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Activation of smooth muscle BK channels by 
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Abstract
Thiazide-like diuretics are one of the most commonly used drugs to treat arterial hypertension, with their efficacy being linked to their 
chronic vasodilatory effects.  Previous studies have suggested that activation of the large conductance voltage- and Ca2+-dependent 
K+ (BK) channel (Slo 1, MaxiK channel) is responsible for the thiazide-induced vasodilatory effect.  However, direct electrophysiological 
evidence supporting this claim is lacking.  BK channels can be  associated with small accessory β-subunits (β1-β4) that confer specific 
biophysical and pharmacological characteristics to the current phenotype.  The β1-subunit is primarily expressed in smooth muscle 
cells (SMCs).  The effect of hydrochlorothiazide (HCTZ) on BK channel activity was measured using patch-clamp electrophysiology on 
native SMCs from human umbilical artery (HUASMCs) and HEK293T cells expressing the BK channel (with and without the β1-subunit).  
HCTZ significantly activated the BK current when evaluated using the whole-cell and cell-attached configurations.  However, HCTZ 
did not affect the unitary conductance and open probability of the BK channel in the inside-out configuration, suggesting an indirect 
mechanism requiring cell integrity.  The increase in BK channel activity due to HCTZ was concentration dependent, with an EC50 of 28 
µmol/L, and membrane potential did not influence the concentration relationship.  Moreover, our data c learly demonstrated that the 
HCTZ-induced activation of BK channels required the presence of β1-subunits.  A β1-subunit-dependent mechanism that requires SMC 
integrity leads to HCTZ-induced BK channel activation.
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Introduction
Thiazide diuretics remain as one  of the drugs most commonly 
used to treat systemic arterial hypertension.  In particular, 
hydrochlorothiazide (HCTZ) is one of the first-line antihy-
pertensive therapy drugs[1].  HCTZ and related agents exert 
antihypertensive effects by primarily acting on the kidney, 
where these drugs block the Na+/Cl- cotransporter (NCC) and 
thus produce acute dieresis[2].  However, long-term antihyper-
tensive therapy with thiazides has been linked to the agents’ 
ability to lower vascular resistance rather than to their diuretic 
action[2, 3].  Remarkably, despite 58 years of demonstrated anti-
hypertensive effectiveness, the precise mechanism(s) by which 
HCTZ and related thiazides evoke vasodilation and therefore 

reduce vascular resistance are not fully characterized.  
Thiazide-induced vasorelaxation has been well documented 

through in vivo and ex vivo experiments in humans[4-6] and 
other species[5, 7-9].  Although studies have established that thi-
azide-induced vasodilation contributes to the clinical benefit 
of these agents in chronically treated hypertensive patients, 
several studies have shown that such thiazide action is inde-
pendent of NCC blockade[3, 10, 11].  Different mechanisms have 
been proposed to mediate thiazide-induced artery dilation by 
targeting smooth muscle cells, including activation of large 
conductance, voltage- and Ca2+

i-gated potassium (BK) chan-
nels[4, 5, 7, 8, 12], inhibition of voltage-operated calcium channels 
(VOCCs)[5, 7, 8, 13] and/or inhibition of the RhoA/Rho kinase 
pathway[9].  The latter would induce a Ca2+ desensitization of 
the smooth muscle contractile machinery.  Making the overall 
scenario more complex, it has been argued that the relative 
contribution of each of the proposed mechanisms to thiazide-
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induced vasodilation depends on the species from which vas-
cular tissue was obtained for ex vivo assays[5].  

The importance of BK channels in the regulation of vascular 
smooth muscle cell (VSMC) contractility, peripheral resis-
tance and blood pressure has been extensively established[14, 

15].  These channels are activated by  membrane depolarization 
and/or an increase in intracellular Ca2+ concentration.  Since 
both events are associated with VSMC contraction and BK 
channel activation, the evoked outward K+ current acts as a 
negative feedback mechanism on VSMC contraction, thereby 
favoring VSMC relaxation[15, 16].  Moreover, several studies 
have suggested that BK channel activity is altered in hyperten-
sion (see [17] and [18] reviews for more detail).  Thus, the acti-
vation of this ion channel has emerged as a novel molecular 
target for treating diseases where increased tone and/or con-
tractility of smooth muscle play a relevant pathophysiological 
role, such as hypertension[19].  

In most mammalian tissues, native BK channels are homotet-
ramers of pore-forming α-subunits (encoded by the KCNMA1 
gene, also named Slo1) that can be  associated with one of 
four auxiliary β-subunits (encoded by KCNMB1-4 genes)[20-25].  
Unlike α-subunits, β-subunits do not form functional chan-
nels but modify several gating processes[26-28].  The differential 
expression of auxiliary subunits in different cell types explains 
the multiplicity of functions and regulatory mechanisms of 
BK channels.  In VSMCs, the β1-subunit is a main partner of 
the BK channel[25, 29].  Several studies have shown that endog-
enous and exogenous compounds can modulate BK chan-
nels through β-subunits[30-33].  Additionally, mutations in the 
β1-subunit that confer a gain in BK activity are associated with 
the reduced prevalence of hypertension in humans[34], and the 
opposite effect occurs in the case of a loss of function muta-
tion[35].

