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ABSTRACT

The increased interest of consumers in probiotic foods requires a deeper knowledge on the possible interactions with
drugs, because their pharmacological properties could be modified. In this context, these studies are relevant for drugs
such as acenocoumarol, whose dosage must be controlled due to, among other factors, food-drug interactions.
Acenocoumarol is an oral anticoagulant with a narrow therapeutic range. The aim of the present research is to evaluate, in
vitro, the effect of bifidobacteria on acenocoumarol. The drug was incubated with Bifidobacterium bifidum CIDCA 5310 or
Bifidobacterium adolescentis CIDCA 5317 in MRS broth at 37◦C for 24 h in anaerobic conditions. The effect of incubation with
sterilized spent culture supernatants (SSCS) was also evaluated. Analysis by RP-HPLC showed that both bifidobacterial
strains reduced the area of the acenocoumarol peak and two new peaks were evidenced. In addition, a decrease in the
intensity of the bands at 1650, 1390 and 1110/cm was observed in the FTIR spectroscopic determinations. Moreover, a new
band appeared at 1720/cm. No effect on the drug was observed when incubation was performed with SSCS. The present
study showed a significant change in the concentration of the anticoagulant after incubation with bifidobacteria and results
are compatible with biomodification of the drug due to enzymatic activity of bifidobacteria.
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INTRODUCTION

Probiotic microorganisms have been extensively studied, evi-
dencing many beneficial properties when administrated in
appropriate doses to the host. To highlight some of them, antiox-
idant activity, enhanced immune response and prevention of
diseases caused by pathogenic bacteria can be mentioned (Joung

et al. 2021; Kim et al. 2018; Plaza-Diaz et al. 2019; Cruz et al. 2021;
Xia et al. 2021).

It is worth noting that probiotics have shown the ability to
modify drug pharmacokinetics (Kato et al. 2007; Lee et al. 2012;
Matuskova et al. 2014; Stojančević et al. 2014; Kim et al. 2018).
In an in vivo assay in rats, an increase in amiodarone bioavail-
ability was observed in animals administered with Escherichia
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coli strain Nissle 1917 (Matuskova et al. 2014). Similar results
were observed when nifedipine was administered concomi-
tantly with Lactobacillus casei (Kato et al. 2007). On the other hand,
the metabolic activity of probiotics on sulfasalazine was demon-
strated, although this activity did not alter the blood concentra-
tions compared to the control group of rats which did not receive
the probiotic strains (Lee et al. 2012).

Probiotics could modify pharmacokinetics by affecting either
the permeability of the intestinal epithelium or the activity of
cytochromes, which are mainly responsible for the metabolism
of many drugs (Matušková et al. 2011, 2014; Selwyn et al. 2016).
Additionally, indirect effects of probiotic microorganisms, such
as modification of intestinal microbiota, also contribute to the
metabolization of many xenobiotics (Sousa et al. 2008; Sto-
jančević et al. 2014; Jourova, Anzenbacher and Anzenbacherova
2016). Many studies describe the interaction with drugs of bac-
teria residing in the human gut, and how they can affect their
pharmacodynamics and pharmacokinetics (Sousa et al. 2008;
Jourova, Anzenbacher and Anzenbacherova 2016; Wilkinson,
Ilhan and Herbst-Kralovetz 2018). It has been described, for
example, that the action of bacterial reductases and hydrolases
can generate nonpolar compounds (Sousa et al. 2008). The large
number and variety of microorganisms in the intestine would
place this organ at the same level as the liver in terms of drug
metabolism (Stojančević et al. 2014).

Acenocoumarol is an anticoagulant derived from 4-
hydroxicoumarin. It is structurally similar to warfarin but
it presents a nitro group in the 4´ position (Thijssen, Baars
and Reijnders 1983; Saraeva et al. 2007). Acenocoumarol is
a vitamin K antagonist that inhibits the enzyme vitamin K
epoxide reductase, thus interfering in the carboxylation of the
coagulation factors (Militaru et al. 2015). It is one of the most
widely used oral anticoagulants after warfarin (Gschwind et al.
2013; Militaru et al. 2015) and the commercial presentations
are racemic mixtures of S (-) and R (+) enantiomers. The R
form elicities most of the therapeutic effects due to its longer
half-life, compared to the S form.

