
Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

- ORIGINAL ARTICLE -

Graph Representations for Reinforcement Learning
Representaciones de Gratos para Aprendizaje por Refuerzo

Esteban Schab1 ®, Carlos Casanova1-3®, and Fabiana Piccoli2-3

1 Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay
{schabe. casanovac}©frcu.utn.edu.ar

-Universidad Nacional de San Luis, San Luis, Argentina
mpiccoli@unsl.edu.ar

^UniversidadAutónoma de Entre Ríos, Concepción del Uruguay, Argentina

Abstract

Graph analysis is becoming increasingly important
due to the expressive power of graph models and the
efficient algorithms available for processing them. Re­
inforcement Learning is one domain that could ben­
efit from advancements in graph analysis, given that
a learning agent may be integrated into an environ­
ment that can be represented as a graph. Neverthe­
less, the structural irregularity of graphs and the lack
of prior labels make it difficult to integrate such a
model into modern Reinforcement Learning frame­
works that rely on artificial neural networks. Graph
embedding enables the learning of low-dimensional
vector representations that are more suited for ma­
chine learning algorithms, while retaining essential
graph features. This paper presents a framework for
evaluating graph embedding algorithms and their abil­
ity to preserve the structure and relevant features of
graphs by means of an internal validation metric, with­
out resorting to subsequent tasks that require labels
for training. Based on this framework, three defined
algorithms that meet the necessary requirements for
solving a specific problem of Reinforcement Learning
in graphs are selected, analyzed, and compared. These
algorithms are Graph2Vec, GL2Vec, and Wavelet Char­
acteristics, with the latter two demonstrating superior
performance.

Keywords: Computational Intelligence, Reinforce­
ment Learning, Graph Embeddings, unsupervised
GRL, Whole Graph Embedding.

Resumen

El análisis de grafos es un tópico emergente debido
a la expresividad de los modelos basados en grafos
y al desarrollo de algoritmos para su procesamiento.
Un área que puede beneficiarse de estos avances es
el aprendizaje por refuerzo, dado que un agente de
aprendizaje puede estar imnerso en un entorno mode­
lable como un grafo. Sin embargo, tanto la irregular­
idad de las características estructurales de los grafos
como la ausencia de etiquetas a priori dificultan la

incorporación de un modelo de este tipo en los mar­
cos modernos de Aprendizaje por Refuerzo basados
en redes neuronales artificiales. En este sentido, los
embeddings de grafos permiten aprender representa­
ciones vectoriales de baja dimensión, más adecuadas
para los algoritmos de aprendizaje automático, preser­
vando al mismo tiempo las características clave de los
grafos. Proponemos un marco para evaluar algoritmos
de Graph Embedding y su capacidad para preservar
la estructura y características relevantes de los grafos
mediante una métrica de validación interna, sin recur­
rir a tareas posteriores que requieran etiquetas para
el entrenamiento. Aplicando este marco con un prob­
lema concreto, se seleccionan, analizan y comparan
tres algoritmos que cumplen los requisitos necesarios:
Graph2Vec, GL2Vec y Wavelet Characteristics, donde
los dos últimos muestran un mejor comportamiento.

Palabras claves: Inteligencia Computacional, Apren­
dizaje por Refuerzo, Embeddings de grafos, GRL no
supervisado, Embedding de grafo entero.

1 Introduction

Generally, complex or critical real-world systems lack
determinism or dichotomy. Achieving a good compu­
tational solution and reasonable response times often
requires significant computing power. There may be
several factors that contribute to the complexity of
a system. For example, real-world replications may
have real-world consequences, or the amount of data
that needs to be processed may be large and incompre­
hensible to humans. Furthermore, complex systems
may involve interactions between its parts, forming
networks or graphs.

Graph analysis has attracted significant attention
nowadays as networks proliferate in the real world.
Graphs are used to represent information in various
domains, like social sciences: friendship and social net­
works [1], linguistics: word co-occurrence networks
[2], electronic commerce, reference networks of aca­
demic papers, biology: molecular and protein interac­
tion networks [3], transportation: logistics and vehicu­
lar traffic, among others.

-29-

mailto:mpiccoli@unsl.edu.ar

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

Understanding network systems is facilitated by
modelling interactions in graphs [4], Graph analysis
has received considerable attention in recent decades
because it enables us to understand and use the hidden
information they contain. According to [5], there are
four categories that summarize classical graph analysis
tasks:

1. Node classification: The objective is to label
each node in the graph based on either the la­
beled nodes or the network structure [6]. Two
approaches have been proposed: classification
methods that use random walks for label prop­
agation, and methods that extract features from
nodes and use classifiers for labeling.

2. Link prediction: This enables us to predict
missed or potential links in the future [7]. Dif­
ferent approaches can be employed, we found
similarity-based methods, maximum likelihood
models, and probabilistic models.

3. Clustering: This task is to identify similar enti­
ties within the network and group them together
[8]. Clustering methods comprise attribute-based
models as well as those that maximise distances
between clusters.

4. Visualization: This helps to understand the struc­
ture of the network and identify any changes over
time [9].

Efficient network analysis requires finding a concise
and effective representation of the data. A graph G
is defined as (V, E), where V is the set of graph ver­
tices / nodes, and E is the set of edges, each of which
represents the relationship between two nodes [10, 5].
Generally, G is represented by a matrix, the adjacency
matrix. Each element of the matrix indicates whether
the nodes are adjacent or not. A binary matrix repre­
sents unweighted edges, i.e. graphs whose edges do
not have weight. If each edge has weight, the matrix
is non-binary.

