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ABSTRACT

This research aimed to identify an alternative method to estimate reference 
evapotranspiration (ETo) with scarce climatological information in southwestern 
Colombia between 1983-2017 by evaluating and comparing different machine 
learning techniques. The FAO Penman-Monteith (FAO-PM56) was used as the 
reference method and four empirical methods (Hargreaves, Thornthwaite, Cenicafe, 
and Turc) were assessed with five metrics to evaluate the method of best fit to 
FAO-PM56, root mean square error (RMSE), mean absolute error (MAE), mean 
bias error (MBE), Nash-Sutcliffe model efficiency coefficient (NSE), and Pearson 
correlation coefficient (R). Three models were designed using machine learning 
techniques to estimate ETo, multiple linear regression (MLR), artificial neural 
networks (ANN), and autoregressive integrated moving average model (ARIMA). 
The results showed that the ARIMA-M3 model reported the best performance 
metrics (RMSE = 4.13 mm month-1, MAE = 3.15 mm month-1, MBE = -0.08 mm 
month-1, NSE = 0.96 and r = 0.98). However, it restricts in that it can only be 
used locally and cannot be extrapolated to other climatological stations, because it 
was calibrated with specific conditions (exogenous variables) and stations, unlike 
the ANN-M1 model, which only requires training the network for its application. 
This method will allow estimating ETo in places with scarce information, as vital 
for water management in places with much uncertainty regarding accessibility and 
availability.
Keywords: Artificial neural network; FAO-56 Penman-Monteith; Performance 
metrics; Southwestern Colombia; Evapotranspiration.
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ESTIMACIÓN DE EVAPOTRANSPIRACIÓN DE REFERENCIA CON 
INFORMACION ESCASA UTILIZANDO MACHINE LEARNING EN EL 

SUROCCIDENTE COLOMBIANO

RESUMEN
Esta investigación tuvo como objetivo identificar un método alternativo para 
estimar la evapotranspiración de referencia (ETo) con escasa información 
climatológica en el suroeste de Colombia entre 1983-2017, evaluando y 
comparando diferentes técnicas de machine learning. Se utilizó el método de 
FAO Penman-Monteith (FAO-PM56) como método de referencia y se evaluaron 
4 métodos de empíricos (Hargreaves, Thornthwaite, Cenicafé y Turc) con cinco 
métricas para evaluar el método de mejor ajuste al FAO-PM56, error cuadrático 
medio (RMSE), error medio absoluto (MAE), error medio de sesgo (MBE), 
coeficiente de eficiencia del modelo de Nash-Sutcliffe (NSE) y coeficiente de 
correlación de Pearson (R). Se diseñaron tres modelos utilizando técnicas de machine 
learning para estimar la ETo, regresión lineal múltiple (MLR), redes neuronales 
artificiales (ANN) y modelo de media móvil integrada autorregresiva (ARIMA). 
Los resultados mostraron que el modelo ARIMA-M3 presentó la mejor métrica de 
rendimiento (RMSE = 4,13 mm mes-1, MAE = 3,15 mm mes-1, MBE = -0,08 mm 
mes-1, NSE = 0,96 y R = 0,98). Sin embargo, tiene la restricción de que sólo se 
puede utilizar localmente y no se puede extrapolar a otras estaciones climatológicas, 
porque se calibró con estaciones y condiciones especificas (variables exógenas), a 
diferencia del modelo RNA-M1, que sólo requiere entrenar la red para su aplicación. 
Este método permitiría estimar la ETo en lugares con escasa información, lo que es 
vital para la gestión del agua en lugares con mucha incertidumbre en cuanto a 
accesibilidad y disponibilidad.
Palabras clave: Redes neuronales artificiales; FAO-PM56 Penman-Monteith, 
Métricas de desempeño, Suroccidente Colombiano, Evapotranspiración.

1. INTRODUCTION

Evapotranspiration is an aerodynamic physical 
process where water from the land surface 
evaporates, and water from plants transpires 
(Allen et al., 1998; Alves et al., 2017; Granata 
et al., 2020; Meneses et al., 2020). Correct 
estimation of evapotranspiration is fundamental 
in different research areas (Macek et al. 
2018; Kumar et al., 2020), such as climate 
change (Cannarozo et al., 2006; Liu et al., 
2008; Yao et al. 2009; Yang et al., 2011), 
hydroclimatology (Rivas and Caselles 2004; 
Castanñeda and Rao, 2005), water resources 
planning and management (Huizhi and Jianwu, 
2012; Labedzki et al., 2014; Biggs et al., 2016) 
and irrigation needs (Yoder et al., 2005; Tabari, 
2010).

The lysimeter is a suitable method for 
estimating field evapotranspiration in the field 
(Wang and Dickinson 2012). However, it has 
several limitations, such as high installation 
costs, complex instruments (Valipour, 2015; Goh 
et al., 2021), prior experimental setup, and 
maintenance hours to achieve reliable results 
(Igbadun et al., 2006; Choi and Jeon 2018; Jing 
et al., 2019; Ahmadi and Javanbakht 2020).

Indirect methods have been developed to 
estimate reference evapotranspiration (ETo) 
(Choi and Jeon, 2018). ETo is defined as the 
evapotranspiration of a grass crop with an 
assumed height of 0.12 m, a fixed surface 
resistance of 70 s m-1, and an albedo of 0.23, 
with adequate nutrient and water availability 
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(Allen et al., 1998). Methods that estimate 
ETo based on climatic factors can be classified 
as those based on temperature (Thornthwaite 
and Wilm, 1948; Blanney and Criddle, 1950; 
Hargreaves and Samani, 1985), radiation (Turc, 
1961; Priestley and Taylor 1972), and combined 
methods (Allen et al., 1998).