Metabolism of acenocoumarol is carried out mainly by
cytochrome P4502C9 (CYP2C9) and in a lesser extent by
cytochromes CYP1A2 and CYP2C19 (Tassies et al. 2002; Ufer
2005). In the first phase of metabolism, acenocoumarol is bio-
transformed to 6- and 7-hydroxy-acenocoumarol, amine and
acetamide acenocoumarol, and two diastereomeric alcohols.
In addition, 8-hydroxy-acenocoumarol has been reported as a
metabolite of minor quantitative importance. This hydroxyla-
tion is CYP- dependent (Saraeva et al. 2007).

Acenocoumarol presents a narrow therapeutic range and
thus, patients under anticoagulant therapy have to be moni-
tored frequently for correct dosage (Trejo 2004; Keeling 2017).
Several intra- and inter-individual factors like body weight, sex,
age and polymorphisms in genes involved in the drug or vita-
min K metabolism affect the response to anticoagulant treat-
ment (Wadelius et al. 2004; Saraeva et al. 2007; Militaru et al.
2015; Cullell et al. 2020). The interaction of oral anticoagulants
with foods and/or concomitant treatment with other medica-
tions has also been described (Vranckx, Valgimigli and Heid-
buchel 2018). Nevertheless, there is no scientific evidence to sup-
port the interaction between oral anticoagulants and probiotic
foods.

Microorganisms belonging to the genus Bifidobacterium early
colonize the intestine of newborns and remain as part of the
commensal protective microbiota in adults. Different species of
this genus are frequently found in probiotic food formulations
(Bottacini et al. 2014; O’Callaghan and van Sinderen 2016).

Intra- and extra-cellular enzymes such as hydrolases, reduc-
tases, epimerases and mutases have been described in Bifidobac-
terium (Nakamura et al. 2002; Manasian et al. 2020). These find-
ings place this genus in a prominent position in the degradation
of food ingredients and exogenous substances, thus contribut-
ing to the beneficial effects on human hosts (Pokusaeva, Fitzger-
ald and Van Sinderen 2011; Jung et al. 2020; Manasian et al. 2020;
Modrackova et al. 2020; Dias de Queirós et al. 2020). However,
there are no reports on the interaction of bifidobacteria with oral
anticoagulants.

The aim of this work was to study, in vitro, the effect of bifi-
dobacteria on acenocoumarol. Considering that nowadays lots
of people are switching their dietary habits by increasing con-
sumption of probiotic foods, the present study is relevant to
understand the effect of those foods on consumers that are also
under anticoagulant therapy.

MATERIALS AND METHODS

Bacterial strains and growth conditions

A total of two bacterial strains from the CIDCA collection were
selected: Bifidobacterium bifidum CIDCA 5310 and Bifidobacterium
adolescentis CIDCA 5317 (Pérez, Minnaard Disalvo and De Antoni
1998).

Bacteria were stored at −80◦C with 10% w/v glycerol as cry-
oprotectant. Frozen bacterial suspensions were thawed, inocu-
lated in MRS broth (Biokar Diagnostics, Beauvais, France), sup-
plemented with 0.05% w/v L-cysteine (final concentration) and
incubated at 37◦C for 48 h in anaerobiosis (AnaeroPackTM anaer-
obic system, Mitsubishi Gas Chemical America, Inc. New York,
NY). For the experiments, bacteria were inoculated (1% v/v) in
the same medium and incubated for 24 h in the conditions spec-
ified above.

Acenocoumarol

Stock (100x) solutions of acenocoumarol (Laboratories Bagó, La
Plata, Argentina) were prepared by dissolving 16 mg of drug in 1
mL of dimethylformamide (DMF) (Laboratories Anedra, Buenos
Aires, Argentina) and filtering the resulting solution through a
0.45 μm pore size membrane.

