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Abstract: The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of
arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomoph-
thoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest
subfamily in the Entomophthorales, including 126 described species. The species diversity, global
distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically
widespread, and few have broad host ranges, which contrasts with many species with single reports
from one location and one host species. The insect orders infected by the greatest numbers of species
are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated
in vitro, and those that have require more specialized media than many other fungi. Given their
potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which
species might be adopted for biological control purposes or biotechnological innovations. Current
challenges in the implementation of these species in biotechnology include the limited ability or
difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations
regarding the host ranges of different species.

Keywords: insect biocontrol; cultivability; genomics; entomopathogens; geographic distribution;
host range

1. Introduction

The fungal order Entomophthorales in the Zoopagomycotina includes at least 246 species
of arthropod pathogens [1], many of which are well known for their ability to cause epi-
zootics and change the behavior of infected hosts [2]. Their role in biocenoses is extremely
important because they can function as regulators of arthropod populations and thus play
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a role in ecosystem homeostasis. Within the Entomophthorales, the largest family is the
Entomophthoraceae, which consists exclusively of arthropod pathogens. This family was
divided into two subfamilies in 2005, the Entomophthoroideae and the Erynioideae [3]. The
Erynioideae is the larger of these two subfamilies, containing six genera, namely Erynia,
Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. Fungi in these genera have di-
verse ecological, physiological, and morphological adaptations (Figure 1) and evolved to
infect a wide range of arthropod species using their ballistic conidia. Their hosts inhabit
diverse ecosystems, including agriculture and forestry. In particular, Erynioideae infect
insects that are recognized as pests of various important crops worldwide [4–6]. In addition
to attacking arthropod pests directly damaging crops and forests, some of the arthropod
hosts of species in this subfamily include vectors of diseases that impact humans, livestock,
and crops.
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nidia of Pandora neoaphidis (D). Germination of Z. radicans primary conidia with secondary conidia 
(E). Cadaver of Delia radicum with abdominal hole where Strongwellsea sp. primary conidia are ac-
tively discharged (F); single nuclear conidium (a). Nuclear stain of P. neoaphidis primary conidia (G). 
Strongwellsea selandia round resting spores with spines (H). White layer of Zoophthora forficulae co-
nidiophores penetrating whole earwigs cadaver except thick cuticular plates and limbs (I). Incrus-
tation of the Zoophthora independentia resting spores (J). Septation of the Z. radicans vegetative myce-
lium (K). Whitish “halo” of the Pandora lipai conidia discharged from the whitish/yellowish conidi-
ophore layer covered the soldier beetle (L). 

Due to the observed capability of Entomophthorales to cause massive mortality of in-
sect hosts, questions about their potential use for biocontrol and various biotechnological 
applications are often raised. Exotic strains and species have been released for classical 
biocontrol of diverse insects in many countries, with some successful establishments and 
pest control [7]. However, presently, no species of Entomophthorales are commercially 
available as biopesticides. Species within this group differ from one another in numerous 
ways that impact their potential development as biopesticides [8]. One of the most 

Figure 1. Examples showing the diversity of EFOPSZ cell types and hosts. Aphid infected with
Zoophthora radicans (A). Pandora cacopsyllae primary conidia, typical for this genus morphology (B).
Pandora sciarae conidiophores covering the body of a fungus gnat (C). Primary and secondary conidia
of Pandora neoaphidis (D). Germination of Z. radicans primary conidia with secondary conidia (E).
Cadaver of Delia radicum with abdominal hole where Strongwellsea sp. primary conidia are actively
discharged (F); single nuclear conidium (a). Nuclear stain of P. neoaphidis primary conidia (G). Strong-
wellsea selandia round resting spores with spines (H). White layer of Zoophthora forficulae conidiophores
penetrating whole earwigs cadaver except thick cuticular plates and limbs (I). Incrustation of the
Zoophthora independentia resting spores (J). Septation of the Z. radicans vegetative mycelium (K).
Whitish “halo” of the Pandora lipai conidia discharged from the whitish/yellowish conidiophore layer
covered the soldier beetle (L).