HCTZ did not activate BK channels in skeletal muscle and 
BK channel α-subunits expressed in HEK cells, two prepara-
tions in which the functional expression of BK β1 is negli-
gible[36, 37].  Moreover, the hypothesis that the activation of vas-
cular smooth muscle BK channels, which contain β1-subunits, 
is involved in HCTZ-induced vasodilation is supported by 
ex vivo experiments in which this effect is abolished in the 
presence of BK channel inhibitors[5, 8, 12].  The lack of electro-
physiological studies on VSMCs makes it difficult to establish 
whether HCTZ-induced BK activation reflects a direct drug 
interaction with channel subunits or indirect drug interactions, 
i.e., requiring additional cell signals.  This question requires 
electrophysiological studies on VSMCs using different patch-
clamp configurations under controlled conditions of voltage 
and Ca2+

i.
In the present study, using patch-clamp electrophysiol-

ogy, we determined the effects of HCTZ on (i) BK channels 
from native human umbilical artery smooth muscle cells 
(HUASMCs) in “whole cell” (WCR) and cell-free, “inside-out” 
(IO) configurations and (ii) recombinant BK (slo1) channels 
with or without β1-subunits co-expressed in HEK293T cells.  
These results demonstrated that HCTZ effectively induces BK 
channel activation, and this effect requires both cell integrity 

and the presence of β1-subunits.

Materials and methods
Smooth muscle cell isolation for patch-clamp experiments
Umbilical cords were obtained from normal term pregnan-
cies after vaginal and cesarean deliveries.  The umbilical cords 
were placed in a transport solution with the following com-
position (in mmol/L): 130 NaCl, 4.7 KCl, 1.17 KH2PO4, 1.16 
MgSO4, 24 NaCO3H, and 2.5 CaCl2, pH 7.4 at 4 ºC.  The umbili-
cal cords were immediately transferred to the laboratory, 
stored at 4°C and used within the next 24 h.  All procedures 
were performed in accordance with the Declaration of Hel-
sinki (1975).

Human umbilical arteries (HUAs) were dissected from 
Wharton’s jelly just prior to cell isolation.  HUA smooth mus-
cle cells (HUASMCs) were isolated as previously described[38], 
with further modifications to diminish the enzyme content in 
the dissociation medium (DM)[32].  Briefly, a segment of HUA 
was cleaned of any residual connective tissue (Wharton’s jelly), 
cut into small strips and placed for 15 min in DM containing 
the following (in mmol/L): 140 NaCl, 5 KH2PO4, 5 MgCl2, 6 
glucose, and 5 HEPES; the pH was adjusted to 7.4 with NaOH.  
Vessel strips were subsequently placed in DM containing 3 
mg/ml collagenase type I for 15-30 min, with gentle agitation 
at 35 °C.  After the incubation period, the strips were washed 
with DM, and single HUASMCs were obtained by gentle 
aspiration of the tissue through a Pasteur pipette to render cell 
dispersion.  The supernatant containing the isolated cells was 
stored at room temperature (~22 °C) until further use.  Imme-
diately prior to electrophysiological recordings, HUASMCs 
were allowed to settle onto the coverglass bottom of a 3-ml 
experimental chamber.  Only well-relaxed, spindle-shaped 
smooth muscle cells were used for patch-clamp electrophysiol-
ogy.  Data were collected within 4-6 hours after cell isolation.  

Clones and transient transfection
HEK293T cells were grown in Dulbecco's modified Eagle 
medium (DMEM) supplemented with 10% fetal bovine serum 
(FBS) and subsequently split when reaching 70-80% conflu-
ence.  The pcDNA3 plasmids harboring the human Slo1 
α-subunit (A#U11058), the auxiliary β1-subunit (A#AF035046) 
and enhanced green fluorescent protein (eGFP) cDNAs were 
transfected into HEK cells using FuGene 6 (Promega , Madi-
son, WI, United States) and transiently expressed.  Transfec-
tions were performed in HEK cells grown in 30-mm Petri 
dishes using cDNAs encoding the α-subunits alone or both 
α- and β1-subunits.  The α- and β1-subunits were mixed at 1:3 
molar ratios to ensure that all α-subunits were saturated with 
β1-subunits (total amount of DNA: 2.5 µg distributed in 0.5, 
0.7 and 1.3 µg of plasmids containing eGFP, α-subunits and 
β1-subunits, respectively).  When α-subunits were transfected 
alone, β1 cDNA was replaced with empty plasmid.  After 
transfection, the cells were cultured for 18 hours .  The elec-
trophysiological measurements were performed 18-24  hours 
after transfection.  BK α and β1 clones were kind gifts of Dr.  
Carlos González (CINV, Chile).  The eGFP clone and vector 
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were kindly provided by Dr.  J.  Raingo (IMBICE, Argentina).  

