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Abstract

Graph analysis is becoming increasingly important 
due to the expressive power of graph models and the 
efficient algorithms available for processing them. Re­
inforcement Learning is one domain that could ben­
efit from advancements in graph analysis, given that 
a learning agent may be integrated into an environ­
ment that can be represented as a graph. Neverthe­
less, the structural irregularity of graphs and the lack 
of prior labels make it difficult to integrate such a 
model into modern Reinforcement Learning frame­
works that rely on artificial neural networks. Graph 
embedding enables the learning of low-dimensional 
vector representations that are more suited for ma­
chine learning algorithms, while retaining essential 
graph features. This paper presents a framework for 
evaluating graph embedding algorithms and their abil­
ity to preserve the structure and relevant features of 
graphs by means of an internal validation metric, with­
out resorting to subsequent tasks that require labels 
for training. Based on this framework, three defined 
algorithms that meet the necessary requirements for 
solving a specific problem of Reinforcement Learning 
in graphs are selected, analyzed, and compared. These 
algorithms are Graph2Vec, GL2Vec, and Wavelet Char­
acteristics, with the latter two demonstrating superior 
performance.

Keywords: Computational Intelligence, Reinforce­
ment Learning, Graph Embeddings, unsupervised 
GRL, Whole Graph Embedding.

Resumen

El análisis de grafos es un tópico emergente debido 
a la expresividad de los modelos basados en grafos 
y al desarrollo de algoritmos para su procesamiento. 
Un área que puede beneficiarse de estos avances es 
el aprendizaje por refuerzo, dado que un agente de 
aprendizaje puede estar imnerso en un entorno mode­
lable como un grafo. Sin embargo, tanto la irregular­
idad de las características estructurales de los grafos 
como la ausencia de etiquetas a priori dificultan la 

incorporación de un modelo de este tipo en los mar­
cos modernos de Aprendizaje por Refuerzo basados 
en redes neuronales artificiales. En este sentido, los 
embeddings de grafos permiten aprender representa­
ciones vectoriales de baja dimensión, más adecuadas 
para los algoritmos de aprendizaje automático, preser­
vando al mismo tiempo las características clave de los 
grafos. Proponemos un marco para evaluar algoritmos 
de Graph Embedding y su capacidad para preservar 
la estructura y características relevantes de los grafos 
mediante una métrica de validación interna, sin recur­
rir a tareas posteriores que requieran etiquetas para 
el entrenamiento. Aplicando este marco con un prob­
lema concreto, se seleccionan, analizan y comparan 
tres algoritmos que cumplen los requisitos necesarios: 
Graph2Vec, GL2Vec y Wavelet Characteristics, donde 
los dos últimos muestran un mejor comportamiento.

Palabras claves: Inteligencia Computacional, Apren­
dizaje por Refuerzo, Embeddings de grafos, GRL no 
supervisado, Embedding de grafo entero.

1 Introduction

Generally, complex or critical real-world systems lack 
determinism or dichotomy. Achieving a good compu­
tational solution and reasonable response times often 
requires significant computing power. There may be 
several factors that contribute to the complexity of 
a system. For example, real-world replications may 
have real-world consequences, or the amount of data 
that needs to be processed may be large and incompre­
hensible to humans. Furthermore, complex systems 
may involve interactions between its parts, forming 
networks or graphs.

Graph analysis has attracted significant attention 
nowadays as networks proliferate in the real world. 
Graphs are used to represent information in various 
domains, like social sciences: friendship and social net­
works [1], linguistics: word co-occurrence networks 
[2], electronic commerce, reference networks of aca­
demic papers, biology: molecular and protein interac­
tion networks [3], transportation: logistics and vehicu­
lar traffic, among others.

-29-

mailto:mpiccoli@unsl.edu.ar


Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

Understanding network systems is facilitated by 
modelling interactions in graphs [4], Graph analysis 
has received considerable attention in recent decades 
because it enables us to understand and use the hidden 
information they contain. According to [5], there are 
four categories that summarize classical graph analysis 
tasks:

1. Node classification: The objective is to label 
each node in the graph based on either the la­
beled nodes or the network structure [6]. Two 
approaches have been proposed: classification 
methods that use random walks for label prop­
agation, and methods that extract features from 
nodes and use classifiers for labeling.

2. Link prediction: This enables us to predict 
missed or potential links in the future [7]. Dif­
ferent approaches can be employed, we found 
similarity-based methods, maximum likelihood 
models, and probabilistic models.