Due to the observed capability of Entomophthorales to cause massive mortality of in-
sect hosts, questions about their potential use for biocontrol and various biotechnological
applications are often raised. Exotic strains and species have been released for classical
biocontrol of diverse insects in many countries, with some successful establishments and
pest control [7]. However, presently, no species of Entomophthorales are commercially
available as biopesticides. Species within this group differ from one another in numerous
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ways that impact their potential development as biopesticides [8]. One of the most impor-
tant attributes to consider in this regard is the cultivability of these fungal species in vitro,
which plays a critical factor in their propagation for potential application as biological
control agents. This feature can be expressed to various degrees: from total inability to
isolate fungal strains in vitro to routine transfers of the isolates and preservation of their cul-
tures in culture collections to research on improving in vitro growth toward potential mass
production. Additionally, for successful biological control, the host range of the pathogens
must be known and is crucial in both identifying suitable fungi for specific target pests as
well as in avoiding potential impacts on non-target arthropods. Furthermore, the natural
habitats of these fungi and their geographical distributions are important for consideration
of development for biological control as regions around the world differ in the regulation of
species to be used for pest control that are native vs. non-native [9]. In addition, knowledge
of the habitats where these fungi are naturally active will provide information about their
ecological adaptability and long-term survival under diverse conditions.

The primary objective of this research was to characterize several critical aspects
of the lifestyles of the species within the six genera in the Erynioideae, here referred to
by the acronym EFOPSZ. An overall consideration of the species in this group has not
previously been undertaken. We have analyzed these vital characteristics for species of
the Erynioideae, and we aim to pinpoint which species demonstrate the most potential for
future use in biological control. Moreover, we are keen on identifying the specific insect
groups for which the application of these species as biological control agents might be most
successful. We predict that the assembly of this new information could be important for
potential applications of this group in various aspects of biotechnology, particularly in the
development of biological control agents for pest management.

2. Materials and Methods
2.1. Literature Analysis

We sought all literature related to the six genera in the Erynioideae through the use of the
Web of Science, Scopus, and Google Scholar, examining publications since 1888 [10] using
keywords and names of genera included in this study. We also examined the information
associated with the species and strains deposited in the U.S. Department of Agriculture,
Agricultural Research Service Collection of Entomopathogenic Fungal Cultures (ARSEF,
Ithaca, NY, USA); the American Type Culture Collection (ATCC, Manassas, VA, USA);
and CBS-Westerdijk Institute KNAW Fungal Biodiversity Centre, also known as Central
Bureau of Fungal Cultures (Utrecht, Netherlands). The traits that were investigated are
geographical distribution, host range, type of habitat, and documented ability to grow
in vitro.

2.2. Distribution Map

A map of the number of recorded species was created using StepMap GmbH software
(Berlin, Germany). Countries and regions were colored according to the number of recorded
species from lightest (less than 5 species) to darkest (over 50 species described) pink. Green
indicates none have been reported. We consider the species as (1) local if the distribution
range covers only one continent, (2) cosmopolitan or broadly distributed with records
on at least two continents, and (3) ubiquitous if distribution records cover three or more
continents.

2.3. Phylogenetic Tree

To generate a dataset of EFOPSZ taxa, we downloaded 18S and 28S sequences of
identified species with accurate nomenclature from GenBank. All sequences were initially
aligned, their alignments were manually adjusted, and ambiguous regions were excluded
from the alignments using Mesquite 3.04 version [11]. Phylogenetic relationships were
determined by the neighbor-joining (NJ) algorithm, and the tree was visualized in PAUP*
4.0 [12].
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3. Results
3.1. Geographic Distribution