Electrophysiology
Isolated cells were observed using a mechanically stabilized 
inverted epifluorescence microscope (Arcano XYL 403 YAT 
PLAN, China) equipped with a 40× objective lens.  Test solu-
tions were applied through a multibarreled pipette positioned 
close to the target cell (approximated 1 mm), which enabled 
bathing the cell or the pipette tip (in the inside-out configura-
tion) with the test solution for only 5 s.  The perfusion rate was 
approximately 1 ml/min.  After each experiment on a single 
cell, the experimental chamber was replaced with another 
containing a new sample of cells.  All experiments were per-
formed at room temperature (~22 °C).  For all experimental 
data included in the present study, we prolonged the exposure 
time to HCTZ to at least 15 min to ensure drug permeation, 
reflecting its poor lipophilicity.  The concentration-response 
curve to HCTZ (10-5-3.10-4 mol/L) in HEK293T cells was con-
structed by applying a single HCTZ concentration to each 
cell since it took at least 15 min for HCTZ to increase channel 
activity.

The standard tight-seal IO and WCR configurations of the 
patch-clamp technique[39] were used to record single-channel 
and macroscopic currents, respectively.  Glass pipettes were 
pulled from WPI PG52165-4 glass on a two-stage vertical 
micropipette puller (PP-83, Narishige Scientific Instrument 
Laboratories, Tokyo, Japan).  Pipette resistance ranged from 
1.7 to 3.5 MΩ when filled with electrode solution.  All cur-
rents were filtered with a 4-pole low-pass Bessel filter at 2 kHz 
(Axopatch 200A amplifier, Axon Instruments, Foster City, CA, 
USA) and digitized (Digidata 1440, Molecular Devices, Sunny-
valle, CA, USA) at 20 kHz.  Recordings were stored on a com-
puter hard disk for subsequent analysis.

Single-channel recordings
Single-channel currents were recorded in the inside-out con-
figuration (IO) in HUASMCs and the cell-attached configura-
tion (CA) in HEK293T cells co-transfected with the α- and 
β1-subunits of the BK channel.  Voltage-clamp recordings (up 
to 30–60 s) were obtained at different membrane potentials to 
measure the single channel current amplitude and steady-state 
activity, which results from the product of the single channel 
open probability (Po) and the number of functional channels 
in the membrane patch (N).  Identification of BK channel pres-
ence in the patch was based on its unitary conductance value, 
voltage-dependent activity and activation by an increase in 
intracellular Ca2+ concentration, as previously described[40].  
The control pipette solution used for single-channel recordings 
contained the following components (in mmol/L): 140 KCl, 0.5 
MgCl2, 10 HEPES, 6 glucose, and 1 CaCl2; the pH was adjusted 
to 7.4 with KOH.  The bath solution (BS) contained the follow-
ing components (in mmol/L): 140 KCl, 0.5 MgCl2, 0.4 CaCl2, 
10 HEPES, 6 Glucose, and 1 EGTA; the pH was adjusted to 7.4 
with KOH.  The free Ca2+ concentration was calculated as 50 
nmol/L using Maxchelator software from Stanford University 
(http://maxchelator.stanford.edu).

HCTZ’s action on BK channels was examined by directly 
adding the adequate drug quantity to the BS to reach the 
desired final concentration.  Single-channel currents were 
analyzed using Clampfit software (Molecular Devices, version 
10.3).  Steady-state activity (NPo) was derived from the equa-
tion below, where N is the number of single channels present 
in each patch.

Σ jtj
n
j=1

TNPo = 

where T is the recording duration and tj is the time spent with 
j=1,2,3,…n channels open.  Stationary conditions of single 
channel recordings were controlled by plotting the NPo values 
calculated for intervals of 30 s of recording as a function of 
time (i.e., a stability plot).  

Whole-cell recordings in HUASMCs
Whole-cell current stability was monitored by applying suc-
cessive 500 ms voltage steps, from a holding potential of -50 
mV to a test potential of +40 mV.  Thus, cells in which the 
current amplitude did not remain constant in time were dis-
carded.  After the current was stabilized, the same voltage-
clamp step protocol was applied under control (solvent) 
conditions or in the presence of HCTZ.  A voltage-clamp 
step protocol, including 500 ms voltage steps spaced 10 mV 
between -70 and +70 mV from a holding potential of -50 mV, 
was applied under control conditions and in the presence of 
HCTZ for further current amplitude-voltage relationship (I-V) 
analysis.  The pipette solution contained the following compo-
nents (in mmol/L): 130 KCl, 10 HEPES, 0.1 EGTA, 0.1 CaCl2, 1 
MgCl2, and 5 ATP-Na2; the pH was adjusted to 7.4 with KOH.  
The BS contained the following components (in mmol/L): 130 
NaCl, 5.4 KCl, 1.2 MgCl2, 2.5 CaCl2, 5 HEPES, 6 glucose, and 
5 4-aminopirydine (4-AP); the pH was adjusted to 7.4 with 
HCl.  The compound 4-AP was added to block Kv channels, 
which have been detected in HUASMCs [41].  Cell membrane 
capacitance was calculated from the capacity current obtained 
from the recording of a single 6-ms voltage step from a hold-
ing potential of -50 mV to -60 mV.  The mean capacitance and 
series resistance of the recorded HUASMCs were 24.8±2.0 pF 
and 3.1±0.3 MΩ, respectively.  