3. Clustering: This task is to identify similar enti­
ties within the network and group them together 
[8]. Clustering methods comprise attribute-based 
models as well as those that maximise distances 
between clusters.

4. Visualization: This helps to understand the struc­
ture of the network and identify any changes over 
time [9].

Efficient network analysis requires finding a concise 
and effective representation of the data. A graph G 
is defined as (V, E), where V is the set of graph ver­
tices / nodes, and E is the set of edges, each of which 
represents the relationship between two nodes [10, 5]. 
Generally, G is represented by a matrix, the adjacency 
matrix. Each element of the matrix indicates whether 
the nodes are adjacent or not. A binary matrix repre­
sents unweighted edges, i.e. graphs whose edges do 
not have weight. If each edge has weight, the matrix 
is non-binary.

For large networks, the conventional graph repre­
sentation can lead to a bottleneck. Some of the typical 
problems in this scenario include [11]:

1. High Computational Complexity: in general, the 
adjacency matrix utilised to model relationships 
between nodes tends to be high-dimensional and 
sparsely populated [5]. Thus, most algorithms 
for analysing or processing networks carry high 
computational complexity.

2. Low parallelism: Representing network data in 
a traditional manner presents serious difficul­
ties for the design and implementation of paral- 
lel/distributed algorithms. The bottleneck arises 
from the coupling of nodes in a network, as ex­
plicitly shown in E. Distributing these nodes to 
different processes leads to high communication 

costs and slows down the speedup ratio. Lim­
ited progress has been made in the graph paral­
lelization via subtle segmentation of large-scale 
graphs [12], However, the success of these meth­
ods heavily relies on the underlying graph’s topo­
logical characteristics.

3. Machine Learning limitations: Machine Learning 
methods typically assume that data samples are 
represented by independent vectors, while net­
work data samples (i.e. nodes) are dependent on 
each other through E. Additionally, graphs can 
have variable dimensions and structures, which 
can be a drawback when analysing a set of graphs.

Aside from the drawbacks already pointed out by [11], 
the adjacency matrix representation for graphs may 
contain redundant or noisy information and may have 
varying dimensions if the problem comprises a set of 
graphs or a graph that alters over time. A growing 
approach to solve these issues is Graph Representation 
Learning (GRL) methods [10]. These methods aim 
to design or learn low-dimensional vector represen­
tations that enable encoding graph information using 
structures that preserve it, including topology and node 
features. These representations are commonly referred 
to as Graph Embeddings. The basic idea is to learn 
the dense and continuous representations of nodes in 
a low-dimensional space. This approach aims to di­
minish noise and redundancy, preserving the intrinsic 
structure and essential properties of graphs.

Many network analysis problems that are iterative 
or combinatorial can be addressed in new vector repre­
sentation spaces by computing mapping functions, dis­
tance metrics or operations on the embedding vectors. 
This results in a reduction of the complexity problem. 
The elimination of coupling among the nodes allows 
the possibility of developing good parallel computing 
solutions for large-scale network analysis. Graph em­
bedding also allows for the application of machine 
learning to network analysis.

Graph analysis can be a valuable subsidiary task 
for reinforcement learning (RL), as has been demon­
strated in recent years by research such as [13, 14], 
Modelling and adjusting the state/observation of the 
agent is one of the key components of RL algorithms 
and models. When tackling RL problems in which 
the agent is present in a networked environment, in­
corporating a graph that details the network and its 
relevant characteristics and properties can be a highly 
promising approach. Given the unique characteristics 
and requirements of this approach, it can be seen as a 
fresh graph analysis task distinct from those previously 
recognised. In this particular scenario, a ’whole graph’ 
representation is required, which allows the dimen­
sion to be reduced and standardised for use as input in 
neural networks and other computational intelligence 
algorithms composing RL agents [13, 14, 15].

This paper describes the new task mentioned above 
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and its specific requirements for Graph Embedding. 
We propose a framework to evaluate and compare 
graph embedding algorithms and their ability to pre­
serve structure and relevant features. Following this 
framework, and for a specific RL problem in graphs, 
three state-of-the-art algorithms are selected, anal­
ysed and compared. All of them fulfil the necessary 
requirements described. These are Graph2Vec[16], 
GL2Vec[17] and Wavelets Characteristic!; 18].

The paper is organised as follows. The next sec­
tion provides the basic definitions and notations used. 
Section 3 introduces GRL, its characteristics and ad­
vantages. Section 4 introduces RL as a new class of 
graph analysis tasks that require GRL as a sub-task. 
Section 5 proposes a framework for evaluating graph 
embedding algorithms. Section 6 presents the analysis, 
and Section 7 presents the results. Finally, Section 8 
presents the conclusion and future work. Due to space 
limitations, there is no specific section on related work; 
these are referenced throughout the paper.