The most recommended method for 
ETo estimation is the so-called FAO 
Penman-Monteith (FAO-PM56), developed 
by the Food and Agriculture Organization of 
the United Nations (FAO) (Allen et al., 1998) 
and the World Meteorological Organization 
(WMO) (Allen et al., 1998; Granata et al., 
2020; Cobaner, 2010; Huo et al., 2012; Laqui 
et al., 2014; Ayaz et al., 2021). It can be 
used anywhere in the world without the need 
to calibrate the equation. Because of this, it 
has been subject to extensive validation with 
lysimeters in various global climatic conditions 
(Landeras et al., 2008; Nema et al., 2017; Quej 
et al., 2019; Ayaz et al., 2021; Ferreira et al., 
2021).

The main drawback of using this method is 
the requirement of a significant number of 
variables for its estimation, these variables 
are maximum and minimum air temperature, 
wind speed, precipitation, and solar radiation 
(Valipour, 2015). This restricts its worldwide 
use, especially in places with a lack and 
insufficient availability of climatological 
information. For example, in protected areas 
and/or armed conflict countries with low 
budgets (Traore et al., 2008).

Numerous studies evaluate ETo models in 
Colombia, standing out among them the one 
by Barco et al. (2020), who made a macroscale 
estimate of evaporation in Colombia using the 
methods of Turc, Morton, Penman, Holdridge, 
and Budyko. However, they did not make 
comparisons with field measurements. Jaramillo 
(2006) developed the empirical equation of the 
National Coffee Research Center (Cenicafóe) 
in several locations in the Colombian Andes, 
mainly in the Cauca and Magdalena River 

basins, and compared the relationship between 
the observed values of FAO-PM56 with the 
Class A evaporation tank. Poveda et al. 
(2007) regionalized ETo in Colombia using 
the methods of Turc, Morton, Coutagne, 
Thornthwaite, Holdridge, Meyer, Penman, 
Budyko, and Cenicafóe. Ramórez et al. (2011) 
assessed the application of the FAO-PM56, the 
Hargreaves, the Garcia and Lopez modified, 
and the lysimeter to estimate ETo in the coffee 
zone of Colombia. Toro-Trujillo et al. (2015) 
evaluated the reliability of evapotranspiration 
estimation of the Hargreaves-Samani and 
radiation methods concerning the FAO-PM56 
method in the northern banana-growing zone 
Uraba Antioqueno. Mendoza & Peña (2021) 
compared the Blaney-Criddle, Hargreaves, 
Priestley-Taylor, and Camargo methods 
with values of class A evaporation tanks 
from Colombian Sugarcane Research Center 
(Cenicanña) and FAO-PM56.

The different results of the authors agree that 
no method shows significant superiority over 
the other, which is attributed to the low quality 
of the available information. For this reason, 
models to estimate ETo have been developed 
during the last decades, using machine learning 
techniques such as Artificial Neural Networks 
(ANN) (Zanneti et al., 2008; Alves et al., 2017; 
Fonseca et al., 2018; Laqui et al., 2019; Meneses 
et al., 2020) Autoregressive Integrated Moving 
Average Model (ARIMA) (Jordan et al., 2008; 
Gautam and Sinha, Mossad and Alazba, 2016; 
Bouznad et al., 2020), and Multiple Linear 
Regression (MLR) (Yirga, 2019). In Colombia, 
the spatial distribution of climatological stations 
is uneven due to several factors, such as complex 
topography (e.g., the Andean Mountain range), 
areas affected by the armed conflict, and low 
investment in technological resources, among 
others (Urrea et al., 2019; Canchala et al., 
2022). In southwestern Colombia (Narinño), 
76 % of the rainfall stations are in the Andean 
region, with a density of one station every 
470 km2, covering 40 % of the total area of 
Narinño. The remaining 24 % of the rainfall 
stations are in the Pacific region, with a density 
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of one station every 1,442 km2, accounting 
the 52 % of the total area of Narinño. In the 
case of climatological stations, the scenario 
is worse since, in the Andean region, there 
is one every 1,720 km2 and only one in the 
Pacific region (Barbacoas) (Ocampo-Marulanda 
et al., 2022). The rainfall stations are those 
available Instituto de Hidrologóa, Meteorologóa 
y Estudios Ambientales (IDEAM). The 
accessibility and availability of information 
on climatological variables allow for a better 
understanding of the hydrological cycle and 
more efficient management for its use in 
agriculture. The southwest of Colombia has 
the highest percentage of harvested area 
(7.9 %); therefore, considering the problems 
mentioned earlier and that Narinño is one of the 
departments with the highest participation in 
the country’s agricultural production (Moncayo, 
2015), adequate planning of water resources 
must be carried out to ensure food security.

In this scenario, the objective of this research 
was to determine a model that allows estimating 
ETo in a scenario with scarce information 
and high spatiotemporal variability in climatic 
elements. A contradictory aspect of the study 
area is that the areas with higher rainfall have 
less climatological information and more missing 
data in their records. Knowledge of ETo would 
enable better management to contribute to the 
sustainability of food sovereignty and security 
by meeting the Sustainable Development Goals 
related to objective 2, zero hunger; objective 13, 
climate action; and objective 15, life on land 
(United Nations, 2018).