Effect of acenocoumarol on bacterial growth

Growth curves of both microorganisms were studied in the pres-
ence or not of 0.16 mg/mL acenocoumarol. Bacterial counts were
assessed by plating appropriate dilutions on MRS agar and incu-
bating for 48 h at 37◦C in anaerobic conditions (AnaeroPackTM
anaerobic system, Mitsubishi Gas Chemical America, Inc.).

Effect of bacteria on acenocoumarol

Bacteria were grown in the presence of the drug as previously
described. After incubation for 0 and 24 h, samples were cen-
trifuged for 5 minutes at 3000 g, filter sterilized (0.45 μm) and
frozen at −20◦C until analysis.

To assess the effect of spent culture supernatants, 24 h-old
cultures of each strain were centrifuged (15000 g for 15 min)
and collected supernatants were filter sterilized (0.45 μm). Then,
supernatants were incubated with 0.16 mg/mL acenocoumarol
for 24 h at 37◦C and samples were stored at −20◦C until analysis.
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Chromatographic analysis-HPLC

Acenocoumarol concentration was determined by using
reverse-phase high-performance liquid chromatography (RP-
HPLC) by modification of a previously reported method (De
Orsi et al. 1998). Hewlett Packard HP 1100 HPLC equipment
with UV detection was used. Diode array detector was set
at 280 nm. Chromatographic separations and subsequent
quantifications were carried out at room temperature using a
LiChrospher 100 RP-18 (4×250 mm, 5 μm) column. The mobile
phase consisted of acetonitrile (Biopack, Zárate, Buenos Aires,
Argentina)/phosphoric acid (Cicarelli, San Lorenzo, Santa Fe,
Argentina) 60/40, prepared with MilliQ water, and the flow rate
was adjusted to 1.2 mL/min at 25◦C. Mobile phase was filtered
before use (Nylon membranes, 0.45 μm,13 mm, Osmonics Inc,
Fisher Scientific, Pittsburgh, PA) and samples were previously
filtered through 0.22 μm filters (GVS ABLUO, Sanford, FL). The
injection volume was 20 μL and each sample was analyzed
in triplicate. Peak areas were used for quantitative analyses.
Calibration curve of peak areas versus acenocoumarol concen-
tration was made with different dilutions of a stock solution
(1.6 mg/mL). Linear relationship was observed in the range of
0.001–0.050 mg/mL. Retention times (tR) and peak areas were
evaluated using PeakFit (Systat Software, Inc, San Jose, CA).

Spectroscopic analysis-FTIR

Approximately 4 μL of each sample were placed on the sam-
ple holder of an Attenuated Total Reflectance FTIR (ATR-FTIR)
Thermo Nicolet iS10 spectrometer (Thermo Scientific, Waltham,
MA). Spectra were registered in the 4000–600/cm range by co-
adding 64 scans with 4/cm spectral resolution, using OMNIC
software (version 8.3, Thermo Scientific). At least five spectra
were recorded for each sample.

Whenever necessary, residual contributions due to atmo-
spheric water vapor and CO2 were eliminated by subtraction of
the corresponding spectra from the registered sample spectra,
in order to obtain a flat baseline.

Statistical analysis

Statistical analysis was performed by the Mann–Whitney U Test
by using InfoStat v 2020 (Di Rienzo et al. 2020). Differences were
considered as statistically significant when P < 0.05. Figures
were made using Microsoft Office Excel or OMNIC software (v8.3,
Thermo Scientific; for FTIR figures).

RESULTS

Effect of acenocoumarol on bacterial growth

Figure 1 represents the growth curves for strains CIDCA 5310 (A)
and CIDCA 5317 (B) in the presence or not of acenocoumarol.
Both strains were able to grow in the presence of the anticoagu-
lant and no significant differences were found between growth
kinetics (P > 0.05).

Effect of bacteria on acenocoumarol

When RP-HPLC chromatograms were analyzed, the characteris-
tic peak of acenocoumarol at tR = 15.25 ± 0.15 min was observed
(Figs 2 and 3, peak 1).