2 Preliminaries and Definitions

Since the definitions and notation used in graphs usu­
ally vary among authors, in this section we introduce 
those used in this work.

Definition 1 (Graph). A graph G is a 3-tuple (V,E, <p), 
where V is a set of vertices/nodes, E is a set of 
edges/links, and <p is a function <p : ek —> (v¡,v7) that 
assigns a pair of vertices v¡,v¡ e V to each edge ek e E. 
It is said that when (p(ef) = ek is positively in­
cident on v¡ and negatively incident on Vj. Also, given 
two arbitrary nodes v¡,vj e V, v¡ is adjacent to vj if 
and only if Bek e E, <p(ek) = (v/, v7)-

A graph is called undirected if and only if Vv¡, Vj e 
V, Vi is adjacent to Vj —> Vj is adjacent to v¡, i.e., when 
adjacency relation is symmetric. Else, it is considered 
directed.

Remark. Some authors consider the existence of par­
allel edges in graphs. Given a graph G = (V,E, <p), 
two edges e¡, e¡ e E are said to be parallel if and only 
if <p(e,-) = <p(e7), i.e., both edges are incident on the 
same vertices and in the same way.

In addition, a loop is an edge ek e E such that 
<p(e>) = (l A/) for a vertex v¡ e V, i.e., an edge that is 
positively and negatively incident on the same vertex.

A graph without parallel edges and loops is called 
a simple graph. From now on, in this work, graph is 
understood as simple graph.

Definition 2 (Adjacency Matrix). A finite graph G = 
(V,E, <p) can be represented as a |V| x |V| adjacency 
matrix A, where each a¡j = 1 if v¡ is adjacent to v¡, and 
0 otherwise.

Definition 3 (Weighted graph). A weighted graph is 
a 4-tuple (V,E, <p, wf), where (V,E, <p) is a graph and 

wf is a weight function wf : e¡ —> w¡ that assigns a 
weight Wi e R to each edge e¡ e E.

A finite weighted graph can be represented as a 
IV| x IV| weight matrix W, assigning w¡j = wf(ef) if 
<p(ef) = and w¡j = 0 otherwise, i.e., assigning 
to each component w¡j the weight assigned by the 
weight function of the edge incident on v¡ (positively) 
and vj (negatively), in case such edge exists. Further­
more, the nodes’ adjacency can be represented in this 
same matrix, by considering v¡ is adjacent to Vj if and 
only if Wij f 0.

Definition 4 (Featured graph). A featured graph is a 
4-tuple (V,E,<p,x/), where (V,E,<p) is agraphandx/ 
is a feature function xf: v¡ —> x¡ that assigns a feature 
x¡ to each node v¡ eV.

A finite featured graph can be represented by the 
adjacency matrix of graph (V,E,<p) and a |V|-sized 
feature vector X = [xi,X2,...,x¡y ¡].

Remark. A graph can be simultaneously weighted and 
featured, defined as a 5-tuple (V,E, <p,wf,xf), and as 
such it can be represented by its weight matrix W and 
its feature vector X if it is finite.

Definition 5 (Line Graph). The line graph (or 
edge-to-vertex dual graph) of a given graph G = 
(y,E,<p), denoted L(G), is the graph (LV,LE,L(<p)), 
such that LV = {v(e¡) : e¡ e E}, LE = {(e(-,v, e7) : 
Bu,u' e V,tp(ei) = (u,v) A <p(ej) = (v,u'f} and 
Lfp')(ei,v,ej') = (ei,ejf i.e., two vertices v(e;),v(G) 
of L(G) are adjacent if and only if there exists a ver­
tex v of G on which e¡ is negatively incident and e¡ is 
positively incident.

Remark. The elements of EV denoted as v(e¡) are only 
syntactical terms inspired in [17].

Definition 6 (Line Graph of a Weighted Graph). The 
line graph of a given weighted graph G = (V, E, <p,wf) 
is the featured graph L(G) = (LV,LE,L(ç?),L(w/)), 
where (LV,LE,L(<p)) is the line graph of (V,E, <p), and 
L(w/) is the feature function L(vv/)(v(e(-)) =

Definition 7 (Line Graph of a Featured Graph). The 
line graph of a given featured graph G = (V,E, <p,xf) 
is the weighted graph L(G) = (LV,LE,L(ç?),L(x/)), 
where (LV,LE,L(<p)) is the line graph of (V,E, <p), and 
L(xf) is the weight function L(xf) (e¡, v, ej) = x/( v).