For large networks, the conventional graph repre­
sentation can lead to a bottleneck. Some of the typical
problems in this scenario include [11]:

1. High Computational Complexity: in general, the
adjacency matrix utilised to model relationships
between nodes tends to be high-dimensional and
sparsely populated [5]. Thus, most algorithms
for analysing or processing networks carry high
computational complexity.

2. Low parallelism: Representing network data in
a traditional manner presents serious difficul­
ties for the design and implementation of paral-
lel/distributed algorithms. The bottleneck arises
from the coupling of nodes in a network, as ex­
plicitly shown in E. Distributing these nodes to
different processes leads to high communication

costs and slows down the speedup ratio. Lim­
ited progress has been made in the graph paral­
lelization via subtle segmentation of large-scale
graphs [12], However, the success of these meth­
ods heavily relies on the underlying graph’s topo­
logical characteristics.

3. Machine Learning limitations: Machine Learning
methods typically assume that data samples are
represented by independent vectors, while net­
work data samples (i.e. nodes) are dependent on
each other through E. Additionally, graphs can
have variable dimensions and structures, which
can be a drawback when analysing a set of graphs.

Aside from the drawbacks already pointed out by [11],
the adjacency matrix representation for graphs may
contain redundant or noisy information and may have
varying dimensions if the problem comprises a set of
graphs or a graph that alters over time. A growing
approach to solve these issues is Graph Representation
Learning (GRL) methods [10]. These methods aim
to design or learn low-dimensional vector represen­
tations that enable encoding graph information using
structures that preserve it, including topology and node
features. These representations are commonly referred
to as Graph Embeddings. The basic idea is to learn
the dense and continuous representations of nodes in
a low-dimensional space. This approach aims to di­
minish noise and redundancy, preserving the intrinsic
structure and essential properties of graphs.

Many network analysis problems that are iterative
or combinatorial can be addressed in new vector repre­
sentation spaces by computing mapping functions, dis­
tance metrics or operations on the embedding vectors.
This results in a reduction of the complexity problem.
The elimination of coupling among the nodes allows
the possibility of developing good parallel computing
solutions for large-scale network analysis. Graph em­
bedding also allows for the application of machine
learning to network analysis.

Graph analysis can be a valuable subsidiary task
for reinforcement learning (RL), as has been demon­
strated in recent years by research such as [13, 14],
Modelling and adjusting the state/observation of the
agent is one of the key components of RL algorithms
and models. When tackling RL problems in which
the agent is present in a networked environment, in­
corporating a graph that details the network and its
relevant characteristics and properties can be a highly
promising approach. Given the unique characteristics
and requirements of this approach, it can be seen as a
fresh graph analysis task distinct from those previously
recognised. In this particular scenario, a ’whole graph’
representation is required, which allows the dimen­
sion to be reduced and standardised for use as input in
neural networks and other computational intelligence
algorithms composing RL agents [13, 14, 15].

This paper describes the new task mentioned above

-30-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

and its specific requirements for Graph Embedding.
We propose a framework to evaluate and compare
graph embedding algorithms and their ability to pre­
serve structure and relevant features. Following this
framework, and for a specific RL problem in graphs,
three state-of-the-art algorithms are selected, anal­
ysed and compared. All of them fulfil the necessary
requirements described. These are Graph2Vec[16],
GL2Vec[17] and Wavelets Characteristic!; 18].

The paper is organised as follows. The next sec­
tion provides the basic definitions and notations used.
Section 3 introduces GRL, its characteristics and ad­
vantages. Section 4 introduces RL as a new class of
graph analysis tasks that require GRL as a sub-task.
Section 5 proposes a framework for evaluating graph
embedding algorithms. Section 6 presents the analysis,
and Section 7 presents the results. Finally, Section 8
presents the conclusion and future work. Due to space
limitations, there is no specific section on related work;
these are referenced throughout the paper.

2 Preliminaries and Definitions

Since the definitions and notation used in graphs usu­
ally vary among authors, in this section we introduce
those used in this work.

Definition 1 (Graph). A graph G is a 3-tuple (V,E, <p),
where V is a set of vertices/nodes, E is a set of
edges/links, and <p is a function <p : ek —> (v¡,v7) that
assigns a pair of vertices v¡,v¡ e V to each edge ek e E.
It is said that when (p(ef) = ek is positively in­
cident on v¡ and negatively incident on Vj. Also, given
two arbitrary nodes v¡,vj e V, v¡ is adjacent to vj if
and only if Bek e E, <p(ek) = (v/, v7)-

A graph is called undirected if and only if Vv¡, Vj e
V, Vi is adjacent to Vj —> Vj is adjacent to v¡, i.e., when
adjacency relation is symmetric. Else, it is considered
directed.

Remark. Some authors consider the existence of par­
allel edges in graphs. Given a graph G = (V,E, <p),
two edges e¡, e¡ e E are said to be parallel if and only
if <p(e,-) = <p(e7), i.e., both edges are incident on the
same vertices and in the same way.

In addition, a loop is an edge ek e E such that
<p(e>) = (l A/) for a vertex v¡ e V, i.e., an edge that is
positively and negatively incident on the same vertex.

A graph without parallel edges and loops is called
a simple graph. From now on, in this work, graph is
understood as simple graph.

Definition 2 (Adjacency Matrix). A finite graph G =
(V,E, <p) can be represented as a |V| x |V| adjacency
matrix A, where each a¡j = 1 if v¡ is adjacent to v¡, and
0 otherwise.

Definition 3 (Weighted graph). A weighted graph is
a 4-tuple (V,E, <p, wf), where (V,E, <p) is a graph and

wf is a weight function wf : e¡ —> w¡ that assigns a
weight Wi e R to each edge e¡ e E.