Inside-Out macroscopic current recordings in heterologously 
expressed BK channels 
Macroscopic currents of recombinant BK channels expressed 
in HEK293T cells were recorded using the IO configuration.  
Current stability was monitored by applying successive 150 
ms voltage steps (from a holding potential of 0 mV to a test 
potential of +90 mV).  Cells in which the current amplitude 
did not remain constant in time were discarded.  The same 
voltage-clamp step protocol was applied under control condi-
tions and in the presence of HCTZ.  After current stabilization, 
a voltage-clamp step protocol, including a family of 150 ms 
voltage steps spaced 20 mV between -90 and 190 mV from a 
holding potential of 0 mV followed by a 50 ms voltage step 
to -150 mV, was applied under control conditions and in the 
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presence of 10, 30 and 100 µmol/L HCTZ for I-V relation-
ship analysis.  Since channel expression (estimated by current 
amplitude) was extremely variable and the current saturated 
the amplifier at the more positive potentials examined in most 
of the evaluated cells, the current values were normalized to 
the control current obtained at +130 mV.  The pipette and bath 
solutions were identical to those used in the IO experiments in 
HUASMCs.  

Whole-cell current recordings in heterologously expressed BKCa 
channels
The effects of HCTZ on whole-cell currents mediated by 
BK channel-forming slo1 proteins (α-subunit) expressed in 
HEK293T cells with and without the β1-subunit were exam-
ined.  Current stability was monitored by applying successive 
100 ms voltage steps (from a holding potential of -50 mV to a 
test potential of +60 mV), discarding cells in which the current 
amplitude did not remain constant in time.  The same voltage-
clamp step protocol was applied under control conditions or 
in the presence of HCTZ.  After current stabilization, a volt-
age-clamp step protocol, including a family of 100 ms voltage 
steps spaced 10 mV between -60 and +90 mV from a holding 
potential of -50 mV, was applied under control conditions and 
in the presence of 10, 30, 100 and 300 µmol/L HCTZ to con-
duct I-V plots.  Since channel expression was extremely vari-
able and the current saturated the amplifier at the more posi-
tive potentials examined in most of the evaluated cells, current 
values were normalized to the control values obtained at +90 
mV.  The pipette solution contained the following components 
(in mmol/L): 130 KCl, 10 HEPES, 1 EGTA, 0.4 CaCl2, 1 MgCl2, 
and 5 ATP-Na2; the pH was adjusted to 7.3 with KOH.  The BS 
contained the following components (in mmol/L): 130 NaCl, 
5.4 KCl, 1.2 MgCl2, 0.0094 CaCl2, 5 HEPES, and 6 glucose; the 
pH was adjusted to 7.4 with NaOH.  Both solutions contained 
a nominal free Ca2+ concentration of 50 nmol/L, calculated 
using Maxchelator.  The mean series resistance of the recorded 
HEK293T cells was 2.7 ± 0.2 MΩ.

Drugs and reagents used
HCTZ, 4-AP, EGTA, Na2ATP and collagenase were purchased 
from Sigma Chemical Co.  All other reagents, including 
DMEM medium and FBS, were of analytical grade and pur-
chased from local suppliers.  HCTZ was dissolved in dimethyl 
sulfoxide (DMSO).  Fresh aliquots of stock solutions of HCTZ 
in DMSO were added to the bath solution on the day of the 
experiment.  Appropriate amounts of DMSO were added to all 
control solutions without HCTZ.

Statistics
The results are expressed as the means ± standard error of 
the mean.  Paired Student’s t tests were used to compare two 
groups.  ANOVA was used to compare more than two groups.  
In all cases, a P value less than 0.05 was considered as statisti-
cally significant.  The concentration-response curve data for 
BK channel activation by HCTZ were fitted using GraphPad 
Prism (version 5.03) to a Hill relationship with a variable 

slope.  The equation used for this fit is:

current increase = bottom +
1+10((logEC50–x)×Hill slope)

top – bottom

where EC50 is the concentration of agonist that gives a response 
halfway between bottom and top, Hill slope describes the 
steepness of the curves, and top and bottom are plateaus of 
current increase.  In the present study, we used the parameter 
pD2, which is the –log EC50.  The fitting parameters at different 
voltages were compared using the extra sum of squares prin-
ciple (F method available in GraphPad Prism).  