3 Graph Representation Learning

Since graphs enriched with node information are com­
plex and difficult structures to process or compute, 
learning low-dimensional vector representations for 
graphs has attracted much interest [10, 11, 5], espe­
cially when graphs retain important properties or fea­
tures. This can be used to analyse graphs or as input to 
other algorithms, resulting in better performance and 
lower cost.

-31 -



Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

Learning efficient representations for structured data 
is not an easy task. In [10], the authors describe sev­
eral successful models that have been developed for 
specific types of structured data. A clear example is 
sequential data, such as text or video. These have been 
modelled by recurrent neural networks [19], which can 
capture sequential information and produce efficient 
representations that have been verified in automatic 
translation and speech recognition tasks. Another ex­
ample is convolutional neural networks (CNN) [20] 
based on structural criteria, which have achieved ex­
cellent performance in pattern recognition tasks such 
as image classification or speech identification.

While these models have been very successful in 
practice, they have been limited to certain types of 
data, such as data with a simple relational structure, se­
quential data, or data that follows regular patterns. In 
many contexts, however, data tends to follow complex 
relational structures. This is the case for the graphs 
we have presented [21], For structured data in graphs, 
defining neural networks and other computational in­
telligence algorithms is challenging because the input 
structures can be arbitrary and vary significantly be­
tween different graphs, even for nodes within the same 
graph. Unlike images, audio and text, which have a 
clear lattice structure, graphs have irregular structures. 
This makes it difficult to generalise some mathemati­
cal operations on graphs. For example, it is not easy to 
define convolution and pooling operations, which are 
fundamental in convolutional neural networks (CNNs), 
for graph data. By analogy with images, each pixel 
has the same neighbourhood structure, and the same 
weight filters can be applied to multiple locations of 
the image being processed. In graphs, however, each 
node may have a different neighbourhood structure. 
This problem is known as the geometric problem of 
deep learning [22],

Given these challenges and the widespread use of 
graphs in real-world applications, there has been an in­
creased interest in applying learning methods to struc­
tured data in graphs. As a result, Graph Representation 
Learning (GRL) methods have emerged [10]. They 
aim to learn low-dimensional continuous vector repre­
sentations, also called Embeddings, for structured data 
in graphs.

In general, GRL methods can be divided into two 
classes of learning problems: unsupervised and su­
pervised GRL. The first family aims to learn low­
dimensional Euclidean representations that preserve 
the structure and features of an input graph. The sec­
ond family also learns low-dimensional Euclidean rep­
resentations, but for a specific task of subsequent pre­
diction, such as node or graph classification. They do 
this on data labelled for this purpose.

As defined in [10], Graph Embedding is a task 
that aims to learn a mapping from discrete graphs 
to a continuous domain. Formally, given a collec­
tion of n weighted graphs {G¡}”=1, with each G¡ =

<pi, wfi), the goal is to learn a low-dimensional 
vector representation Z¡ (embeddings) for each graph 
G¡, such that important graph properties are preserved 
in the embedding space. For example, if two graphs 
are similar according to their original representation, 
their learned vector representations should be also be 
similar. Let ZeR"xá denote the graph embedding ma­
trix. In practice, we often want low-dimensional em­
beddings (d C max{|Vi|}”=1) for scalability reasons. 
That is, graph embedding can be seen as a dimension­
ality reduction technique for graph structured data, 
where the input data is defined on a non-Euclidean, 
high-dimensional, discrete domain.

It is worth noting that, although we present the em­
bedding task as a graph embedding task, it can also be 
extended to node tasks and edge tasks.

As it was defined for featured graphs, they can have 
node attributes (e.g. demand or availability of mer­
chandise in logistics problems; content of articles in 
citation networks), commonly called node features. If 
there is more than one feature, they can be represented 
as X e /G 'd, where xd is the number of features 
stored in each node. Node features can provide useful 
information about a graph. Some graph embedding 
algorithms exploit this information by learning map­
pings:

(W,X)^Z

Note that depending on whether node features are 
used in the embedding algorithm, the learned represen­
tation may capture different aspects of the graph. In­
corporating node features in embeddings allows both 
structural and semantic information to be captured 
from the graph. If node features are not used, the em­
beddings will only preserve the structural information 
of the graph.