Species in the EFOPSZ group have been recorded from all continents except Antarctica.
However, the number of described species differs significantly between countries and
regions (Figure 2). The most records are from several Central European countries (especially
Switzerland and Poland) and the United Kingdom. Many species have also been found in
North America (USA and Canada), other European countries, and China. Only a handful
of reports are from South America and across a considerable area of Asia and Oceania.
The continent least documented for these fungi is Africa, where EFOPSZ fungi have been
reported from only four countries. They are also sparsely reported in countries in South
America other than Argentina, Brazil, and Chile and are reported from a few countries
in the Middle East. However, the map in Figure 2 most likely does not represent the
actual species distributions but rather the situation regarding our knowledge of this fungal
group in particular countries where more sampling has occurred. It is obvious that climatic
conditions in many countries of Africa or South America might be very favorable for
species in the Erynioideae, but little research has yet been undertaken to describe Erynioideae
and their host ranges from these regions.
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There were clear differences in patterns of species distribution among the six genera.
Each genus contains both ubiquitous and cosmopolitan species as well as local ones, and
they are not grouped in any specific way on the phylogenetic tree (Figure 2). It is very
possible that many of the species of these genera that we classify as local have much broader
distributions but have not been sampled broadly. We consider the broad distributions of
many species as advantageous for future biocontrol agents since this feature might indicate
a significant level of adaptability and ability to survive the environmental conditions in
different climatic environments due to their ecology, pathogenesis, and specialization [13].

Another perspective on geographical distribution can be obtained from analyzing
culture collection deposits. The largest insect pathogen collection in the world is the
USDA/ARS entomopathogenic fungi collection (ARSEF), which includes almost 15,000
occurrence records [14]. Although ARSEF has deposits from all over the world, most
samples are from the USA and then from Europe. We hypothesize that isolates from



Microorganisms 2024, 12, 168 5 of 26

the rest of the world are less represented due to a lack of sampling. Despite the scarcity
of well-recorded data, at least 53 species out of the 125 valid EFOPSZ species might be
considered as cosmopolitan, and at least 25 as ubiquitous (Figure 3, Table 1). Many of these
might become ubiquitous due to the worldwide nature of human agricultural activities,
which spread many crops worldwide along with their pests. One of the best examples of a
human-mediated distribution might be Pandora gloeospora, found on several continents in
mushroom-growing farms [15].
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Table 1. Geographic distributions and arthropod hosts of EFOPSZ fungi.

Species Host Order (All Insecta,
Except as Noted)

Host Family Locations in Detail Reference (Based on Literature Search and
ARSEF Collection Records)

~Erynia aquatica * (2) &Diptera Culicidae Europe: Poland, RF, Spain, Sweden,
Switzerland, Ukraine; Nepal; USA

[16–25]

~E. chironomi Diptera Chironomidae China; Sweden, and all of Europe [17,19,26–28]

E. cicadellis Hemiptera Cicadellidae Switzerland [20]

~E. conica * (6) Diptera, Trichoptera Chaoboridae, Chironomidae, Culicidae,
Psychodidae, Simuliidae, Tipulidae

Asia, incl. Israel; Australia; Europe: Poland, RF,
Spain, Switzerland, UK, Ukraine; USA

[17,20,21,23,25,29–32]

~E. curvispora * (3) &Diptera Chironomidae, Culicidae, Psychodidae,
Simuliidae

China; Europe: Belarus, Estonia, Poland, RF,
Switzerland, Ukraine; Israel; NA

[17,20,21,23,28,30,33–35]

E. delpiniana Diptera Muscidae Italy [17]

E. fluvialis Diptera Nematocera Switzerland [20]

E. gigantea Hemiptera Aphrophoridae China [36,37]

~E. gracilis Diptera Minute gnats Switzerland; Eastern USA [17,38]

~E. henrici Diptera Culicidae France; Israel [39]

E. jaczewskii Coleoptera Carabidae Ukraine [23]

E. nebriae Coleoptera Carabidae Denmark, Germany [40]

~E. ovispora * (2) Diptera Calliphoridae, Lonchaeidae, Muscidae,
Psychodidae, Sarcophagidae, Syrphidae,
Tipulidae

Asia: Israel, China, RF; Europe: Austria,
Poland, RF, Sakartvelo (former Georgia),
Sweden, Switzerland, Ukraine; NA

[17–21,23,30,31,37,41]

~E. plecopteri Plecoptera Nemouridae Europe: Spain, Switzerland, UK; NZ [17,20,25]

~E. rhizospora (8) Diptera, Trichoptera Hydropsychidae, Phryganeidae China; Europe: Spain, Sweden, Switzerland,
UK; USA

[10,17,20,21,32,42]

~E. sepulchralis (1) Diptera, Trichoptera Anthomyzidae, Rhagionidae, Syrphidae,
Tipulidae

Europe: Poland, Ukraine; USA [10,17,23]

~E. thurgoviensis Diptera Psychodidae Switzerland [43]

E. tumefacta Diptera Muscidae Switzerland [20]

~E. variabilis Diptera Psychodidae Europe: Poland, Ukraine, Spain, Sweden,
Switzerland; NA

[10,17,20,21,23,25,32]
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Table 1. Cont.