A finite weighted graph can be represented as a
IV| x IV| weight matrix W, assigning w¡j = wf(ef) if
<p(ef) = and w¡j = 0 otherwise, i.e., assigning
to each component w¡j the weight assigned by the
weight function of the edge incident on v¡ (positively)
and vj (negatively), in case such edge exists. Further­
more, the nodes’ adjacency can be represented in this
same matrix, by considering v¡ is adjacent to Vj if and
only if Wij f 0.

Definition 4 (Featured graph). A featured graph is a
4-tuple (V,E,<p,x/), where (V,E,<p) is agraphandx/
is a feature function xf: v¡ —> x¡ that assigns a feature
x¡ to each node v¡ eV.

A finite featured graph can be represented by the
adjacency matrix of graph (V,E,<p) and a |V|-sized
feature vector X = [xi,X2,...,x¡y ¡].

Remark. A graph can be simultaneously weighted and
featured, defined as a 5-tuple (V,E, <p,wf,xf), and as
such it can be represented by its weight matrix W and
its feature vector X if it is finite.

Definition 5 (Line Graph). The line graph (or
edge-to-vertex dual graph) of a given graph G =
(y,E,<p), denoted L(G), is the graph (LV,LE,L(<p)),
such that LV = {v(e¡) : e¡ e E}, LE = {(e(-,v, e7) :
Bu,u' e V,tp(ei) = (u,v) A <p(ej) = (v,u'f} and
Lfp')(ei,v,ej') = (ei,ejf i.e., two vertices v(e;),v(G)
of L(G) are adjacent if and only if there exists a ver­
tex v of G on which e¡ is negatively incident and e¡ is
positively incident.

Remark. The elements of EV denoted as v(e¡) are only
syntactical terms inspired in [17].

Definition 6 (Line Graph of a Weighted Graph). The
line graph of a given weighted graph G = (V, E, <p,wf)
is the featured graph L(G) = (LV,LE,L(ç?),L(w/)),
where (LV,LE,L(<p)) is the line graph of (V,E, <p), and
L(w/) is the feature function L(vv/)(v(e(-)) =

Definition 7 (Line Graph of a Featured Graph). The
line graph of a given featured graph G = (V,E, <p,xf)
is the weighted graph L(G) = (LV,LE,L(ç?),L(x/)),
where (LV,LE,L(<p)) is the line graph of (V,E, <p), and
L(xf) is the weight function L(xf) (e¡, v, ej) = x/(v).

3 Graph Representation Learning

Since graphs enriched with node information are com­
plex and difficult structures to process or compute,
learning low-dimensional vector representations for
graphs has attracted much interest [10, 11, 5], espe­
cially when graphs retain important properties or fea­
tures. This can be used to analyse graphs or as input to
other algorithms, resulting in better performance and
lower cost.

-31 -

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

Learning efficient representations for structured data
is not an easy task. In [10], the authors describe sev­
eral successful models that have been developed for
specific types of structured data. A clear example is
sequential data, such as text or video. These have been
modelled by recurrent neural networks [19], which can
capture sequential information and produce efficient
representations that have been verified in automatic
translation and speech recognition tasks. Another ex­
ample is convolutional neural networks (CNN) [20]
based on structural criteria, which have achieved ex­
cellent performance in pattern recognition tasks such
as image classification or speech identification.

While these models have been very successful in
practice, they have been limited to certain types of
data, such as data with a simple relational structure, se­
quential data, or data that follows regular patterns. In
many contexts, however, data tends to follow complex
relational structures. This is the case for the graphs
we have presented [21], For structured data in graphs,
defining neural networks and other computational in­
telligence algorithms is challenging because the input
structures can be arbitrary and vary significantly be­
tween different graphs, even for nodes within the same
graph. Unlike images, audio and text, which have a
clear lattice structure, graphs have irregular structures.
This makes it difficult to generalise some mathemati­
cal operations on graphs. For example, it is not easy to
define convolution and pooling operations, which are
fundamental in convolutional neural networks (CNNs),
for graph data. By analogy with images, each pixel
has the same neighbourhood structure, and the same
weight filters can be applied to multiple locations of
the image being processed. In graphs, however, each
node may have a different neighbourhood structure.
This problem is known as the geometric problem of
deep learning [22],

Given these challenges and the widespread use of
graphs in real-world applications, there has been an in­
creased interest in applying learning methods to struc­
tured data in graphs. As a result, Graph Representation
Learning (GRL) methods have emerged [10]. They
aim to learn low-dimensional continuous vector repre­
sentations, also called Embeddings, for structured data
in graphs.

In general, GRL methods can be divided into two
classes of learning problems: unsupervised and su­
pervised GRL. The first family aims to learn low­
dimensional Euclidean representations that preserve
the structure and features of an input graph. The sec­
ond family also learns low-dimensional Euclidean rep­
resentations, but for a specific task of subsequent pre­
diction, such as node or graph classification. They do
this on data labelled for this purpose.

As defined in [10], Graph Embedding is a task
that aims to learn a mapping from discrete graphs
to a continuous domain. Formally, given a collec­
tion of n weighted graphs {G¡}”=1, with each G¡ =

<pi, wfi), the goal is to learn a low-dimensional
vector representation Z¡ (embeddings) for each graph
G¡, such that important graph properties are preserved
in the embedding space. For example, if two graphs
are similar according to their original representation,
their learned vector representations should be also be
similar. Let ZeR"xá denote the graph embedding ma­
trix. In practice, we often want low-dimensional em­
beddings (d C max{|Vi|}”=1) for scalability reasons.
That is, graph embedding can be seen as a dimension­
ality reduction technique for graph structured data,
where the input data is defined on a non-Euclidean,
high-dimensional, discrete domain.

