of 
Argentina. The accuracy of the models based 
on the considered algorithms using different 
CERES datasets was analyzed. In general, 
it was observed that the performance of the 
models increase as more input variables from 
CERES are included. We observed that the 
SVR model shows the best performance. The
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Figure 5: ETa models, Experiment (d): predicted ETa values versus those obtained with daily 
water balance over Validation dataset.

RF and MLP models present almost similar 
performances than SRV although with a slightly 
worse accuracy. Then, the best SVR model was 
analyzed by mean of statistical metrics over 
the study area using an independent dataset 
(2010-2013). For the prediction of the reference 
evapotranspiration, we observed metrics of 
0.437 ± 0.075 mm d-1, 0.616 ± 0.110 mm d-1, 
and 0.893 ± 0.025 for the MAE, RMSE, and R2, 
respectively. On the other hand, in predicting 
actual evapotranspiration, we observed metrics 
of 0.422 ± 0.033 mm d-1, 0.599 ± 0.048 
mm d-1, and 0.614 ± 0.028 for the MAE, 
RMSE, and R2, respectively. Furthermore, the 
statistical metrics were analyzed considering 
different temporal scales (averaged 8, 16 and 30 
days), which allow drawing a baseline to later 
develop more robust products by incorporating 
reanalysis products such as MERRA2 and 
satellite information from MODIS, Landsat 

or Sentinel images, among others. Comparing 
the results obtained in this work with other 
machine learning models to estimate reference 
evapotranspiration developed by other authors, 
we understand that our results are promising 
and represent a baseline for future studies. 
The combination of CERES variables with 
information from other sources may generate 
more specific evapotranspiration products, 
considering the different land covers.
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