Results
Hydrochlorothiazide activates whole-cell BK current in human 
umbilical artery smooth muscle cells (HUASMCs)
Based on the ex vivo results from Calder et al[8, 12] and Pickkers 
et al[4, 7], BK channel activation was postulated as the mechanism 
underlying vasodilation mediated by thiazide-like diuretics.  
However, the effect of HCTZ on the BK currents from native 
vascular smooth muscle cells has not actually been evaluated.  
Furthermore, when this diuretic was tested on skeletal muscle 
cells and HEK cells expressing the α-subunit of this chan-
nel[36, 37], it failed to activate BK channels in both native and 
heterologous systems in the absence of any β-subunit.  Thus, 
we evaluated the effect of HCTZ in freshly dissociated 
HUASMCs as a model of human VSMCs in which the BK 
channel is associated with the β1-subunit[32] and involved in 
the regulation of the basal tone[42].  We obtained the isolated 
voltage-activated macroscopic BK currents from HUASMCs 
in the standard patch-clamp WCR configuration as previously 
described [32, 42] and examined the effect of HCTZ on these cells 
(Figure 1).  The data demonstrated that after 7 minutes of bath 
(extracellular) application of 10 µmol/L HCTZ, the amplitude 
of the outward whole-cell current was significantly augmented 
at membrane potential values between 20 and 70 mV (Figure 
1; P<0.05).  The effect of HCTZ was fully reversed upon drug 
washout with solvent-containing bath solution, demonstrat-
ing that 10 µmol/L HCTZ is able  to activate BK channels in 
human VSMCs.

HCTZ failed to modulate BK channel activity in the absence of 
cell integrity
To determine whether the HCTZ-induced increased ionic BK 
current in HUASMCs was due  to direct drug action on the BK 
channel proteins or required cell integrity and intact signal-
ing, we next examined the effect of HCTZ on BK currents at 
a single channel resolution using the IO configuration of the 
patch-clamp technique.  Thus, we recorded steady-state chan-
nel activity (NPo; see methods) at a constant voltage (+40 mV) 
in the presence or absence of 10 µmol/L HCTZ.  Interestingly, 
in  this cell-free condition, HCTZ failed to modulate chan-
nel function: neither unitary current amplitude (Figure 2 B, 
P>0.05) nor NPo was modified by HCTZ concentrations that 
increased the macroscopic BK current (Figure 2 C, P>0.05).  
Collectively, the results shown in figures 1 and 2 indicate that 
HCTZ requires cell integrity to increase BK currents.



5
www.chinaphar.com
Martín P et al

Acta Pharmacologica Sinica

HCTZ-mediated activation of recombinant BK channels in a 
mammalian heterologous system requires cell integrity and the 
presence of BK regulatory β1-subunits 
The results shown above demonstrate that HCTZ is able  to 
activate BK channels in HUASMCs.  In contrast, this drug 
failed to activate BK channels in skeletal muscle and HEK cells 
expressing only the α-subunit[36, 37].  Thus, since endogenous 
β1-subunits are highly expressed in vascular smooth muscle 
cells but not in skeletal muscle cells or HEK cells, we hypothe-
sized that the β1-subunit was necessary for HCTZ-induced BK 
channel activation in HUASMCs[21, 25, 29].  To test this hypothe-
sis, we expressed the channel α-subunit in HEK293T cells with 

or without the β1-subunit and examined the effect of HCTZ 
on these cells using the WCR configuration.  Consistent with 
our hypothesis, HCTZ failed to modulate BK channel activity 
in the absence of auxiliary subunits (Figure 3, P>0.05).  In con-
trast, HCTZ significantly increased the ionic current mediated 
by α+β1 heteromeric channels after 10-15 minutes of applica-
tion (Figure 4 A, B; P<0.05).

Next, we studied the HCTZ-induced BK activation in the 
heterologous system in more detail.  Thus, the effect of the 
diuretic on the whole-cell BK current resulting from α+β1 
expression was examined at 10, 30, 100 and 300 µmol/L.  
HCTZ induced a left-shift in the I-V curves (Figure 4 A, B; 

Figure 1.  Hydrochlorothiazide (HCTZ) increases the high-conductance voltage- and Ca2+-activated K+ (BK) channel component of whole-cell (WC) K+ cur-
rents in human umbilical artery smooth muscle cells (HUASMCs).  (A) Superimposed representative recordings of WC currents of HUASMCs (recorded in 
5 mmol/L 4-aminopyridine) obtained by applying 10 mV voltage steps from -70 mV to +70 mV from a holding potential of -50 mV in control conditions, 
after 7 min of 10 µmol/L HCTZ perfusion and after washout.  (B) Mean current density vs voltage (I/Cm-V) curves, corresponding to the control condi-
tions and after 7 minutes of 10 µmol/L HCTZ perfusion obtained in the same conditions as in a) (n=6 cells from 3 umbilical cord donors).  The symbol * 
indicates statistically significant difference from control (paired t test, P<0.05).