It is worth noting that, although we present the em­
bedding task as a graph embedding task, it can also be
extended to node tasks and edge tasks.

As it was defined for featured graphs, they can have
node attributes (e.g. demand or availability of mer­
chandise in logistics problems; content of articles in
citation networks), commonly called node features. If
there is more than one feature, they can be represented
as X e /G 'd, where xd is the number of features
stored in each node. Node features can provide useful
information about a graph. Some graph embedding
algorithms exploit this information by learning map­
pings:

(W,X)^Z

Note that depending on whether node features are
used in the embedding algorithm, the learned represen­
tation may capture different aspects of the graph. In­
corporating node features in embeddings allows both
structural and semantic information to be captured
from the graph. If node features are not used, the em­
beddings will only preserve the structural information
of the graph.

3.1 Types of Graph Embedding

The result of graph embedding is a vector or set of
low-dimensional vectors representing a graph or part
of it. As described in [23], different types of graph
embeddings can be classified according to the granu­
larity of the vector set and the interpretation of what it
represents. Each type of embedding enables different
applications. The categories are:

• Node Embedding: This is the most common con­
figuration for embedding outputs and represents
each node as a vector in a low-dimensional space.
Nodes that are close together in the graph are
embedded to have similar vector representations.

• Edge Embedding: Intended to represent an edge
as a low-dimensional vector, edge embedding is
useful for knowledge graphs [24] and tasks re­
lated to links between nodes. It is particularly
useful for analysing graphs related to edges, such

-32-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

as link prediction, entity and relationship predic­
tion in knowledge graphs, and more.

• Hybrid Embedding: It is the combination of
different components of the graph, such as nodes
+ edges (substructure) or nodes + communities
[25], into a single embedding.

Two additional challenges arise in this context:
how to generate the subgraphs or communities
to be embedded, and how to deal with the het­
erogeneity of the embedding targets (i.e. nodes,
edges, subgraphs and communities can be embed­
ded simultaneously).

• Whole Graph Embedding: whole graph embed­
ding is typically used for small graphs, where
each graph is represented as a vector and similar
graphs are embedded side by side in the output
vector space. This approach benefits the graph
classification task by providing a direct and effi­
cient solution for computing similarities between
graphs [26].

However, it presents challenges in capturing the
properties of a complete graph and finding a bal­
ance between the expressiveness of the learned
embedding and the efficiency of the embedding
algorithm [26].

Finding an efficient transformation allows:

• Preserve relevant information: Preserve the in­
trinsic information of the structure and relevant
properties by reducing noise or redundant infor­
mation. The selection or prioritization of the
information to be preserved, as previously dis­
cussed, is a critical aspect of the process.

• Dimensionality reduction: Discover graph rep­
resentations in a lower-dimensional space.

• Dimension standardization: In certain applica­
tions, input graphs can have a varying dimension,
or a singular graph may change dimensions with
time. For many analysis tasks, particularly for
their use as input in neural networks and rein­
forcement learning algorithms, having a dimen­
sion representation that is standardized and un­
varying over time becomes necessary.

• Enhancing computational performance and
reducing costs: The transformation to a lower
dimensional vector space makes it possible to
reduce the complexity of many iterative or com­
binatorial problems in network analysis, and to
solve them using mapping functions, distance
metrics or operations on embeddings.

Eliminating coupling between nodes enables the
utilization of high-performance computing solu­
tions for large-scale network analysis.

• Application of Computational Intelligence Al­
gorithms: The vector representation can be used
as input in Computational Intelligence operations
and algorithms that only accept matrix data, like
neural networks, genetic algorithms, and others.

In summary, graph embedding is a robust technique
that can enhance the precision and efficiency of ma­
chine learning algorithms in graph-related tasks.

4 Graph Representation Learning for Re­
inforcement Learning

Reinforcement Learning (RL) is a emerging area of
research that requires the application of graph analysis
as a subsidiary task.

Several studies have combined RL techniques with
graph representation learning for analysis or mining
tasks. These works can be classified into two cate­
gories [27]: (1) Solving RL problems using graph
structures, and (2) Solving graph mining tasks with
RL methods.

The second category is referred to as Graph RL in
[27], and should not be confused with Graph Represen­
tation Learning (GRL). Graph RL uses RL techniques
to generate embeddings. In contrast, GRL uses graph
representations as inputs or as models to implement
and solve RL algorithms.

Our work belongs to the first category. It aims to
generate graph embeddings to be used as input for RL
algorithms to solve the underlying problems.

As described by [13] and [14], RL methods have
mainly been applied to simple decision-making prob­
lems, primarily related to game solving, using states
represented with fixed-dimensional matrices derived
from image or sensor processing, and basic decisions.

The challenge ahead is to adapt actor-critic meth­
ods to address a wide range of real-world problems
that hold scientific and social significance. Reinforce­
ment learning (RL) has the potential to enhance the
quality, efficiency, and cost-effectiveness of important
processes such as education, healthcare, transportation,
and energy management. To achieve this, it is crucial
to address the design decisions and adjustments in­
volved in RL implementation. The architecture must
be designed by selecting appropriate learning algo­
rithms, state and action representations, training pro­
cedures, hyperparameter settings, and other design
details as mentioned in [14],

The agent’s state or observation is a crucial com­
ponent to design and incorporate in these models. In
problems of reinforcement learning where a network
is present in the agent’s environment, including the
graph that describes the network or a fitting representa­
tion of it in the agent’s observation holds a significant
promise. The inclusion of the graph or a representation
can enhance the agent’s environment perception and,
as a result, accelerate and improve its learning.