2. DATA AND METHODS

2.1. Study area

The southwest of Colombia (Narinño) is one of 
the most biodiverse regions of the country and 
the world, located between 0°21’ and 2°40’ north 
latitude and 76°50’ and 79°02’ west longitude, 
with approximately 33,268 km2 (Canchala et 
al., 2020; Ocampo-Marulanda et al., 2022). 
The Pacific region (14,754 km2) accounts for 

52%, the Andean region (15,466 km2) for 40% 
and the Amazon region (3,048 km2) for the 
remaining 8 % (See Figure 1) (Gobernacioón de 
Narinño, 2019). In addition, it has a privileged 
geostrategic position due to its proximity 
to the tropical Pacific Ocean, the Andes 
Mountains, and the Colombian-Ecuadorian 
border (Canchala et al., 2019).

2.2. Data

In this research, time series of maximum 
(TMAX), minimum (TMIN), and mean 
temperature (TMED) in °C, humidity (RH) 
in %, sunshine hours (SBH) in hours, and 
height in meters above sea level (COTA) 
were considered as regressor variables on a 
monthly scale from 1983 to 2017. Data from 
10 climatological stations across southwestern 
Colombia (see Figure 1) were provided by 
IDEAM (see Figure 1). The missing data in 
the time series were less than 25 %. They 
were estimated using Non-Linear Principal 
Component Analysis (NLPCA), a methodology 
suggested by Scholz et al. (2005), and applied 
in hydroclimatology by Canchala et al. (2019). 
Wind speed information was only available 
for three stations, Aeropuerto Antonio Narinño, 
El Encano, and Obonuco. The imputation of 
missing data was performed as mentioned in 
the Methods.

2.3. Methods

Table I shows some methods for estimating ETo. 
FAO recommends using the FAO-PM56 method 
to determine ETo without lysimeters. The 
estimation involves a wide range of variables, 
mean air temperature, relative humidity, solar 
radiation, and wind speed. Empirical models 
have been developed to estimate ETo with fewer 
climatic variables. For example, Hargreaves 
developed a model based on maximum, mean, 
minimum temperature, and solar radiation. 
Turc based his model on mean temperature, 
relative humidity, and net solar radiation. 
Thornthwaite proposed a model based on 
mean temperature and annual heat index, and
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Figure 1: The geographical location of the study area and distribution of climatological stations, 
principal synoptic station includes wind velocity data

Abbreviation Station
BAR Barbacoas
TAM Taminango
SBO San Bernardo

AAN A. Antonio 
Nariño

BOM Bombona
SIN Sindagua

BOT Botana
EEN El Encano
MON Monopamba
OBO Obonuco

Jaramillo based his model on the relationship 
between altitude and evapotranspiration.

The assessed performance metrics are presented 
in Table II. The following metrics were used 
to evaluate the performance and precision 
of the alternative methods for estimating 
ETo, compared to FAO-PM56. RMSE, 
which characterizes the variance of the error 
(Rodrigues and Braga, 2021). MAE takes the 
absolute value of the difference between ETo 
values (Choi and Jeon, 2018). MBE measures 

the average error magnitude of the observed and 
estimated data (Goh et al., 2021). NSE is used 
to evaluate the predictive ability of hydrological 
models (Nash and Sutcliffe 1980; Knoben et al., 
2019; Adnan et al., 2021). Finally, R measures 
the linear relationship between estimated and 
calculated values (Laqui et al., 2019).

The Machine learning methods used in this 
research were:

- Multiple Linear Regression (MLR). Regression
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Name ETo estimation methods Reference Model Type
FAO-PM56 (Allen et al.,

1998)
Combined

Hargreaves (Hargreaves and 
Samani, 1985)

Temperature

Ture (Ture, 1961)

Radiation

Thornthwaite
(Thornthwaite and

Wilm, 1948) Temperature

Cenicafé (Jaramillo , 2006) Temperature

Table I: Reference evapotranspiration models were used in this research. The input variables for 
this model are: Ra = extraterrestrial solar radiation (MJ m-2), Tmax = maximum temperature 
(°C) at 2 meters, Tmin = minimum temperature (°C) at 2 meters, Tmean = mean temperature 
(°C) at 2 meters, Ra = incident solar radiation on the atmosphere (MJ m-2 d-1), Rn = net 
radiation (MJ m-2 d-1) , Rs = net radiation (MJ m-2), h= masl, RH = relative humidity (%), 
A the slope of the vapor pressure curve [kPa °C-1], G = ground heat flux density [MJ m-2 
day-1], y = psychrometric constant [kPa °C-1] and U2 the wind speed at 2 m height [m s-1]

Name Equation Purpose of metrics Perfect score
RMSE (Root mean squared error)

MAE (Mean Absolute Error)

MBE (Mean Bias Error)

NSE (Nash-Sutcliffe efficacy 
coefficient)

R (Pearson correlation 
coefficient)

Goodness-of-fit for high values

Goodness-of-fit for mean values

Determine the average model bias

Evaluate the predictive capability of 
hydrological models. 