RP-HPLC chromatograms corresponding to samples from 0-
and 24-hour-old cultures as well as the controls without drug are

shown in Figs 2 and 3, and Figure S2 (Supporting Information).
For both strains, at 24 h of incubation, the area of the aceno-
coumarol peak (peak 1) decreases and two new peaks are evi-
dent: peak 2 and peak 3. For both strains under study, these two
new peaks are observed at tR values ranging from 6.25 to 6.30
min for peak 3 and 10.60 to 10.74 min for peak 2 (Fig. 2B, C and
3B, C). It is important to note that the samples from cultures
without the anticoagulant did not show peaks in the time range
of interest (5–15 min) as shown in Figure S2 (Supporting Infor-
mation) as an example.

The initial concentrations of acenocoumarol for peak 1 were
0.120 ± 0.017 mg/mL and 0.119 ± 0.016 mg/mL for the samples
obtained from the incubation with strain CIDCA 5310 and strain
CIDCA 5317, respectively. If these concentration values are com-
pared with those obtained after 24 h of incubation a decrease
is evident for both strains. Indeed, drug concentrations lowered
down to 0.020 ± 0.008 mg/mL and 0.015 ± 0.001 mg/mL for sam-
ples corresponding to the strains CIDCA 5310 and CIDCA 5317,
respectively.

Regarding the effect of the spent culture supernatants on
acenocoumarol, after 24 h of incubation, there were no changes
neither in the tR nor in the area of the peaks (Figure S2, Support-
ing Information). No additional peaks were observed, and chro-
matograms resemble those for controls without bacteria (Figure
S2, Supporting Information).

FTIR analysis

To gain further insight on the effect of bifidobacteria on aceno-
coumarol, we conducted FTIR analysis. As presented in Fig. 4A,
the FTIR spectra of acenocoumarol in aqueous solution is char-
acterized by a high intensity band at 1650/cm, corresponding to
the stretching of the carbonyl bond in the lactone ring and two
other medium intensity bands at 1390/cm and 1110/cm, ascribed
to the -NO2 symmetric stretching and to the stretching of the
lactone C–O bond, respectively (Karci and Ertan 2005; Kostova
and Nikolova 2006; Hubert Joe et al. 2009). The intensity of these
bands correlated well with the concentration of the drug in MRS
broth.

In the presence of B. bifidum CIDCA5310, the band at 1650/cm
diminished its intensity during incubation. This band overlaps
that of acenocoumarol at the beginning of the bacterial growth
and decreased by around 50% after 24 h incubation (Fig. 4B).

In addition, the intensity of the bands at 1390/cm and in the
1110/cm region also decreased after incubation with bifidobac-
teria (Fig. 4B). At the same time, a new band, ascribed to the
stretching of the C = O bond of carboxylic acid, appeared at
1720/cm (Fig. 4B).

DISCUSSION

As reports on the beneficial effects of probiotic microorganisms
on the health of consumers increase, probiotic consumption
has grown steadily in the population. However, the interaction
of probiotic microorganisms with oral anticoagulants is seldom
reported in the scientific literature (Lindh 2010). It is worth not-
ing that people who are prescribed with acenocoumarol require
dietary surveillance (e.g. restriction in foods with high vitamin
K content; Holmes, Hunt and Shearer 2012). In this context, the
presence of microorganisms in foods could modify the effective-
ness of the anticoagulation therapy. In this study we assessed
the effect on acenocoumarol of bacteria belonging to the genus
Bifidobacterium. This is relevant since this genus is often included
in the formulation of fermented foods and, in addition, is a main
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Figure 1. Acenocoumarol did not affect the growth kinetic of bifidobacteria. Growth curves of B. bifidum CIDCA 5310 (A) and B. adolescentis CIDCA 5317 (B) incubated
in MRS broth with acenocoumarol (¥) or control medium (•). Results show a representative experiment from three independent experiments. Bars show standard
deviation.

member of the normal microbiota of children and adults (Tur-
roni et al. 2009; Bottacini et al. 2014; Sun et al. 2015; Redondo-
Useros et al. 2019).