-33-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

4.1 Specific requirements

RL is considered a new class of graph analysis tasks
due to its distinctive characteristics and requirements
compared to classic tasks mentioned previously. It is
highly important to identify appropriate transforma­
tion algorithms for this specific task. It is essential to
obtain a proper representation of each whole graph,
which enables its utilization as input in neural net­
works and other computational intelligence algorithms
that constitute the RL agents [13, 14, 15].

Consequently, graph embedding for implementation
in RL algorithms requires:

1. Unsupervised GRL: data in reinforcement learn­
ing tasks are unlabelled. The objective is to create
a representation based solely on the structure of
each network and the relevant features to be kept.
As a result, unsupervised embedding algorithms
are required.

2. Whole Graph: the need is for a representation
of the graph as a whole. Thus, algorithms that
rely on embedding individual nodes, edges or
substructures are not appropriate.

3. Preserves structure and characteristics: pre­
serving the network structure and relevant proper­
ties of each node and/or edge is essential. Choos­
ing which characteristics to preserve is a critical
part of the process.

4. Fixed dimension: In the process of modelling
environments for reinforcement learning, it may
be necessary to represent multiple graphs with
varying dimensions or a single graph that changes
dimensions over time. To employ these graphs
as input for neural networks and reinforcement
learning algorithms, it is imperative to have a
fixed-dimension representation that remains con­
stant over time. Therefore, algorithms that pro­
duce fixed-dimensional embeddings are required.

5 A Framework for Evaluating Graph
Embedding Algorithms

A universally applicable metric for quantifying the
performance of a graph embedding algorithm or the
quality of the reduced graph does not exist. [28] When
validating or comparing graph embedding operators
and algorithms, researchers typically achieve this by
reconstructing the original graph or by assessing their
performance on subsequent analysis tasks. [28] Typ­
ically, these analyses only examine classical graph
analysis tasks, including node or graph classification,
node clustering, and link prediction.

In this context, an internal validation of the algo­
rithms is proposed based on a similarity hypothesis,
i.e., if two graphs are similar when compared us­
ing their typical high-dimensional discrete representa­
tion, their low-dimensional continuous representations

should also be similar. To test this, we assess the de­
gree of ’’conservation” of a distance function defined
on the initial graphs. This distance function can be cus­
tom defined to prioritize the features to be preserved,
both topological and attribute features of each node.
Subsequently, this validation can serve as a metric to
compare different algorithms.

It is a fact that it is feasible to conduct empirical
tests on the efficacy of a specific embedding in a task
featuring an external validation scheme. Nevertheless,
all contender embedding algorithms ought to undergo
these external validation tests. The duration of time
spent on each embedding algorithm is already signif­
icant, and it is also susceptible to potential training
errors such as underfitting, overfitting, and a lack of
regularisation. The aforementioned statement holds
particularly true in RL. Unlike more traditional assign­
ments such as classification or regression, adequate
algorithms are not yet available to counter these poten­
tial deficiencies. The suggested framework is evidently
applicable and modifiable for any type of embedding
and task.

In summary, the proposed approach is an abstract
framework for validating and comparing graph embed­
ding algorithms. The steps involved are:

1. Definition of the Graph Set and Relevant Fea­
tures: The set of input graphs and their corre­
sponding attributes or features to preserve should
be clearly defined. This definition will depend on
the particular problem to be solved or the subse­
quent analysis task, therefore it is important to
provide clear and specific detail.

2. Distance Function Definition: A distance func­
tion needs to be established for the original rep­
resentation of graphs (in terms of the properties
to be preserved), as well as for the vector repre­
sentations that are generated by the algorithms.
The most commonly used distance metric for the
transformed space is the Euclidean measure, al­
though it is not the only one.

3. Algorithm selection: The selection of embed­
ding algorithms that meet the requirements de­
fined in step one for a specific task or problem is
necessary.

4. Hyper Parameter Definition: Hyperparameters
should be defined for the selected algorithms, par­
ticularly the embedding dimension (d).

5. Embedding Generation: Each model must be
trained by each algorithm and then calculate the
graph embeddings for each of the trained algo­
rithms.

6. Distance Calculation: Using the functions de­
fined, the distances between graphs must be cal­
culated in all representations.

-34-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

7. Correlation Analysis: To perform the internal
validation of the algorithms, based on the con­
servation of the distance function defined on the
original graphs, a correlation analysis with the
distances between the corresponding embedding
vectors is proposed. This analysis aims to confirm
the correlation between the distances calculated
from the original representation and the distances
calculated from the embeddings, also evaluating
the strength of that correlation. A stronger cor­
relation between these distance distributions im­
plies that the preservation of the initial distance
in the learned representation is achieved, mean­
ing that the most remote or distinct graphs in the
original discrete domain are also distant in the
created continuous space.

It is recommended to utilize both Pearson’s correla­
tion coefficient r (parametric) and Spearman’s correla­
tion coefficient p (non-parametric) to strengthen the
analysis’s robustness. If the Pearson correlation co­
efficient is close to 1, then the distances are linearly
correlated, implying a certain proportionality between
the distances of the two spaces. If the Pearson coef­
ficient approaches -1, the transformation will invert
distances in a linear fashion, resulting in distant graphs
in one space appearing close in the other, and vice
versa. If Pearson’s coefficient equals 0, then distances
are not linearly correlated, though non-linear corre­
lation may still exist. Therefore, it is recommended
to also use Spearman’s rank correlation coefficient,
which is non-parametric and can be interpreted simi­
larly to Pearson’s, complementing and strengthening
the analysis.

6 Experimentation

Following the proposed evaluation framework and ad­
dressing a specific problem, three algorithms were se­
lected, analyzed, and compared: Graph2Vec, GL2Vec,
and Wavelets Characteristics. All three algorithms
meet the necessary requirements described above.