Statistical correlation between two 
variables

0

0

0

1

1

Table II: Validation performance metrics used: N = Number of data, ETo = observed value 
FAO-PM56, ETo’ = predicted ETo, ETo = average estimated ETo FAO-PM56, ETof = average 
predicted ETo

analysis is a statistical technique belonging 
to the class of supervised statistical learning 
methods that allows investigating and modelling 
the relationship between a response variable 
and one or multiple predictor variables. An 
advantage of multiple linear regression is that 
it allows to evaluation of the effect of each 
predictor variable in the presence of the 
other variables (Montgomery et al., 2002). The 
multiple linear regression model is presented in 
Equation 1.

y = po + p1X1 + p2X2 + ••• + pk Xk + e (1)

Where
y = Response variable
Po = Intercept with the y-axis
Pi,...,Pk = partial regression coefficients that 
measure the expected change in the response 
variable for each unit change in the predictor 
variable X (j=1,2,...,k), when all other regressor 
variables are held constant.
e = Random component of error that 
must comply with the assumptions of 
normality, zero mean, constant variance 
(homoscedasticity) (Goldfend and Quandt,
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(3)

1965), and independence (Fox, 2016).

- Autoregressive Integrated Moving Average 
(ARIMA). The ARIMA model is a statistical 
methodology that allows describing the future 
behavior of a time series as a linear function 
of past data and errors due to chance, in 
addition to considering the possible inclusion 
of a seasonal component (Box et al., 1974). 
The model that allows considering regular 
(non-seasonal) effects in the series can be 
expressed as in Equation 2.

(1 - $1B - $2B2 - ... - Bp)(1 - B)dyt =
(1 - 01B - 02B2 - ... - 0q Bq) 

(2)

Where p and q indicate the order of the 
autoregressive (AR) and moving average (MA) 
components respectively, and d indicates the 
order of the integrated component (I) to extract 
the possible sources of the non-stationarity 
present in the series under analysis (Stellwagen 
and Tashman, 2013). The AR and MA terms can 
be identified using the simple autocorrelation 
functions (ACF) and partial autocorrelation 
functions (PACF) of the time series data. 
ARIMA models were used to model the 
temporal correlation presented in the MLR 
models.

- Artificial Neuronal Network (ANN). AANs 
are computational bio-inspired models based on 
biological neurons, which can store and retrieve 
data, classify patterns, realize input patterns 
to output patterns, and similar group patterns. 
These follow two learning processes, supervised 
and unsupervised (Tabari and Talaee, 2013). 
Multilayer perceptron (MLP) is a type of 
feed-forward ANN mainly used for supervised 
learning (Haykin, 1994) and models complex 
nonlinear processes in water resources and 
hydrology problems. The MLP is a perceptron 
network with more than one intermediate layer 
and is usually represented with an output. The 
perceptron uses a matrix to model a neural 
network and is mainly used to discriminate an 
input x to a single output value F(x) in that 

matrix (See Equation 3).

The function F(x) has a binary value and is 
used primarily for sorting, w is a vector with 
an associated weight, and u is a "threshold” 
used to offset the activation function. The sum 
of the inputs to the neuron must produce a value 
greater than u to change the neuron from state 
0 to 1.

A successful development for an ANN depends 
on several parameters, e.g., hidden layers, 
neurons in the hidden layer, learning rate, and 
activation function, among others. However, 
there is no guideline on how to build an 
ANN or how many neurons should be placed 
in the hidden layer to estimate the output 
(Murat and Serhat, 2018). Therefore, through 
trial-and-error tests, the parameters were varied 
until the combination with the lowest error 
and the highest possible R2 was found. 
In this research multiple architectures were 
built, combining activation functions, such 
as: identity, tanh, logistic and relu with the 
optimizers lbgfs, adam and sgd. Furthermore, 
given the complexity and the requirements one 
hidden layer with three neurons and a learning 
rate of 0.01 was enough. Through trial-and-error 
test, the best performance model with 1000 
iterations was determined, and the best model 
was: tanh function activation, lbgfs optimizer, 
one hidden layer, three neurons and a learning 
rate of 0.01. The training algorithm of the ANN 
was 80 % of the data and 20 % to validate.

In selecting regressor variables for the ARIMA 
and MLR models, the VIF was used to 
avoid multicollinearity among the variables 
(Montgomery et al., 2002). In the case 
of ANNs, this technique performs nonlinear 
computational procedures which are not affected 
by multicollinearity because they tend to be 
overparameterized, i.e., the same algorithm 
updates the weights associated with redundant 
variables to have no impact on the final solution 
(De Veaux and Ungar, 1994).
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Linear Principal Component Analysis (PCA) 
was applied to formulate one of the ARIMA 
models. PCA is one of the most widely used 
statistical techniques to reduce dimensionality 
and preserve the most significant amount 
of information in a data set (Jolliffe, 
2002), allowing the elimination of possible 
multicollinearity between regressor variables. 
The principal components between TMAX, 
TMED, and TMIN were estimated in this case.

Lee et al. (2012) mentioned that ETo is affected 
by topographic factors such as altitude because 
as altitude increases, there is a decrease in 
solar radiation and wind speed. Therefore, to 
represent the monthly ETo, an interpolation 
process was performed using the cokriging 
technique using altitude as an exogenous 
variable and with a spherical semivariogram. 
Basconcillo et al. (2017) and Cerón et al. 
(2021) suggest that with this technique, 
better correlations are obtained with monthly 
temperature and precipitation; considering that 
the former is one of the variables most correlated 
with ETo, it will be possible to spatialize ETo 
in southwestern Colombia.