3.1 Types of Graph Embedding

The result of graph embedding is a vector or set of 
low-dimensional vectors representing a graph or part 
of it. As described in [23], different types of graph 
embeddings can be classified according to the granu­
larity of the vector set and the interpretation of what it 
represents. Each type of embedding enables different 
applications. The categories are:

• Node Embedding: This is the most common con­
figuration for embedding outputs and represents 
each node as a vector in a low-dimensional space. 
Nodes that are close together in the graph are 
embedded to have similar vector representations.

• Edge Embedding: Intended to represent an edge 
as a low-dimensional vector, edge embedding is 
useful for knowledge graphs [24] and tasks re­
lated to links between nodes. It is particularly 
useful for analysing graphs related to edges, such 
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as link prediction, entity and relationship predic­
tion in knowledge graphs, and more.

• Hybrid Embedding: It is the combination of 
different components of the graph, such as nodes 
+ edges (substructure) or nodes + communities 
[25], into a single embedding.

Two additional challenges arise in this context: 
how to generate the subgraphs or communities 
to be embedded, and how to deal with the het­
erogeneity of the embedding targets (i.e. nodes, 
edges, subgraphs and communities can be embed­
ded simultaneously).

• Whole Graph Embedding: whole graph embed­
ding is typically used for small graphs, where 
each graph is represented as a vector and similar 
graphs are embedded side by side in the output 
vector space. This approach benefits the graph 
classification task by providing a direct and effi­
cient solution for computing similarities between 
graphs [26].

However, it presents challenges in capturing the 
properties of a complete graph and finding a bal­
ance between the expressiveness of the learned 
embedding and the efficiency of the embedding 
algorithm [26].

Finding an efficient transformation allows:

• Preserve relevant information: Preserve the in­
trinsic information of the structure and relevant 
properties by reducing noise or redundant infor­
mation. The selection or prioritization of the 
information to be preserved, as previously dis­
cussed, is a critical aspect of the process.

• Dimensionality reduction: Discover graph rep­
resentations in a lower-dimensional space.

• Dimension standardization: In certain applica­
tions, input graphs can have a varying dimension, 
or a singular graph may change dimensions with 
time. For many analysis tasks, particularly for 
their use as input in neural networks and rein­
forcement learning algorithms, having a dimen­
sion representation that is standardized and un­
varying over time becomes necessary.

• Enhancing computational performance and 
reducing costs: The transformation to a lower 
dimensional vector space makes it possible to 
reduce the complexity of many iterative or com­
binatorial problems in network analysis, and to 
solve them using mapping functions, distance 
metrics or operations on embeddings.

Eliminating coupling between nodes enables the 
utilization of high-performance computing solu­
tions for large-scale network analysis.

• Application of Computational Intelligence Al­
gorithms: The vector representation can be used 
as input in Computational Intelligence operations 
and algorithms that only accept matrix data, like 
neural networks, genetic algorithms, and others.

In summary, graph embedding is a robust technique 
that can enhance the precision and efficiency of ma­
chine learning algorithms in graph-related tasks.

4 Graph Representation Learning for Re­
inforcement Learning

Reinforcement Learning (RL) is a emerging area of 
research that requires the application of graph analysis 
as a subsidiary task.

Several studies have combined RL techniques with 
graph representation learning for analysis or mining 
tasks. These works can be classified into two cate­
gories [27]: (1) Solving RL problems using graph 
structures, and (2) Solving graph mining tasks with 
RL methods.

The second category is referred to as Graph RL in 
[27], and should not be confused with Graph Represen­
tation Learning (GRL). Graph RL uses RL techniques 
to generate embeddings. In contrast, GRL uses graph 
representations as inputs or as models to implement 
and solve RL algorithms.

Our work belongs to the first category. It aims to 
generate graph embeddings to be used as input for RL 
algorithms to solve the underlying problems.

As described by [13] and [14], RL methods have 
mainly been applied to simple decision-making prob­
lems, primarily related to game solving, using states 
represented with fixed-dimensional matrices derived 
from image or sensor processing, and basic decisions.