The tests were coded in Python using the NetworkX
[29] and Karate Club [30] libraries. The source code
can be found at [31].

6.1 Graph set and relevant feature definition

The collection of graphs to be employed comprises
examples of the vehicle routing problem (VRP) that
can be solved through RL. VRP is a more extensive
type of the Travelling Salesman Problem (TSP) that
considers multiple vehicles in its routing model. There
is a fleet of identical vehicles available to serve a set of
geographically scattered customers centered around a
primary depot [32, 33]. Therefore, VRP is concerned
with optimal service provision to all its customers.
Since its formulation in 1959, VRP modelling has
been extensively studied in the context of operational

research, industrial engineering, logistics, and trans­
portation.

To model this problem, a weighted and featured
graph is used, where each node represents a location on
the future route (including customers and the central
depot), and the edges are the travel times between
each of these locations. Each graph is represented by
a weighted matrix W that represents the travel times at
each weight, and a feature vector X that represents the
customer’s demands.

6.2 Distance Functions Definition

The distance between graphs in their original repre­
sentation is defined by the graph edit distance, a def­
inition of which can be found in [34], The strategy
that follows is similar to Levenshtein’s edit distance
for strings, where a graph is subjected to replacements,
insertions or deletions of nodes or edges in order to ob­
tain another graph that proves to be isomorphic to the
second one. Although this metric originally focuses on
the topology of the graph, it is possible to parameterise
it using differential costs for insertions, deletions and
replacements.

Given two arbitrary weighted featured graphs Gi =
(Vi,Eb<pi,w/i,x/i) and G2 = ÇV2,E2, <p2, wf2,xf2),
the costs of the edit operations cost(ppobj), where
op & {subst,del, ins} and obj & {node, edge}, are de­
fined as follows

cost(substnode(vi &V1,V2 &V2')') = |xfl(vi) -xf2(v2')\
cost(delnode(yi € Vi)) = |xfi(vi)|
cost(insnode(y2 & V2)) = |xf2(v2)I
cost(substedge(ei &E1,e2& E2)) = |vv/i (<?i) - wf2(e2)|
cost(deledge(ei & Ei)) = |wfi(ei)|
cost(insedge(e2 & E2)) = |wf2(e2)|

Also, the metric used to calculate the distance between
embeddings is the Euclidean distance.

6.3 Selected Algorithms

As stated previously, all three algorithms meet the
essential criteria outlined earlier. Each one is:

Graph2Vec This algorithm is detailed in [16]. It
utilises word and document embedding tech­
niques introduced in the area of Natural Language
Processing [35]. The algorithm undertakes an
analogy wherein an whole graph is considered as
a document and the rooted subgraphs (spanning a
neighbourhood of a certain degree) around each
graph node are the words that make up the doc­
ument. By utilizing the analogy of documents
and words with graphs and subgraphs, document
embedding models can be used to learn graph em­
beddings. Given a dataset of graphs, Graph2Vec
considers the set of all rooted subgraphs (the

-35-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

neighbourhood) around each node (up to a cer­
tain degree) as a vocabulary. Subsequently, the
algorithm proceeds with the Doc2Vec skip-gram
training procedure [36] to autonomously acquire
the representations of each graph in the dataset.

GL2Vec This algorithm, proposed in [17], aims to
improve Graph2Vec by addressing its two limita­
tions: (1) it cannot handle the labels of the edges,
and (2) structural information is not properly pre­
served, since Graph2Vec mixes information from
node labels with structural information when ex­
tracting subgraphs. To address these limitations,
the authors suggest utilizing the line graph (a
dual edge-to-vertex graph) of G. The nodes of
L(G) incorporate the properties of the edges and
node labels of G, thus preserving both types of
information. This approach follows Definition 6
and is ideal for handling G’s structural informa­
tion. Embeddings are generated for both G and
L(G), and an embedding comprises the original
graph embedding concatenated with that of the
linear graph. This enhances the structural infor­
mation of G that Graph2Vec disregards. There­
fore, the technique is called GL2Vec (Graph and
Line graph to vector).

Wavelet Characteristics This algorithm was pro­
posed in [18]. The process utilises the characteris­
tic functions of node attributes with wavelet func­
tion weights to describe node neighbourhoods.
These node-level features are grouped using mean
binning to create graph-level statistics.

All three selected algorithms utilize an embedding
dimension of 128, and their corresponding hyperpa­
rameters can be located in the code.

7 Experimental Results

For each chosen algorithm, the model was trained, and
the graph embeddings were calculated. In all instances,
the functions outlined in Section 6.2 were utilized to
compute the distances between the graphs and embed­
dings. In addition, the results were analysed using both
Pearson’s and Spearman’s correlation coefficients.

The correlation analysis of the obtained results is
displayed in Table 1, whereas Figure 1 depicts the
graphical representation of both correlation coeffi­
cients. It is noted that both correlation coefficients
show a similar trend in all cases.

Table 1: Correlation analysis results
Graph edit dist. vs.

Euclidean Distance for Embeddings using:
Graph2Vec GL2Vec Wavelet

Pearson’s r
Spearman’s p

0.3349 0.5826
0.4336 0.6087

0.5970
0.6337

The results indicate that the Wavelet Characteris­
tics algorithm had the highest correlation coefficients,
achieving a Pearson coefficient of 0.597 and a Spear­
man coefficient of 0.63. GL2Vec yielded satisfactory
results, exhibiting correlation coefficients of 0.58 and
0.608 for Pearson and Spearman, respectively. Its per­
formance surpassed that of Graph2Vec, aligning with
the theoretical framework suggested by its creators

(a) Pearson

Spearman rank correlation
GraphDist Graph2Vec GL2Vec WaveletCh

(b) Spearman

Figure 1: Pearson and Spearman Correlation Coeffi­
cients

8 Conclusions and Future Works

This paper presents a framework for evaluating and
comparing Graph Embedding algorithms, emphasising
their aptitude to retain structure and relevant features
through internal validation. It outlines the motivation
and introduces the fundamental concepts of Graph
Representation Learning. Further to this, classical
graph analysis tasks are specified, and reinforcement
learning (RL) is highlighted as an emerging field that
can benefit from graph analysis as an subsidiary task.