The general methodology is presented in 
Figure 2. Initially, the information provided by 
IDEAM was compiled, then the exploratory 
data analysis was carried out, and the missing 
data were estimated. Subsequently, the ETo 
of the three stations was estimated using 
the Hargreaves, Thornthwaite, Cenicafóe, and 
Turc methods. Then, the ETo methods were 
evaluated using five performance metrics, 
Nash-Sutcliffe model efficiency coefficient 
(NSE), Pearson correlation coefficient I, root 
mean square error (RMSE), mean absolute 
error (MAE) and mean bias error (MBE), 
to select the best-fit method concerning for 
FAO-PM56. Next, Spearman’s correlation 
coefficient was applied to find the variables 
with the highest correlation with ETo and 
the variance inflation factor (VIF) to reduce 
multicollinearity among the regressor variables 
of the proposed statistical models. Finally, 
three models were built for each machine 

learning technique (Artificial Neural Networks 
- ANN, Multiple Linear Regression - RLM, 
and Autoregressive Integrated Moving Average 
Model - ARIMA), i.e., nine models, which 
were evaluated by five performance metrics 
(NSE, R, RMSE, MAE and MBE) to estimate 
FAO-PM56 with scarce information.

Then, multi-year monthly averages of all 
variables were estimated, and the annual value 
of precipitation was reported. Subsequently, 
the Jarque-Bera normality test was performed, 
which tests whether a data set presents the 
skewness and kurtosis of a normal distribution 
(Jarque and Bera, 1982). The test was used 
to determine parametric or non-parametric 
statistical tests to calculate the correlation 
between climatic variables. Empirical models 
have been developed to estimate Eto with fewer 
climatic variables.

3. RESULTS AND DISCUSSION

The descriptive statistics of the climatic 
variables were estimated and presented in Table 
III. It can be observed that the altitude of 
the stations is in the mountainous zone, except 
for Barbacoas, which is in the Pacific plain, 
and Monopamba, located in the Amazon jungle 
(see Figure 1). The precipitation values ranged 
between 888 and 6,927 mm/year, consistent 
results considering that the department includes 
the Andean, Amazon, and Pacific regions, the 
latter being one of the rainiest regions in the 
world. The TMAX ranges between 32.5 °C 
and 18.8 °C, the TMED between 11.7 °C and 
26.2 °C, and the TMIN between 4.8 °C and 
20 °C. The RH presented values above 75 %, 
with 89.5 % being the highest reported at the 
Barbacoas station. Finally, the SBH reported 
values between 2.1 and 5.4 hours. The indicators 
shown in Table III were calculated with the 
complete time series, with a previous estimation 
of missing data using NLPCA.

The reconstruction errors were, 7 mm month-1 
for precipitation, 0.16 °C month-1 for maximum 
temperature, 0.07 °C month-1 for mean

8



Estimation of monthy reference evapotranspiration ...

Figure 2: Methodological diagram of the research
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Name 
Station

Height 
masl

Multiyear monthly averages of climatological variables Annual precipitation 
mm year'1Tmax (°C) Tmed (°C) Train (°C) RH (%) SBH (h)

Aeropuerto Antonio Nariño 1796 27.3 19.2 12.9 76.5 5.4 1216
Barbacoas 32 32.5 26.2 20 89.5 2.9 6927
Bombona 1493 28.9 20.1 13.9 77.9 4.7 1071

Monopamba 1776 23.6 17.0 11.6 88.8 2.1 3214
Obonuco 2710 20.0 13.0 6.9 79.9 3.3 888
Sindagua 2800 20.4 13.1 7.5 80.2 3.9 988
Botana 2820 19.8 12.6 5.9 78.6 3.2 964

El Encano 2830 18.8 11.7 4.8 86.4 2.5 1402
Taminango 1875 26.2 18.0 13.2 83.9 - 1715

Table III: Characteristics of weather stations in the study area: Tmax, Tmed, Tmin, RH, and 
SBH

temperature, 0.16 °C month-1 for minimum 
temperature, 0.55% month-1 for relative 
humidity and 0.10 hours month-1 for sunshine 
hours. These results show very low error 
variance in magnitude, demonstrating that the 
imputation method accurately estimated the 
missing data in the time series.

Figure 3 shows a graphical comparison of ETo 
methods with FAO-PM56 for the time series 
of the Aeropuerto Antonio Narino, El Encano 
and Obonuco stations to find the method 
with the most well-adjustment to FAO-PM56. 
Hargreaves method was the only one that 
overestimated ETo, since the others tended to 
underestimate it. The Turc method was similar 
in shape and magnitude to the FAO-PM56 
method at El Encano station, while at Obonuco, 
the most well-adjusted method was Hargreaves. 
At the Aeropuerto Antonio Narino station, it 
was observed that both methods were adjusted 
in shape and magnitude.

In this sense, the performance metrics were 
estimated to validate the most adjusted method 
concerning FAO-PM56, and the results are 
presented in Table IV. The average RMSE 
performance metrics ranged from 16.9 to 50.4 
mm month-1, MAE from 14.2 to 48.7 mm 
month-1, MBE from 10.3 to 48.7 mm month-1, 
R from 0.80 to 0.90 and NSE from 0.64 to 
0.81. The results of the Turc method show 
that it was the most well-adjusted concerning 
FAO-PM56 by the reported metrics (MAE= 
14.2 mm month-1, MBE=10.3 mm month-1 
and RMSE= 16.9 mm month-1). However, the 

R and NSE metrics (0.90 and 0.81) show 
Hargreaves as the best. Trajkovic and Kolakovic 
(2009a) state that Turc method overestimates 
ETo at windless locations and underestimates 
at windy locations; for example, Figure 3 shows 
underestimation in Aeropuerto Antonio Narino, 
Obonuco and El Encano stations located at 
heights above 1700 m. These results agree 
with Poveda et al. (2007), who regionalized 
evapotranspiration in Colombia and observed 
that the Turc and Morton methods are the 
most appropriate; and Fisher & Pringle (2013), 
who used three alternative methods in a humid 
region in the United States (Mississippi) and 
concluded that Turc consistently underestimates 
ETo.