Figure 2.  HCTZ failed to activate BK channel in inside-out (IO) configuration in HUASMCs.  (A) Representative recording of BK channel current obtained 
at single channel resolution in an IO configuration at 40 mV in absence or presence of 10 µmol/L HCTZ.  The closed level is indicated as “c”.  B and C: 
Mean current amplitude (B) and steady state activity (NPo) values (C) of BK channels recorded as shown in A) in control conditions and with 10 µmol/L 
HCTZ (n=7 patches from 3 umbilical cord donors).  No statistically significant differences were observed (paired t test, P>0.05).
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P<0.05).  Consistently, higher increases in fractional activity 
were observed at less depolarized voltages, at which the basal 
open probability is lower (Figure 4 C).  Additionally, we plot-
ted the concentration-response curve at all membrane poten-
tials where the HCTZ-induced current increase was statisti-
cally significant (from +20 to +90 mV) and fitted these data to 
a Hill equation.  The current-enhancing effect of HCTZ pres-
ents an EC50 of 28.4 µmol/L (95%CI: 10.4 - 77.7 µmol/L) mea-
sured at +40 mV, rendering a pD2=4.546±0.211 (n: 5-8, Figure 4 
D).  Moreover, both pD2 and the Hill slope of HCTZ activation 
were voltage independent (Figures 4E and 4 F, respectively, 
P>0.05).  These results showed that HCTZ increased the BK 
current when the channel emulates the basic composition of 
this channel in HUASMCs[32].  

The results, showed above on native HUASMCs demon-
strated that cellular integrity is essential for HCTZ-induced 
BK channel activation (Figure 2).  To validate these findings, 
we determined whether cellular integrity is required for the 
HCTZ-induced activation of recombinant BK channels con-
taining the β1-subunit in a mammalian expression system.  
First, we obtained macroscopic currents (in the IO configura-
tion) evoked from β1-containing BK channels in the presence 
or absence of HCTZ in HEK cells.  HCTZ had no effect on BK 
current at any examined concentration (10, 30 and 100 µmol/
L) (Figure 5 C, P>0.05).  Figure 5 B shows the I-V relationships 

obtained for each condition.  The negative results from the 
IO configuration could indicate that this diuretic requires cell 
integrity to activate the BK channel.  However, considering the 
poor lipophilicity of HCTZ (log P: -0.07), these results could 
also indicate that the region responsible for BK channel acti-
vation is located on the extracellular side of the channel.  To 
clarify this issue, we examined the effect of HCTZ on recombi-
nant BK channels containing the β1-subunit in HEK293T cells 
at single channel resolution using the cell-attached (CA) con-
figuration.  A concentration of 100 µmol/L HCTZ increased 
the steady state BK channel open probability at a 40 mV mem-
brane potential.  Figure 5D shows a typical stability plot of 
channel activation, where the open probability (expressed as 
NPo) was calculated every 30 seconds and plotted as a func-
tion of the recording time.  HCTZ slowly increased the NPo 
of the BK channel, reaching maximal steady state activation 
after approximately 15 minutes of HCTZ perfusion.  Typical 
recordings of BK channel activity before and after diuretic 
perfusion are included in Figure 5D.  HCTZ induced a sig-
nificant 4.72±1.24-fold increase in the NPo values (Figure 5E, 
P<0.05, n=3).  This change in channel activity recorded in the 
CA configuration can only occur through indirect mechanisms 
or the direct activity of membrane permeable drugs that can 
access the ion channel present in the patch only after crossing 
the plasma membrane from the bath solution to the cytoplas-

Figure 3.  HCTZ failed to modulate BK channel activity in the absence of regulatory β-subunits in HEK293T cells.  (A) Superimposed representative WCR 
currents of BK channels expressed in HEK293T cells without the β1-subunit, before (left) and after 15 min of 100 µmol/L HCTZ perfusion (right).  The 
currents were elicited in response to 10 mV voltage steps from -60 mV to +90 mV from a holding potential of -50 mV.  (B) I-V curves corresponding to 
the control conditions and 15 min of 100 µmol/L HCTZ perfusion.  The BK channel currents were normalized to the ones elicited by the +90 mV voltage 
step under control conditions.  (C) Fractional increases in current size at +40 mV induced by 100 and 300 µmol/L HCTZ.  No statistically significant dif-
ferences were observed (ANOVA, Ranks test, P>0.05).
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Figure 4.  HCTZ activates recombinant BK channels expressed with regulatory β1-subunits in HEK293T cells in a concentration-dependent manner.  Su-
perimposed representative WCR currents of BK channels expressed in HEK293T cells with the β1-subunit, before (left) and after 15 min of 10 (A) and 
100 µmol/L (B) HCTZ perfusion (middle).  The currents were elicited in response to 10 mV voltage steps from -60 mV to +90 mV from a holding poten-
tial of -50 mV.  Mean current vs.  voltage (I-V) curves corresponding to the control conditions and 15 min of 10 and 100 µmol/L HCTZ perfusion (right).  
The BK channel currents were normalized to the ones elicited by the +90 mV voltage step under control conditions.  The symbol * indicates statistically 
significant difference from control (paired t test, P<0.05).  (C) Fractional increases in current size at different voltages (n=6-8) induced by 10 and 100 
µmol/L HCTZ.  (D) Concentration dependence of HCTZ-induced BK channel activation.  Currents were measured at +40 mV and a single concentration 
of HCTZ shown was tested in each cell.  Data points were fitted by a Hill function (solid lines).  Half-maximal effective concentration (EC50): 28.4 µmol/L 
(95%CI: 10.4 - 77.7 µmol/L), Hill slope: 1.6 (95% CI: 0,586 to 2,781).  (E, F) Voltage dependence of the EC50, expressed as pD2 (±SEM), and Hill Slope 
(±SEM) of BK channel activation.  Each value was obtained as in D.  No statistically significant differences were observed in both parameters (F method, 
P>0.05).
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Figure 5.  HCTZ requires cell integrity to activate recombinant BK channels expressed with the β1-subunit in HEK293T cells.  (A) Superimposed repre-
sentative cell-free IO currents of BK channels expressed in HEK293T cells with the β1-subunit, before (left) and after 15 min of 100 µmol/L HCTZ perfu-
sion (right).  The currents were elicited in response to 20 mV voltage steps from -90 mV to +130 mV from a holding potential of 0 mV.  (B) I-V curves cor-
responding to the control conditions and 15 min of 100 µmol/L HCTZ perfusion recorded as A.  The BK channel currents were normalized to the ones 
elicited by the +130 mV voltage step under control conditions.  (C) Fractional increases in current size at +90 mV induced by 10, 30 and 100 µmol/L 
HCTZ.  No statistically significant differences were observed (ANOVA, Ranks test, P>0.05).  (D) Temporal course of 100 µmol/L HCTZ effect on BK chan-
nels expressed in HEK293T cells with the β1-subunit recorded in the Cell-Attached configuration at 40 mV.  Single-channel activity was expressed as 
NPo, which values were calculated every 30 s and plotted as a function of recording time.  The inset corresponds to representative traces of BK channel 
activity in control condition and during 100 µmol/L HCTZ perfusion.  (E) Mean changes in activity values (NPo) of BK channels recorded as described in 
Figure 5D in control conditions and with 100 µmol/L HCTZ.  The symbol * indicates statistically significant difference from control (paired t test, P<0.05).