The challenge ahead is to adapt actor-critic meth­
ods to address a wide range of real-world problems 
that hold scientific and social significance. Reinforce­
ment learning (RL) has the potential to enhance the 
quality, efficiency, and cost-effectiveness of important 
processes such as education, healthcare, transportation, 
and energy management. To achieve this, it is crucial 
to address the design decisions and adjustments in­
volved in RL implementation. The architecture must 
be designed by selecting appropriate learning algo­
rithms, state and action representations, training pro­
cedures, hyperparameter settings, and other design 
details as mentioned in [14],

The agent’s state or observation is a crucial com­
ponent to design and incorporate in these models. In 
problems of reinforcement learning where a network 
is present in the agent’s environment, including the 
graph that describes the network or a fitting representa­
tion of it in the agent’s observation holds a significant 
promise. The inclusion of the graph or a representation 
can enhance the agent’s environment perception and, 
as a result, accelerate and improve its learning.
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4.1 Specific requirements

RL is considered a new class of graph analysis tasks 
due to its distinctive characteristics and requirements 
compared to classic tasks mentioned previously. It is 
highly important to identify appropriate transforma­
tion algorithms for this specific task. It is essential to 
obtain a proper representation of each whole graph, 
which enables its utilization as input in neural net­
works and other computational intelligence algorithms 
that constitute the RL agents [13, 14, 15].

Consequently, graph embedding for implementation 
in RL algorithms requires:

1. Unsupervised GRL: data in reinforcement learn­
ing tasks are unlabelled. The objective is to create 
a representation based solely on the structure of 
each network and the relevant features to be kept. 
As a result, unsupervised embedding algorithms 
are required.

2. Whole Graph: the need is for a representation 
of the graph as a whole. Thus, algorithms that 
rely on embedding individual nodes, edges or 
substructures are not appropriate.

3. Preserves structure and characteristics: pre­
serving the network structure and relevant proper­
ties of each node and/or edge is essential. Choos­
ing which characteristics to preserve is a critical 
part of the process.

4. Fixed dimension: In the process of modelling 
environments for reinforcement learning, it may 
be necessary to represent multiple graphs with 
varying dimensions or a single graph that changes 
dimensions over time. To employ these graphs 
as input for neural networks and reinforcement 
learning algorithms, it is imperative to have a 
fixed-dimension representation that remains con­
stant over time. Therefore, algorithms that pro­
duce fixed-dimensional embeddings are required.

5 A Framework for Evaluating Graph 
Embedding Algorithms

A universally applicable metric for quantifying the 
performance of a graph embedding algorithm or the 
quality of the reduced graph does not exist. [28] When 
validating or comparing graph embedding operators 
and algorithms, researchers typically achieve this by 
reconstructing the original graph or by assessing their 
performance on subsequent analysis tasks. [28] Typ­
ically, these analyses only examine classical graph 
analysis tasks, including node or graph classification, 
node clustering, and link prediction.

In this context, an internal validation of the algo­
rithms is proposed based on a similarity hypothesis, 
i.e., if two graphs are similar when compared us­
ing their typical high-dimensional discrete representa­
tion, their low-dimensional continuous representations 

should also be similar. To test this, we assess the de­
gree of ’’conservation” of a distance function defined 
on the initial graphs. This distance function can be cus­
tom defined to prioritize the features to be preserved, 
both topological and attribute features of each node. 
Subsequently, this validation can serve as a metric to 
compare different algorithms.

It is a fact that it is feasible to conduct empirical 
tests on the efficacy of a specific embedding in a task 
featuring an external validation scheme. Nevertheless, 
all contender embedding algorithms ought to undergo 
these external validation tests. The duration of time 
spent on each embedding algorithm is already signif­
icant, and it is also susceptible to potential training 
errors such as underfitting, overfitting, and a lack of 
regularisation. The aforementioned statement holds 
particularly true in RL. Unlike more traditional assign­
ments such as classification or regression, adequate 
algorithms are not yet available to counter these poten­
tial deficiencies. The suggested framework is evidently 
applicable and modifiable for any type of embedding 
and task.

In summary, the proposed approach is an abstract 
framework for validating and comparing graph embed­
ding algorithms. The steps involved are:

1. Definition of the Graph Set and Relevant Fea­
tures: The set of input graphs and their corre­
sponding attributes or features to preserve should 
be clearly defined. This definition will depend on 
the particular problem to be solved or the subse­
quent analysis task, therefore it is important to 
provide clear and specific detail.

2. Distance Function Definition: A distance func­
tion needs to be established for the original rep­
resentation of graphs (in terms of the properties 
to be preserved), as well as for the vector repre­
sentations that are generated by the algorithms. 
The most commonly used distance metric for the 
transformed space is the Euclidean measure, al­
though it is not the only one.

3. Algorithm selection: The selection of embed­
ding algorithms that meet the requirements de­
fined in step one for a specific task or problem is 
necessary.

4. Hyper Parameter Definition: Hyperparameters 
should be defined for the selected algorithms, par­
ticularly the embedding dimension (d).

5. Embedding Generation: Each model must be 
trained by each algorithm and then calculate the 
graph embeddings for each of the trained algo­
rithms.