Species Host Order (All Insecta,
Except as Noted)

Host Family Locations in Detail Reference (Based on Literature Search and
ARSEF Collection Records)

Furia americana (5) Diptera Calliphoridae, Muscidae, Sarcophagidae Brazil; Europe: Italy, Switzerland, UK; USA [10,17,20,20,21,28,32,34]

F. creatonoti Lepidoptera Erebidae China, Sri Lanka, Taiwan [17,24,28]

F. ellisiana Dermaptera Forficulidae Europe: Poland, Switzerland, UK [17]

F. fujiana Lepidoptera Erebidae China [28,44]

F. fumimontana Diptera suborder Brachycera NA; Poland [3,17]

F. gastropachae (13) Lepidoptera Lasiocampidae, Noctuidae Brazil; China; Europe: Ukraine Spain; NA:
Canada, USA

[17,23,25,28,45–47]

F. ithacensis (4) Diptera Empididae, Rhagionidae, Sciaridae China; Europe: Poland, Spain; USA [17,25,28,48]

~F. montana Diptera Chironomidae UK; USA [10,17,20,21,32,34]

F. neopyralidarum (1) Lepidoptera Erebidae, Pyralidae, Tortricidae Israel, Japan [17,49,50]

F. pieris (1) Lepidoptera Pieridae, Zygaenidae China; NA, incl. USA [17,49,50]

F. shandongensis Dermaptera Forficulidae China [28,51]

F. triangularis Hemiptera Psyllidae China, Philippines [28,52,53]

F. virescens (4) Lepidoptera Noctuidae Asia: China, Turkmenistan; Europe: Czechia,
Finland, Germany, Poland, RF, Spain,
Switzerland, UK, Ukraine; NA

[10,17,20,21,25,31–34,54,55]

F. vomitoriae Diptera Calliphoridae, Stratiomyiidae,
Syrphidae

Europe: Austria, Czechia, Poland, RF; Mexico [17,41,56]

F. zabri Coleoptera Carabidae Europe: Czechia, Ukraine; Uzbekistan [17,23]

Orthomyces aleyrodis Hemiptera Aleyrodidae USA, Philippines [4,57]

Pandora aleurodis Hemiptera Aleyrodidae Romania [17]

P. batallata Entognatha, Symphypleona Sminthuridae Germany [58]

~P. bibionis Diptera Bibionidae, Sciaridae China; Switzerland [28,43,51]

P. blunckii (34) Hymenoptera, Lepidoptera Plutellidae, Tenthredinidae, Tortricidae Asia: Israel, China, Japan, Philippines;
Australia; Europe (not reported in Poland);
Mexico

[17,20,21,28,42,59–64]
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Table 1. Cont.

Species Host Order (All Insecta,
Except as Noted)

Host Family Locations in Detail Reference (Based on Literature Search and
ARSEF Collection Records)

P. borea Diptera Calliphoridae, Muscidae, Sarcophagidae China [28,65]

P. brahminae Coleoptera Scarabaeidae Bharat, China [17,28]

P. bullata Diptera Calliphoridae, Sarcophagidae Brazil; Australia; Europe: Spain, Switzerland,
UK; Iran; NA: USA, Canada; SA

[17,20,20,21,25,66–70]

P. cacopsyllae * Hemiptera Psyllidae Denmark [71]

P. calliphorae Diptera Anthomyiidae China; France [28,72]

~P. chironomid Diptera Chironomidae China [26]

P. cicadellis Homoptera Cicadellidae China [28,52]

P. dacnusae Hymenoptera Braconidae Poland [17]

P. delphacis (64) Hemiptera Delphacidae Asia: Bharat, China, East Asia, Indonesia,
Japan, Philippines; SA: Brazil, Argentina;
Switzerland; USA

[17,28,43,63,64,73–77]