-36-

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

Following this framework, and for a specific Re­
inforcement Learning problem in graphs, three algo­
rithms available in the state of the art that meet the
defined requirements have been examined. Especially,
the Wavelet Characteristics and GL2Vec algorithms
have yielded promising results.

As a future work, we plan to implement an RL
Agent for the VRP problem defined by utilizing the
algorithms that demonstrate the best correlation. This
will enable external validation of the algorithms in the
specific task. It is also planned to extend the analysis
to graphs containing fuzzy data, including the mod­
elling of demand and travel times using fuzzy numbers.
By using fuzzy numbers, it will be possible to incorpo­
rate uncertainty and generate more robust and adaptive
models. Finally, another opportunity is to utilise Graph
Embedding to represent actions in RL.

Competing interests

The authors have stated that they do not have any competing
interests.

Authors’ contribution

The authors confirm contribution to the paper as follows: ES:
Conceptualization, Methodology, Data curation, Investiga­
tion, Software, Visualization, Validation, Writing-Reviewing
and Editing; CC: Conceptualization, Methodology, Supervi­
sion, Validation, Writing-Reviewing and Editing; FP: Valida­
tion, Writing-Reviewing and Editing. All authors reviewed
the results and approved the final version of the manuscript.

References
[1] L. Freeman, “Visualizing social networks,” Journal of

social structure, vol. 1, no. 1, p. 4, 2000.

[2] R. Ferrer I Cancho and R. Solé, “The small world of
human language,” Proc. Biological sciences, vol. 268,
no. 1482, p. 2261—2265, November 2001. [Online].
Available: https://d0i.0rg/l 0.1098/rspb. 2001.1800

[3] T. Theocharidis, S. van Dongen, A. Enright, and
T. Freeman, “Network visualization and analysis of
gene expression data using biolayout expressed),”
Nature Protocols, vol. 4, no. 10, pp. 1535 -1550,
2009. [Online], Available: https://doi.org/10.1038/
nprot.2009.177

[4] J. Leskovec, J. Kleinberg, and C. Faloutsos,
“Graph evolution: Densification and shrinking
diameters,” ACM Trans, on Knowl.Discovery from
Data, vol. 1, no. 1, pp. 2-43, 2007. [Online]. Available:
https://doi.org/10.1145/1217299.1217301

[5] P. Goyal and E. Ferrara, “Graph embedding techniques,
applications, and performance: A survey,” Knowledge-
Based Systems, vol. 151, pp. 78-94, 2018. [Online].
Available: https://doi.Org/10.1016/j.knosys.2018.03.
022

[6] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk:
Online learning of social representations,” in Proc,
of the 20th ACM SIGKDD Int. Conf, on Knowledge
Discovery and Data Mining, ser. KDD ’14. New

York, USA: Assoc, for Computing Machinery,
2014, p. 701-710. [Online], Available: https:
//doi.org/10.1145/2623330.2623732

[7] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu,
“Asymmetric transitivity preserving graph embedding,”
in Proc, of the 22nd ACM SIGKDD Int. Conf,
on Knowledge Discovery and Data Mining, ser.
KDD ’16. New York, USA: Assoc, for Computing
Machinery, 2016, p. 1105-1114. [Online]. Available:
https://doi.org/10.1145/2939672.2939751

[8] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “A
min-max cut algorithm for graph partitioning and
data clustering,” in Proc. 2001 IEEE Int. Conf, on
DataMining, 2001, pp. 107-114. [Online], Available:
https://doi.org/10.1109/ICDM.2001.989507

[9] D. Wang, P. Cui, and W. Zhu, “Structural deep network
embedding,” in Proc, of the 22nd ACM SIGKDD Int.
Conf, on Knowledge Discovery and Data Mining, ser.
KDD ’16. New York, USA: Assoc, for Computing
Machinery, 2016, p. 1225-1234. [Online]. Available:
https://doi.org/10.1145/2939672.2939753

[10] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and
K. Murphy, “Machine learning on graphs: A model
and comprehensive taxonomy,” Journal of Machine
Learning Research, vol. 23, no. 89, pp. 1 -64, 2022.
[Online], Available: http://jmlr.org/papers/v23/20-852.
html

[11] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on
network embedding,” IEEE transactions on knowledge
and data engineering, vol. 31, no. 5, pp. 833 -852,
2018.

[12] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, “Net-
workit: A tool suite for large-scale complex network
analysis,” Network Science, vol. 4, no. 4, pp. 508 -530,
2016.

[13] R. Sutton and A. Barto, Reinforcement learning: An
introduction. MIT press, 2018.

[14] A. G. Barto, R. S. Sutton, and C. W. Anderson,
“Looking back on the actor-critic architecture,” IEEE
Trans.on Sy st., Man and Cybernetics: Systems,
vol. 51, no. 1, pp. 40-50, 2021. [Online], Available:
https://doi.org/10.1109/TSMC.2020.3041775

[15] E. Schab, C. Casanova, and F. Piccoli, “Solving
an instance of a routing problem through reinforce­
ment learning and high performance computing,” in
Cloud Computing, Big Data & Emerging Topics,
E. Rucci, M. Naiouf, F. Chichizola, L. De Giusti, and
A. De Giusti, Eds. Cham: Springer Int. Publishing,
2022, pp. 107-121.