9
www.chinaphar.com
Martín P et al

Acta Pharmacologica Sinica

mic milieu.  The results in the IO configuration enabled the 
rejection of the latter mechanism, confirming the cell integrity 
requirement for BK channel activation by HCTZ.  

Discussion
The present study represents the first use of patch-clamp 
electrophysiology to evaluate the effect of HCTZ, a thiazide 
diuretic, on BK currents in a VSMC.  Evaluating the effect of 
HCTZ on whole-cell BK currents in both native and heterolo-
gous systems demonstrated that 1) HCTZ activates the BK 
channel present in human VSMCs, confirming this channel as 
a probable target for the diuretic’s vasodilator effect; 2) The 
presence of the β1 accessory subunit is necessary for HCTZ to 
activate BK channels; and 3) HCTZ-induced BK channel acti-
vation requires cellular integrity.  

The reduction in peripheral vascular resistance is a common 
property of thiazide-like diuretics that is not related to the 
NCC blockage[2].  However, evidence suggests that different 
thiazides do not share the same mechanisms for the induc-
tion of vasodilation[5, 8].  In particular, Calder et al previously 
proposed the HCTZ-induced BK channel activation[5, 8], as a 
probable mechanism to explain the dilation of guinea pig mes-
enteric and human subcutaneous arteries through the in vitro 
application of HCTZ.  Indeed, in the guinea pig model, the 
relaxation effect of this diuretic was independent of the pres-
ence or absence of the endothelium[8].  Additionally, HCTZ 
induced Rb86 efflux[12] and vessel relaxation, both actions being 
largely blocked by the selective BK channel blocker iberio-
toxin[8].  Subsequently, Pickkers et al[7], also studying the mes-
enteric guinea pig artery, demonstrated that HCTZ reduced 
the increase in intracellular Ca2+ concentration evoked by 
norepinephrine without affecting the Ca2+ release from intra-
cellular Ca2+ stores.  These authors speculated that HCTZ acti-
vates BK channels, and this activation, acting as a hyperpolar-
izing mechanism, reduces the Ca2+ influx through the VOCC.  
Collectively, these previous studies have suggested that BK 
channel activation contributes to HCTZ-induced vasodila-
tion.  However, whether HCTZ increases the smooth muscle 
BK potassium current through direct or indirect interactions 
with this channel protein has remained unknown.  Addressing 
this dichotomy acquired particular relevance in light of stud-
ies showing that BK channel activity could be enhanced by 
vasodilator substances acting directly on the channel protein[30, 

43] and via intracellular signaling and shuttling of BK proteins 
between intracellular organelles and the plasmalemma[16].  
In the present study, using HUASMCs, we propose that 
HCTZ activates the BK channel not through a direct interac-
tion between the diuretic and the channel protein but rather 
through an indirect mechanism that requires cell integrity.  
This idea is sustained by the fact that BK current enhance-
ment was observed only in whole-cell (Figures 1 and 4) and 
cell-attached configurations (Figure 5D), while in the cell-free 
inside-out configuration (Figures 2 and 5A), neither the uni-
tary channel conductance nor its open probability were modi-
fied by HCTZ.  The similar outcomes between studies using 
vascular smooth muscle and HEK cells strongly suggests that 

the indirect mediator(s) of HCTZ-thiazide interaction on BK 
channels is conserved between two different cell types.  