~P. dipterigena (8) Diptera Calliphoridae, Muscidae,
Mycetophilidae, Psychodidae,
Rhagionidae, Sciaridae, Syrphidae,
Tachinidae, Tipulidae

Asia: Bharat, China, Indonesia, Iran, Israel;
Brazil; Europe: Austria, Poland, RF, Sakartvelo,
Spain, Sweden, Switzerland, UK, Ukraine; NA:
Mexico, USA

[10,17–19,23,25,28,31,32,34,41,42,69,78–83]

P. echinospora Diptera, Hemiptera Aphididae, Formicidae, Lauxaniidae Asia: China, Israel; Europe: Austria, Poland,
Sakartvelo, Spain, Sweden, Switzerland, UK,
Ukraine; NA: Costa Rica, USA

[10,17,18,20,23,25,28,30,34,41,59,68,84]

P. formicae Hymenoptera Formicidae Bharat; Europe, incl. Denmark [17,85,86]

P. gammae * &Lepidoptera Erebidae, Noctuidae Asia: China, Israel, Turkmenistan; Australia;
Europe: Poland, RF, Slovakia, Switzerland,
Ukraine; NA, incl. Mexico; SA: Argentina,
Brazil

[17,20,21,28,31,33,56,67,80,87–93]

~P. gloeospora Diptera Mycetophilidae, Psychodidae, Sciaridae China; Europe: France, Ukraine; USA [15,17,23,24,28,94]

P. guangdongensis Hemiptera Miridae China [95]

P. heteropterae (1) Hemiptera Miridae NA, incl. USA; Poland [17,96]

P. kondoiensis * (5) Hemiptera Aphididae Australia; China [17,28,65,97]
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Table 1. Cont.

Species Host Order (All Insecta,
Except as Noted)

Host Family Locations in Detail Reference (Based on Literature Search and
ARSEF Collection Records)

P. lipae Coleoptera Cantharidae Denmark, France, Poland, Switzerland [17,21]

~P. longissimi Diptera Limoniidae Switzerland [20]

P. minutispora Hemiptera Miridae Czechia, Switzerland [17,20]

P. muscivora Diptera Calliphoridae, Drosophilidae, Muscidae,
Tachinidae

Canada; Europe: Poland, UK, Ukraine [17,23,34]

P. myrmecophaga Hymenoptera Formicidae Brazil; Europe: Czechia, Germany, Poland,
Sweden, Switzerland, Ukraine, former
Yugoslavia; Philippines

[17,20,21,23,64]

P. neoaphidis * (TYPE, 173) Hemiptera Aphididae Worldwide, less frequent in tropics: Africa:
Egypt, Tunisia, South Africa; Asia: Bharat,
China, Iran, Israel, Japan, Korea, Nepal,
Philippines, Taiwan; Australia; Europe: Austria,
Bosnia and Herzegovina, Denmark, Finland,
France, Iceland, Latvia, Poland, Portugal, RF,
Serbia, Slovakia, Spain, Switzerland, UK,
Ukraine; NA: Canada, Mexico, USA; NZ; SA:
Argentina, Brazil, Chile, Uruguay

[17,20–23,28,30,31,41,51,54,56,59,62,64,69,
78,79,83,97–119]

P. nouryi * (5) Hemiptera, &Psocodea Aphididae, Pseudocaeciliidae Argentina; Asia: China, Israel; Australia;
Europe: Central, Northern, and Western, incl.
Slovakia; NA

[17,28,51,59,79,101,110,111,113,120,121]

P. phalangicida Mesostigmata, &Opiliones
(Arachnida)

Parasitidae Poland, Sweden, UK [17,34]

P. philonthi Coleoptera Staphylinidae Denmark, Poland, Switzerland [17,20,122]

P. phyllobii Coleoptera Curculionidae Poland [17]

P. polonae-majoris Hemiptera Cicadellidae, Jassidae Poland, Ukraine [17,23]

P. psocopterae Psocodea Prionoglarididae France [17,20,21]

~P. sciarae Diptera Sciaridae Europe: Austria, Denmark, Switzerland,
Ukraine; NZ; USA

[17,20,23,32,41]