[16] A. Narayanan, M. Chandramohan, R. Venkatesan,
L. Chen, Y. Liu, and S. Jaiswal, “graph2vec: Learning
distributed representations of graphs,” 2017.

[17] H. Chen and H. Koga, “G12vec: Graph embedding
enriched by line graphs with edge features,” in
Neural Information Processing, T. Gedeon, K. W.
Wong, and M. Lee, Eds. Cham: Springer Int.
Publishing, 2019, pp. 3 -14. [Online], Available:
https://doi.org/10.1007/978-3-030-36718-3_l

[18] B. Rozemberczki and R. Sarkar, “Characteristic func­
tions on graphs: Birds of a feather, from statistical
descriptors to parametric models,” 2020.

-37-

https://d0i.0rg/l
https://doi.org/10.1038/
https://doi.org/10.1145/1217299.1217301
https://doi.Org/10.1016/j.knosys.2018.03
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1109/ICDM.2001.989507
https://doi.org/10.1145/2939672.2939753
http://jmlr.org/papers/v23/20-852
https://doi.org/10.1109/TSMC.2020.3041775
https://doi.org/10.1007/978-3-030-36718-3_l

Journal of Computer Science & Technology, Volume 24, Number 1, April 2024

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical
review of recurrent neural networks for sequence learn­
ing,” 2015.
Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A
survey of convolutional neural networks: Analysis,
applications, and prospects,” IEEE Transactions on
Neural Networks and Eearning Systems, vol. 33,
no. 12, pp. 6999-7019, 2022. [Online]. Available:
https://doi.org/10.1109/TNNLS.2021.3084827
A.-L. Barabási, “Network science,” Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 371, no. 1987,
p. 20120375, 2013.
M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and
P. Vandergheynst, “Geometric deep learning: Going
beyond euclidean data,” IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 18-42. 2017. [Online].
Available: https://doi.Org/10.l 109/MSP.2017.2693418
H. Cai, V. W. Zheng, and K. Chang, “A comprehensive
survey of graph embedding: Problems, techniques,
and applications,” IEEE Transactions on Knowledge
& Data Engineering, vol. 30, no. 09, pp. 1616-1637,
sep 2018. [Online], Available: https://doi.org/10.1109/
TKDE.2018.2807452
A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A
semantic matching energy function for learning with
multi-relational data: Application to word-sense disam­
biguation,” Machine Learning, vol. 94, pp. 233 -259,
2014.
X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang,
“Community preserving network embedding,” in Proc,
of the AAAI Conf, on Al, vol. 31, no. 1, 2017.
S. F. Mousavi, M. Safayani, A. Mirzaei, and H. Ba-
honar, “Hierarchical graph embedding in vector space
by graph pyramid,” Pattern Recognition, vol. 61, pp.
245-254, 2017.
M. Nie, D. Chen, and D. Wang, “Reinforcement learn­
ing on graphs: A survey,” 2023.
D. Grattarola, D. Zambón, F. M. Bianchi, and
C. Alippi, “Understanding pooling in graph neural
networks,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1-11, 2022. [Online]. Available:
https://doi.org/10.1109/TNNLS .2022.3190922
A. A. Hagberg, D. A. Schult, and P. J. Swart, “Ex­
ploring network structure, dynamics, and function us­
ing networkx,” in Proc, of the 7th Python in Science

Conf, G. Varoquaux, T. Vaught, and J. Millman, Eds.,
Pasadena, CA USA, 2008, pp. 11 - 15.

[30] B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate Club:
An API Oriented Open-source Python Framework for
Unsupervised Learning on Graphs,” in Proc, of the
29th ACM Int. Conf, on Information and Knowledge
Management (CIKM ’20). ACM, 2020, p. 3125-3132.

[31] E. A. Schab, “estebanschab/RL-GraphEmbeddings:
Release for publication in JCC2023,” Apr. 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.
7830059

[32] G. Clarke and J. W. Wright, “Scheduling of
vehicles from a central depot to a number of
delivery points,” Operations Research, vol. 12,
no. 4, pp. 568 -581, 1964. [Online], Available:
http://www.jstor.org/stable/167703

[33] M. Asghari and M. Mirzapour Al-e-hashem, “Green
vehicle routing problem: A state-of-the-art review,” Int.
Journal of Production Economics, vol. 231, p. 107899,
2021. [Online]. Available: https://doi.0rg/lO.lOl6/j.
ijpe.2020.107899

[34] B. Jain and K. Obermayer, “Graph quantization,”
Computer Vision and Image Understanding, vol.
115, no. 7, pp. 946-961, 2011. [Online]. Available:
https ://doi.org/10.1016/j .cviu. 2011.03.004

[35] Q. Le and T. Mikolov, “Distributed representations of
sentences and documents,” in Int. Conf, on machine
learning. PMLR, 2014, pp. 1188 -1196.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” Advances in neu­
ral information processing systems, vol. 26, 2013.

Citation: E. Schab, C. Casanova and F. Piccoli.
Graph Representations for Reinforcement Learning.
Journal of Computer Science & Technology, vol.
24, no. 1, pp. 29-38, 2024.
DOI: 10.24215/16666038.24.e03
Received: April 15, 2023 Accepted: January 10,
2024.
Copyright: This article is distributed under the
terms of the Creative Commons License CC-BY-
NC-SA.

-38-

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.Org/10.l
https://doi.org/10.1109/
https://doi.org/10.1109/TNNLS
https://doi.org/10.5281/zenodo
http://www.jstor.org/stable/167703
https://doi.0rg/lO.lOl6/j