6. Distance Calculation: Using the functions de­
fined, the distances between graphs must be cal­
culated in all representations.
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7. Correlation Analysis: To perform the internal 
validation of the algorithms, based on the con­
servation of the distance function defined on the 
original graphs, a correlation analysis with the 
distances between the corresponding embedding 
vectors is proposed. This analysis aims to confirm 
the correlation between the distances calculated 
from the original representation and the distances 
calculated from the embeddings, also evaluating 
the strength of that correlation. A stronger cor­
relation between these distance distributions im­
plies that the preservation of the initial distance 
in the learned representation is achieved, mean­
ing that the most remote or distinct graphs in the 
original discrete domain are also distant in the 
created continuous space.

It is recommended to utilize both Pearson’s correla­
tion coefficient r (parametric) and Spearman’s correla­
tion coefficient p (non-parametric) to strengthen the 
analysis’s robustness. If the Pearson correlation co­
efficient is close to 1, then the distances are linearly 
correlated, implying a certain proportionality between 
the distances of the two spaces. If the Pearson coef­
ficient approaches -1, the transformation will invert 
distances in a linear fashion, resulting in distant graphs 
in one space appearing close in the other, and vice 
versa. If Pearson’s coefficient equals 0, then distances 
are not linearly correlated, though non-linear corre­
lation may still exist. Therefore, it is recommended 
to also use Spearman’s rank correlation coefficient, 
which is non-parametric and can be interpreted simi­
larly to Pearson’s, complementing and strengthening 
the analysis.

6 Experimentation

Following the proposed evaluation framework and ad­
dressing a specific problem, three algorithms were se­
lected, analyzed, and compared: Graph2Vec, GL2Vec, 
and Wavelets Characteristics. All three algorithms 
meet the necessary requirements described above.

The tests were coded in Python using the NetworkX 
[29] and Karate Club [30] libraries. The source code 
can be found at [31].

6.1 Graph set and relevant feature definition

The collection of graphs to be employed comprises 
examples of the vehicle routing problem (VRP) that 
can be solved through RL. VRP is a more extensive 
type of the Travelling Salesman Problem (TSP) that 
considers multiple vehicles in its routing model. There 
is a fleet of identical vehicles available to serve a set of 
geographically scattered customers centered around a 
primary depot [32, 33]. Therefore, VRP is concerned 
with optimal service provision to all its customers. 
Since its formulation in 1959, VRP modelling has 
been extensively studied in the context of operational 

research, industrial engineering, logistics, and trans­
portation.

To model this problem, a weighted and featured 
graph is used, where each node represents a location on 
the future route (including customers and the central 
depot), and the edges are the travel times between 
each of these locations. Each graph is represented by 
a weighted matrix W that represents the travel times at 
each weight, and a feature vector X that represents the 
customer’s demands.

6.2 Distance Functions Definition

The distance between graphs in their original repre­
sentation is defined by the graph edit distance, a def­
inition of which can be found in [34], The strategy 
that follows is similar to Levenshtein’s edit distance 
for strings, where a graph is subjected to replacements, 
insertions or deletions of nodes or edges in order to ob­
tain another graph that proves to be isomorphic to the 
second one. Although this metric originally focuses on 
the topology of the graph, it is possible to parameterise 
it using differential costs for insertions, deletions and 
replacements.

Given two arbitrary weighted featured graphs Gi = 
(Vi,Eb<pi,w/i,x/i) and G2 = ÇV2,E2, <p2, wf2,xf2), 
the costs of the edit operations cost(ppobj), where 
op & {subst,del, ins} and obj & {node, edge}, are de­
fined as follows

cost(substnode(vi &V1,V2 &V2')') = |xfl(vi) -xf2(v2')\ 
cost(delnode(yi € Vi)) = |xfi(vi)| 
cost(insnode(y2 & V2)) = |xf2(v2)I
cost(substedge(ei &E1,e2& E2)) = |vv/i (<?i) - wf2(e2)| 
cost(deledge(ei & Ei)) = |wfi(ei)| 
cost(insedge(e2 & E2)) = |wf2(e2)|

Also, the metric used to calculate the distance between 
embeddings is the Euclidean distance.