The strains used in this work were isolated from the feces of
healthy infants (Pérez et al. 1998) and they have demonstrated
their potential as probiotic microorganisms (Trejo et al. 2006;
Trejo, Pérez and De Antoni 2010; Trejo, De Antoni and Pérez 2013;
Assad et al. 2020). Interestingly, some regulatory agencies con-
sider that the species B. bifidum are representative of probiotic
bifidobacteria (principle of “shared benefits”) (Marco et al. 2021).

Since in the present study we demonstrated that bifidobacte-
ria decreased the concentration of anticoagulant, HPLC and FTIR
were used as complementary analytical approaches.

Analysis by HPLC showed that the area of the characteris-
tic peak of acenocoumarol (peak 1) was decreased in the pres-
ence of bifidobacteria and new peaks were detected (Figs 2
and 3). These findings are compatible with a biotransformation
of acenocoumarol into other products. Since the column used
in the present study separates species according to their polar-
ity (Ceresole et al. 2008) we can hypothesize that bifidobacte-
ria modifies acenocoumarol leading to more polar species. This
effect was observed with both strains under study. Of note, anal-
ysis of the UV-spectra of these peaks is compatible with the
occurrence of new species (data not shown).

To rule out that the observed effects are due to the low
pH produced by the fermentative metabolism of bifidobacteria,

we tested the effect of an artificially acidified culture medium.
In these conditions both the peak area and the tR remained
unchanged (Figure S1, Supporting Information) thus demon-
strating that our findings are not related to the acidification of
the culture medium by the microorganisms. Results obtained
when anticoagulant was incubated with spent culture super-
natants demonstrate that the observed effects are not due to
extracellular factors released during bacterial growth (Figure S2,
Supporting Information).

Results of FTIR analysis allowed us to gain further insight on
the possible biomodifications due to the presence of bacteria.
Firstly, at the 1650/cm region, corresponding to the stretching
of the carbonyl of the lactone ring, the height of the peak cor-
relates with acenocoumarol concentrations (Fig. 4A). This peak
is then a good readout to assess biomodifications on aceno-
coumarol concentrations. Interestingly, after 24 h incubation,
a new band at around 1720/cm was observed (Fig. 4B). This
finding is compatible with an opening of the lactone ring that
correlates with the decrease of the intensity observed in the
band at 1110/cm, ascribed to the stretching of the lactone C-O
bond. An opening of a lactone ring as the result of gut micro-
biota activity has been previously reported for lovastatin (Yoo
et al. 2014).

Another change in FTIR spectra observed after the incuba-
tion of acenocoumarol with bifidobacteria was a decrease in the
intensity of the peak at 1390/cm, ascribed to the nitro group, and
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Figure 2. Acenocoumarol was biomodified by strain CIDCA 5310. RP-HPLC chromatograms of samples from cultures of the strain CIDCA 5310 in MRS with acenocoumarol
(AC) incubated at 37◦C for 0 h (A) and 24 h (B). AC was observed in peak 1 at tR = 15,27 min. Peaks 2 (tR = 10.60 min) and 3 (tR = 6.25 min) can be observed in a magnification

of the chromatogram at 24 h (C). Results show a representative experiment from three independent experiments.
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Figure 3. Acenocoumarol was biomodified by strain CIDCA 5317. RP-HPLC chromatograms of samples from cultures of the strain CIDCA 5317 in MRS with acenocoumarol
(AC) incubated at 37◦C for 0 h (A) and 24 h (B). AC was observed in peak 1 at tR = 15,40 min. Peaks 2 (tR = 10.74 min) and 3 (tR = 6.30 min) can be observed in a magnification
of the chromatogram at 24 h (C). Results show a representative experiment from three independent experiments.
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Figure 4. Acenocoumarol ATR-FTIR spectra was modified during incubation with strain CIDCA 5310. ATR-FTIR spectra, in the 900–1800/cm region, of different aceno-
coumarol (AC) concentrations in MRS broth (A), and spectra of AC after incubation with strain CIDCA 5310 for 0 h () and 24 h (. . . ) and the control conditions of AC

alone incubated for 0 h () and 24 h (. . . ) (B). Results show a representative experiment from three independent experiments.
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it is worth noting that the relation of the areas of this peak and
the 1650/cm peak remained constant after 24 h incubation.