Several mechanisms can be proposed to explain how 
HCTZ indirectly alters channel activity.  There is a growing 
list of interacting proteins and mediators associated with the 
C-terminus of the BK α-subunit.  Moreover, these molecules 
depend on each particular cellular environment, α-subunit 
splicing variants, and co-expression with auxiliary subunits[44].  
This list can include different intracellular ions (such as Mg2+, 
Ca2+ and H+); protein kinases (such as PKA, PKC, PKG, PyK2 
and FAK); intracellular mediators (such as GMPc, PIP2 and 
arachidonic acid); receptors that regulate channel activity 
independent of downstream pathways (such as β2-adrenergic 
and thromboxane A2 receptor); and structural cell proteins 
(e.g., caveolin and actin)[44].  It has been hypothesized that 
HCTZ-induced increases in intracellular pH in VSMCs (via 
carbonic anhydrase inhibition) is responsible for BK channel 
activation[45].  This hypothesis contrasts with the low antihy-
pertensive efficacy of specific carbonic anhydrase inhibitors[1], 
such as acetozolamide.  The present data also contrast with 
the “pH hypothesis”: we demonstrated that HCTZ action is 
conserved under conditions in which changes in pHi in the 
electrode solution (i.e., WCR configuration) were precluded by 
strong buffering.  Thus, it is highly likely that the mediators 
of HCTZ BK channel activation in HUASMCs are membrane 
bound (e.g., PKC translocation and BK subunit shuttling).

The experiments on BK channel expressed in HEK293T cells 
further clarify the mechanism implicated in channel activation 
by HCTZ.  In the whole cell configuration, HCTZ produces 
a concentration-dependent BK current enhancement with an 
EC50 value of 28 µmol/L (Figure 4 D).  Interestingly, this con-
centration was similar to that measured by Calder et al[8] in ex 
vivo experiments and the concentration used in previous stud-
ies[5-7, 12, 45].  Additionally, the EC50 and Hill slope values were 
both voltage independent (Figures 4E and 4 F), indicating 
that putative intracellular mediators involved in the indirect 
effect of HCTZ, are insensitive to the membrane voltage field 
and likely membrane associated (similar to observations in 
HUASMCs, and the effect is lost in IO patches).

The physiological and pharmacological modulation of the 
BK channel, including by HCTZ, is variable among differ-
ent cell types[5, 19].  The differential expression of the auxiliary 
β-subunits can explain, in part, this variability, as these sub-
units have been reported to interact with the α-subunit, pro-
moting or decreasing the effects of endogenous or exogenous 
substances on channel activity[19, 30, 31, 43].  Moreover, the expres-
sion of these four subtypes is different among tissues[21, 46, 47] 
and even among different arteries from the same species[48].  
Thus, β-subunits would be key structures to obtain a tissue-
selective pharmacological modulation of the BK channel[19].  In 
the case of HCTZ, we demonstrated that the presence of the 
β1-subunit, which is primarily expressed in smooth muscle 
cells, is a requirement for BK channel activation (Figures 3 
and 4).  This result also explains why Tricarico et al.  did not 
observe BK channel current enhancement by HCTZ in skel-
etal muscle cells[37], where the channel is expressed without 
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any β-subunit, and in HEK cells transfected only with the 
α-subunit[36].  Collectively, the present results, which include 
both the complexity of the native cells and the simplicity of 
the heterologous system, demonstrated that the activation of 
the BK channels by HCTZ is effective in human vascular cells, 
likely involving an intracellular factor, and shows selectivity 
for the α-β1-complex without affecting the channel formed 
only by four α-subunits.  

Notably, the HCTZ effect depends on the species employed 
for the experimental procedures[5].  Particularly, in human 
vasculature, the activation of a K+ channel by thiazide-like 
diuretics was supported by previous in vivo and ex vivo experi-
ments.  HCTZ relaxes human subcutaneous and internal 
mammary arteries, and this effect is blocked by charybdo-
toxin, which inhibits BK and intermediate Ca2+-activated 
channel[5, 6].  Moreover, tetraethylammonium (a nonselective 
K+ channels blocker) avoids the in vivo vasodilator effect of 
HCTZ in the human forearm artery[4].  Here, we demonstrated 
BK channel activation induced by HCTZ in human umbilical 
artery smooth muscle cells.  Taken together, these results sug-
gest that HCTZ-induced BK activation is a relevant process in 
human vasculature and support the idea that this activation 
is likely involved in the vasorelaxant effect of this commonly 
used antihypertensive drug.

In conclusion, we propose that BK channel activation by 
HCTZ could contribute to its vasodilator effects, an action 
resulting from HCTZ acting on the SMC itself, while requiring 
cell integrity but not direct binding to the BK channel proteins.  
Thus, the present experimental approach represents signifi-
cant progress in determining the molecular target or signal-
ing pathway responsible for HCTZ-induced SMC relaxation.  
Moreover, we speculate that BK channel activation in vascular 
SMCs may be, at least partially, responsible for the efficacy of 
hypertension treatment with thiazide diuretics.  Finally, we 
provide additional evidence for the growing acceptance of using 
the BK channel as a target for hypertension treatment, focusing 
on the β1-subunit as the key to obtaining selectivity in VSMCs.
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