Other research reports that the Turc method has 
historically performed well under humid (Jensen 
et al., 1990; Trajkovic and Kolakovic, 2009b; 
Fisher & Pringle, 2013; Birara et al., 2020) 
and tropic conditions (Tukimat et al., 2012; 
Lima et al., 2019; Santos et al., 2019; Monteiro 
et al., 2021). One of the possible reasons 
is that the method was initially developed 
under wet conditions (southern France) (Tabari, 
2010; Ahmadi and Javanbakht 2020; Diouf et 
al., 2016). In a semiarid region in Senegal 
Diouf et al. (2016) concluded that the Turc 
method showed similar high accuracy (R2>0.80) 
reported in this research. Similar findings were 
observed in Malaysia, where Goh et al. (2021) 
concluded that the Turc method provides the 
closest results to FAO-PM56 in subhumid and 
humid climate conditions in the absence of data, 
as the R2 and the MBE reported one of the
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Table IV: Performance metrics for ETo estimation methods concerning FAO-PM56

Performance metrics Cenicafé Hargreaves Thornthwaite Ture
RMSE (mm month'1) 30.4 20.0 50.4 16.9
MAE (mm month'1) 26.4 18.0 48.7 14.2
MBE (mm month'1) 26.4 -17.9 48.7 10.3
R 0.80 0.90 0.86 0.81
NSE 0.64 0.81 0.74 0.65

Figure 3: Graphical comparison of evapotranspiration by different methods: a) Aeropuerto 
Antonio Narino 1983-2017, b) Obonuco 1983-2017, and c) El Encano 1983-2017

highest R2 (0.81) and the MBE results were 
closer to zero for the monthly ETo estimation 
concerning FAO-PM56. The Same happened in 
Brazil, where Santos et al. (2019) concluded 
that the best option when meteorological data 
is unavailable is the Turc method given the 
R results (0.90) concerning FAO-PM56. In 
contrast, Monteiro et al. (2021) suggest that 
the ETo estimation should give priority to 
Turc Method regardless of the season and 
climatic conditions. From these results, it can 
be concluded that in the absence of information 
to estimate FAO-PM56, the Turc method is the 
best alternative to estimate ETo in southwestern 
Colombia.

When the normality test (Jarque-Bera) was 

applied to the regressor variables, a p-value 
of 0.00 was obtained, which means that the 
data did not follow a normal distribution. 
Therefore, the nonparametric Spearman 
correlation coefficient was applied between 
the climatic variables and FAO-PM56. The 
results were, COTA -0.84, RH -0.69, SBH 0.87, 
TMAX 0.88, TMED 0.84 and TMIN 0.66, 
which suggest the highest positive correlation 
concerning FAO-PM56 are TMAX, SBH and 
TMED, and the highest negative correlation 
was COTA. However, SBH is a complex variable 
to obtain due to its high costs and technical 
complexities (Laidi, 2018). TMED results in 
a lower saturation pressure, hence a lower 
vapour pressure deficit, which results in a lower 
estimate of ETo (Allen et al., 1998). Hence, 
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TMAX and COTA were considered the most 
crucial regressor variables for constructing the 
ARIMA and MLR models, as shown in Table 
V, where the VIF results are also presented to 
identify any possible multicollinearity.

The TMIN and RH presented the lowest 
correlation coefficients (0.66 and -0.69), which 
indicates that they are not the best choice 
as regressor variables. Multicollinearity was 
evidenced for TMAX, TMED and COTA 
due to the high values (> 5) in the VIF. 
These results are congruent, considering that 
both temperatures are correlated and have 
an inversely proportional relationship with 
altitude. Therefore, the TMAX variable was 
prioritized for the construction of the models 
since it was the one that reported the highest 
correlation coefficient (0.88).

Figure 4 presents the graphical comparison 
between the best machine learning models, 
MLR-M2, ANN-M1 and ARIMA-M3, 
during 1983-2017, reported in Table VI. 
The ARIMA-M3 method was the closest in 
magnitude and shape for the Aeropuerto 
Antonio Narino station. The MLR-M2 model 
was the one that reported the highest accuracy 
in the extreme values for the three stations, 
evidencing it in the maximum and minimum 
peaks. However, these methods cannot be 
extrapolated to other climatological stations 
because they were calibrated with specific 
COTA and TMAX conditions, and stations. 
The ANN-M1 model underestimates ETo 
at Aeropuerto Antonio Narino, although it 
reported higher accuracy at El Encano and 
Obonuco stations. However, it is necessary to 
perform a quantitative evaluation to validate 
the graphical results. Therefore, Table VI 
presents the performance metrics results for the 
nine proposed machine learning models.