Taken together, our results are compatible with a modifi-
cation of acenocoumarol structure affecting the lactone ring,
due to bifidobacterial activity. As a consequence of this, aceno-
coumarol activity could be altered, considering that the lactone
ring conforms the coumarinic core which confers its anticoag-
ulant effect (Thijssen, Baars and Reijnders 1983; Kasperkiewicz
et al. 2020).

Results of the present work are in agreement with previous
studies that described the effect of bacterial enzymes on the
activity of diverse compounds. In this context, reports showed
that enzymes like reductases, esterases and dehydroxylases
were found in different bifidobacteria and lactobacilli (McBain
and Macfarlane 1998; Nakamura et al. 2002; Fritsch et al. 2017;
Manasian et al. 2020).

If we analyze the acenocoumarol molecule in detail we
can identify different functional groups such as –OH, -NO2, -C
= O that could be targets for the above-mentioned enzymes.
As it has already been described, the normal in vivo route
of metabolization of acenocoumarol includes hepatic enzymes
which carry out oxidations and reductions (Lopez de Luca
et al. 2006; Kasperkiewicz et al. 2020). Reductions turn the nitro
group to an amine or the keto group to a hydroxyl. Oxida-
tion leads to 6- and 7- hydroxyl metabolites (Kasperkiewicz
et al. 2020).

Furthermore, Leonart et al. (2017), using a UPLC-MS method,
described new molecules in human urine after coumarin metab-
olization (Leonart et al. 2017). These new metabolites included
those resulting from hydroxylation, glucuronidation, sulfation,
methylation and conjugation with N-acetylcysteine of the orig-
inal molecule, showing the proneness of the drug to be biomod-
ified by different types of enzymes. These results correlate with
our findings in HPLC, given the new molecules detected were
more polar than the original one.

It is evident that changes on acenocoumarol related to bac-
terial enzymatic activity, could impact on the anticoagulant
effect. However, it must be highlighted, that in vivo, the scenario
involves additional variables. Indeed, interactions between the
drug, the gut microbiota, foods and host cells lining the gas-
trointestinal tract (Bailey and Dresser 2004; Sousa et al. 2008;
Russel 2010; Stojančević et al. 2014; Enright, Joyce and Gahan
2017; Koziolek et al. 2019; Vertzoni et al. 2019). It is known
that intestinal microorganisms modify the expression of intesti-
nal transporters thus impacting on the bioavailability of drugs
(Matusková et al. 2011; Saksena et al. 2011; Stojančević et al.
2014). In addition, they modulate the expression of cytokines
(Azad, Sarker and Wan 2018; Yousefi et al. 2019; Wang et al.
2020) that in turn change permeability, drug metabolism and
transport (Bertilsson, Olsson and Magnusson 2001; Le Vee et al.
2009; Thagia et al. 2015). Of note, Bifidobacterium and Lactobacil-
lus strains have demonstrated to increase the barrier function of
the intestinal epithelium through different mechanism (Hyland,
Quigley and Brint 2014; Nébot-Vivinus et al. 2014; Srutkova et al.
2015; Guo et al. 2017).

Besides, consumption of probiotic foods along with aceno-
coumarol treatment in addition to pathologies that delay
absorption (e.g. ulcerative colitis, intestinal bowel disease and
Crohn´s disease), could enhance the biotransformation of the
drug by bifidobacteria by increasing residence time in the
intestinal tract (Hatton et al. 2018).

Summarizing, our results show for the first time that bifi-
dobacteria can modify acenocoumarol. This ability could lead
to significant changes in the drug concentration thus adding a

relevant aspect to be considered for the pharmacological effect
of this drug.
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