6.3 Selected Algorithms

As stated previously, all three algorithms meet the 
essential criteria outlined earlier. Each one is:

Graph2Vec This algorithm is detailed in [16]. It 
utilises word and document embedding tech­
niques introduced in the area of Natural Language 
Processing [35]. The algorithm undertakes an 
analogy wherein an whole graph is considered as 
a document and the rooted subgraphs (spanning a 
neighbourhood of a certain degree) around each 
graph node are the words that make up the doc­
ument. By utilizing the analogy of documents 
and words with graphs and subgraphs, document 
embedding models can be used to learn graph em­
beddings. Given a dataset of graphs, Graph2Vec 
considers the set of all rooted subgraphs (the 
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neighbourhood) around each node (up to a cer­
tain degree) as a vocabulary. Subsequently, the 
algorithm proceeds with the Doc2Vec skip-gram 
training procedure [36] to autonomously acquire 
the representations of each graph in the dataset.

GL2Vec This algorithm, proposed in [17], aims to 
improve Graph2Vec by addressing its two limita­
tions: (1) it cannot handle the labels of the edges, 
and (2) structural information is not properly pre­
served, since Graph2Vec mixes information from 
node labels with structural information when ex­
tracting subgraphs. To address these limitations, 
the authors suggest utilizing the line graph (a 
dual edge-to-vertex graph) of G. The nodes of 
L(G) incorporate the properties of the edges and 
node labels of G, thus preserving both types of 
information. This approach follows Definition 6 
and is ideal for handling G’s structural informa­
tion. Embeddings are generated for both G and 
L(G), and an embedding comprises the original 
graph embedding concatenated with that of the 
linear graph. This enhances the structural infor­
mation of G that Graph2Vec disregards. There­
fore, the technique is called GL2Vec (Graph and 
Line graph to vector).

Wavelet Characteristics This algorithm was pro­
posed in [18]. The process utilises the characteris­
tic functions of node attributes with wavelet func­
tion weights to describe node neighbourhoods. 
These node-level features are grouped using mean 
binning to create graph-level statistics.

All three selected algorithms utilize an embedding 
dimension of 128, and their corresponding hyperpa­
rameters can be located in the code.

7 Experimental Results

For each chosen algorithm, the model was trained, and 
the graph embeddings were calculated. In all instances, 
the functions outlined in Section 6.2 were utilized to 
compute the distances between the graphs and embed­
dings. In addition, the results were analysed using both 
Pearson’s and Spearman’s correlation coefficients.

The correlation analysis of the obtained results is 
displayed in Table 1, whereas Figure 1 depicts the 
graphical representation of both correlation coeffi­
cients. It is noted that both correlation coefficients 
show a similar trend in all cases.

Table 1: Correlation analysis results
Graph edit dist. vs.

Euclidean Distance for Embeddings using:
Graph2Vec GL2Vec Wavelet

Pearson’s r
Spearman’s p

0.3349 0.5826
0.4336 0.6087

0.5970
0.6337

The results indicate that the Wavelet Characteris­
tics algorithm had the highest correlation coefficients, 
achieving a Pearson coefficient of 0.597 and a Spear­
man coefficient of 0.63. GL2Vec yielded satisfactory 
results, exhibiting correlation coefficients of 0.58 and 
0.608 for Pearson and Spearman, respectively. Its per­
formance surpassed that of Graph2Vec, aligning with 
the theoretical framework suggested by its creators

(a) Pearson

Spearman rank correlation
GraphDist Graph2Vec GL2Vec WaveletCh

(b) Spearman

Figure 1: Pearson and Spearman Correlation Coeffi­
cients

8 Conclusions and Future Works

This paper presents a framework for evaluating and 
comparing Graph Embedding algorithms, emphasising 
their aptitude to retain structure and relevant features 
through internal validation. It outlines the motivation 
and introduces the fundamental concepts of Graph 
Representation Learning. Further to this, classical 
graph analysis tasks are specified, and reinforcement 
learning (RL) is highlighted as an emerging field that 
can benefit from graph analysis as an subsidiary task.
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Following this framework, and for a specific Re­
inforcement Learning problem in graphs, three algo­
rithms available in the state of the art that meet the 
defined requirements have been examined. Especially, 
the Wavelet Characteristics and GL2Vec algorithms 
have yielded promising results.

As a future work, we plan to implement an RL 
Agent for the VRP problem defined by utilizing the 
algorithms that demonstrate the best correlation. This 
will enable external validation of the algorithms in the 
specific task. It is also planned to extend the analysis 
to graphs containing fuzzy data, including the mod­
elling of demand and travel times using fuzzy numbers. 
By using fuzzy numbers, it will be possible to incorpo­
rate uncertainty and generate more robust and adaptive 
models. Finally, another opportunity is to utilise Graph 
Embedding to represent actions in RL.
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