The performance metrics showed that the 
average of 9 models ranged in RMSE from 
4.1 to 8.2 mm month-1, MAE from 3.2 to 
6.6 mm month-1, MBE from -0.1 to 0.3 mm 
month-1, NSE from 0.84 to 0.96 and r from 

0.92 to 0.98. Of the 9 models constructed, the 
ARIMA-M3 model reported the best results 
in terms of error (RMSE=4.1 mm month-1, 
MAE=3.2 mm month-1, MBE= -0.1 mm 
month-1, NSE=0.96 and R=0.98). This result 
suggests that using this model would allow 
estimating ETo more accurately in error and 
correlation. However, these can only be used 
if there is prior information on the response 
variable (FAO-PM56) due to its autoregressive 
component, making it difficult to use in places 
with scarce information. Although the ANNs did 
not report the best metrics, they can be used 
as an alternative for estimating FAO-PM56 in 
places with scarce information since it is not 
necessary to know the response variable for its 
estimation.

These results agree with what has been reported 
in other research (Zanetti et al., 2008; Alves 
et al., 2017; Nema et al., 2017; Laqui et al., 
2019; Granata et al., 2020; Meneses et al., 2020), 
where it is shown that the application of ANNs 
using MLP with few regressor variables allows 
estimating ETo more accurately. Moreover, 
Feng et al. (2018) and Shiri (2017) suggest 
that machine learning models outperformed 
empirical equations, which is evident in the 
results of the performance metrics, as the 
Turc method goes from having RMSE from 
16.9 to 7.3 mm month-1, MAE from 14.2 
to 5.9 mm month-1, MBE from 10.3 to 0.1 
mm month-1, R from 0.81 to 0.87 and NSE 
from 0.65 to 0.94. It is crucial select TMAX, 
SBH, and COTA to achieve efficient ANN 
models in regions with scarce information. To 
improve the error and efficiency of the ANN, 
we recommend adding wind speed, given that 
Macek et al. (2018) suggest that it accounts for 
a significant contribution to the aerodynamic 
component. However, unfortunately, this is the 
most complex variable to get data due to the 
lack of stations in the country.

Even though there are no previous monthly scale 
studies on this methodology in Colombia, Laqui 
et al. (2019) investigated in a similar context 
(Peruvian highlands), i.e., climatological
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Table V: VIF for climatic variables

Model Inputs variables VIF
TMAX TMIN TMED RH SBH COTA

1 TMAX + TMED 12.59 12.59 - - -
2 TMAX + SBH 3.07 - - 3.07 -
3 TMAX + SBH + COTA 8.67 - - 3.18 7.93
4 TMAX + SBH + COTA + TMED 12.70 32.01 - 3.52 17.89
5 TMAX + SBH + COTA + TMED + RH 12.71 41.1 2.63 4.32 25.58
6 TMAX + SBH + COTA + TMED + RH + TMIN 13.29 10.59 51.7 2.64 4.64 26.76

Figure 4: Graphical comparison of machine learning models: a) Aeropuerto Antonio Narino, b) 
Obonuco and c) El Encano

stations with scarce information located at 
high altitudes (3819 and 4660 masl). Although 
the scale was a daily scale, the results showed 
that ANNs allow estimating with reasonable 
accuracy at high altitude stations with scarce 
information. Pinos et al. (2020) assesses 30 
models for the estimation of daily ETo in 
two weather stations with limited data in 
a wet Andean paramo ecosystem (southern 
Ecuador). Their results suggest that the 
ANNs outperformed the empirical models 
and accurately estimated ETo in super-humid 
conditions. It is agreed with different studies 
developed in humid (Ayaz et al., 2021), 
subhumid (Nema et al., 2017), arid (Tabari and 
Talaee, 2013), semiarid (Ayaz et al., 2021) and 

wetland areas (Granata et al., 2020) around the 
world where ANN were used to estimate ETo 
with few input variables.

In northern Greece, Antonopoulos & 
Antonopoulos (2017) build 3 ANNs models 
and concluded that any model that uses 
temperature and radiation as inputs should be 
able to estimate the ETo sufficiently. Mohawesh 
(2013) proved several ANNs in 3 stations across 
the Jordan valley and concluded that the overall 
results suggest that temperature based ANNs 
can be used when there is insufficient data. 
In Serbia, Petkovic et al. (2015) developed 
an adaptive neuro-fuzzy inference system and 
concluded that the maximum relative humidity
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Combination Input parameters RMSE (mm 
month4 )

MAE (mm 
month1)

MBE (mm 
month1)

NSE R Observations

MLR-M1

MLR-M2

MLR-M3

TMAX, SBH, and 
COTA

TMAX, SBH, and 
COTA

TMAX, HUMREL,

7.7

5.5

6.5

6.1

4.4

5.2

0.3

0.1

0.1

0.86

0.93

0.90

0.93

0.93

0.95

All models comply with the error assumptions, and 
COTA was added as a categorical variable; for MLR-M1, 
a natural root transformation was applied, and for MLR- 
M2 and MLR-M3, a square root transformation was 
applied.

ANN-M1
ANN-M2
ANN-M3

and COTA
TMAX and COTA
TMAX and TMED
TMAX, TMED, and 

TMIN

7.3
8.2
7.6

5.9
6.6
6.1

0.1
0.1
0.1

0.87
0.84
0.87

0.94
0.92
0.93

In the development of these models, multiple 
architectures were built. The tanh activation function, the 
lbgfs optimizer, and a hidden layer with three neurons, a 
learning rate of 0.01 and 1000 iterations were performed 
for each model. The weights of the COTA with the first, 
second and third neuron was: 0.010, 0.19 and 0.46 
respectively. The weights of the TMAX with the first, 
second and third neuron was: -0.15, 0.29 and -6.16 
respectively. The weights of the hidden layer to the output 
neuron were: -6.52, 7.62 and -0.30.

ARIMA-M1

ARIMA-M2

ARIMA-M3

TMAX and COTA

TMAX, TMED, and 
COTA

PCA1*COTA +
PCA2*COTA

5.2

5.0

4.1

4.0

3.9

3.2

-0.1

0.1

-0.1

0.94

0.94

0.96

0.97

0.97

0.98

The different combinations between the autoregressive 
and moving average components with their respective 
lags were tested. It was obtained that the best combination 
involved an autoregressive coefficient in the regular and 
seasonal phases with a seasonality of 12 months. 
ARIMA(l,0,0)(l,0,0)i2

Table VI: Performance metrics of machine learning models compared to FAO-PM56; the models 
selected in bold are the best

and maximum air temperature are the most 
influential optimal. The same happened 
in Brazil, where Ferreira (2019) concluded 
that the relative humidity and temperature 
increased the capacity of the ANNs to estimate 
ETo adequately. Thereby, the results shown in 
this research represent an option to substitute 
the FAO-PM56 method in regions with scarce 
information; since the amount of information 
required by this method could be a limiting 
factor for its application.

Figure 5 shows the results of the ETo estimation 
with the ANN-M1 model for the seven stations 
for which FAO-PM56 could not be estimated. It 
shows that most results present the same shape 
and magnitude except for Barbacoas, which is 
congruent considering that it is in the Pacific 
region with marked differences concerning the 
Andean region, where most other stations are 
located.

Interpolation with ordinary cokriging with the 
spherical semivariogram from the stations of 
this research to know the annual ETo in 
southwestern Colombia was performed. The 
results in Figure 6 show that the highest values 

are found in the Pacific region. Lower values are 
observed as one approaches the Andean region 
and reaches the Amazon region. A noteworthy 
result is that the reported values of ETo in the 
Andean region in comparison with precipitation 
could indicate a water deficit.

4. CONCLUSIONS

The results show that this proposed machine 
learning models allow a precise estimation of 
ETo in southwestern Colombia with scarce 
information since the performance metrics were 
better than those reported by the best-fitted 
empirical method (Turc). However, as these 
were far from the ideal value, it was decided to 
build machine learning techniques to reduce the 
error associated with ETo estimation. Initially, 
four regressor variables were considered for 
estimation, and given the high correlation with 
FAO-PM56 (Spearman correlation coefficient) 
with TMAX (0.88) and COTA (-0.84) and 
easiness of obtaining these variables, the 
machine learning model was built prioritizing 
TMAX and COTA over the others. More input 
variables give accurate information about ETo 
estimation, as many researchers suggest (Rivas 
and Caselles, 2004; Nema et al., 2017; Choi
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Figure 5: Estimation of ETo by ANN-M1 at stations with scarce information

Figure 6: Spatialization of ETo in 
southwestern Colombia

and Jeon, 2018); yet one of the purposes of 
this research is to develop an alternative model 
with few inputs variables to ease application to 
adequately estimate ETo in the absence of data 
as in southwestern Colombia.

Hence, ETo was calculated with nine machine 
learning models, and it was determined that 
the ARIMA-M3 and MLR-M2 models presented 
the best performance, because it was calibrated 
with specific conditions like COTA, TMAX 
(exogenous variables), and stations. However, 
there are restrictions on their use since they 
cannot be extrapolated outside the study area. 
Therefore, the ANN-M1 model was used as 
an alternative method to estimate ETo in 
southwestern Colombia with scarce information, 
considering previous successful studies, their 
unrestricted application, and good performance 
metrics, and that does not require knowing 
the response variable for its estimation since it 
works as a black-box model.

Metrics performance of the ANN-M1 model 
concerning those calculated by the Turc method 
is better, as it goes from having an RMSE 
of 16.9 to 7.3 mm month-1, an MAE of 14.2 
to 5.9 mm month-1, an MBE of 10.3 to 0.1 
mm month-1, an R of 0.81 to 0.87 and an 
NSE of 0.65 to 0.94. These results suggest 
that using the ANN-M1 model allows a more 
accurate estimation of ETo in places with little 
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information at high altitudes, which allows 
considering it as a methodology to be used 
in forecasts or to improve the understanding 
of future hydroclimatic events to reduce the 
uncertainty generated.

The ANNs tend to underestimate the ETo 
results slightly; this may be because the 
developed network did not adequately 
assimilate the spatial variation with the 
current information. Considering that the 
results obtained are reasonable, it is suggested 
to improve the data source by installing new 
climatological stations to better train the 
ANNs. It is also necessary to better understand 
the spatial-temporal variation of the climatic 
variables and, thus, to have better planning and 
management in managing the water resources 
of the southwestern part of Colombia.

The results presented here contributed to 
validating the idea of the application of machine 
learning techniques to estimate ETo in places 
with scarce information. This fact provides, easy 
and accurate information to agriculturists and 
stakeholders to develop programs that provide 
and enhance water resources management to 
achieve the proposed sustainable development 
goals and ensure food security and sovereignty. 
Future studies could emphasize developing 
machine learning models (ANN) to estimate and 
forecast the ETo in different climate conditions, 
e.g., arid and humid, on a monthly scale.
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