P. shaanxiensis Diptera Calliphoridae China [26,28]
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Table 1. Cont.

Species Host Order (All Insecta,
Except as Noted)

Host Family Locations in Detail Reference (Based on Literature Search and
ARSEF Collection Records)

P. sylvestris sp. nov. Lepidoptera Erebidae USA Hajek and Gryganskyi, in press

P. terrestris Hemiptera Aphididae Ukraine [120,123]

P. uroleuconii Hemiptera Aphididae Slovakia [124]

Strongwellsea acerosa Diptera Muscidae Denmark [125]

S. castrans (2) Diptera Anthomyiidae China; Europe: Czechia, Denmark, Switzerland,
UK; USA

[28,60,126,127]

S. crypta Diptera Anthomyiidae Denmark [128]

S. gefion Diptera Muscidae Denmark [129]

S. magna Diptera Fanniidae China; USA; Denmark [37,130]

S. pratensis Diptera Muscidae Switzerland [20]

S. selandia Diptera Muscidae Denmark [129]

S. tigrinae Diptera Muscidae Denmark [125]

Strongwellsea sp. nov. Diptera Calliphoridae Europe [131]

Strongwellsea sp. nov. Diptera Sarcophagidae Europe Eilenberg, unpublished

Strongwellsea sp. nov. Diptera Scatophagidae Europe [132]

Strongwellsea sp. nov. Diptera Anthomyiidae Europe Eilenberg et al., unpublished

Zoophthora anglica * (5) Coleoptera Elateridae Denmark, France, Poland, Romania,
Switzerland, UK, Ukraine

[17,23,133]

Z. anhuiensis Hemiptera Aphididae China [17,28,62,134]

Z. aphidis * (1) Hemiptera, Lepidoptera Aphididae, Cicadellidae, Delphacidae,
Erebidae

Asia: China, Philippines, Taiwan; Europe:
Armenia, Belarus, Estonia, Lithuania, Moldova,
RF, Sweden, UK, Ukraine; NA: Canada, Puerto
Rico, USA

[19,23,31,32,34,57,106,112,135,136]

Z. aphrophorae Hemiptera Aphrophoridae, Cicadellidae, Miridae,
Psyllidae

UK [34]

Z. arginis Hymenoptera Argidae Germany, Poland [17,29]

Z. athaliae Hymenoptera Tenthredinidae China; Switzerland [17,20,28,65]
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Table 1. Cont.

Species Host Order (All Insecta,
Except as Noted)

Host Family Locations in Detail Reference (Based on Literature Search and
ARSEF Collection Records)

Z. autumnalis Diptera Dryomyzidae Poland [17]

Z. bialovienzensis * &Lepidoptera Geometridae, Pyralidae Poland, Ukraine [17,23]

Z. brevispora Lepidoptera Geometridae Poland [17]

Z. canadensis Hemiptera, Lepidoptera Aphididae, Geometridae China; NA [137,138]

Z. crassispora Lepidoptera Tortricidae Poland [17]

Z. crassitunicata Coleoptera Cantharidae Austria, Switzerland [17,20,41]

Z. elateridiphaga Coleoptera Elateridae Switzerland [21]

Z. erinacea Hemiptera Aphididae Israel; Slovakia [17,59,79,120]

Z. falcata Hymenoptera Formicidae Poland [17]

Z. forficulae Dermaptera Forficulidae Europe: Poland, Switzerland, UK; NA [17,32,34,43]

Z. geometralis &Lepidoptera Geometridae, Yponomeutidae Europe: Austria, Sweden, Ukraine; NA [10,17,18,23,41]

Z. giardia Orthoptera Tettigoniidae France, Germany, Poland [17]

Z. humberi Diptera Tipulidae Chile [17,139]

Z. ichneumonis * &Hymenoptera Ichneumonidae Poland, Switzerland, Ukraine [17,20,23]

Z. independentia Diptera Tipulidae USA [140]

Z. lanceolata * (3) Diptera, nematodes Drosophilidae, Empididae Europe: France, Poland, Spain, Switzerland,
Ukraine; Israel

[17,23,25,30,141]

Z. larvivora Coleoptera Cantharidae Poland [17]

Z. miridis Hemiptera Miridae Poland, Spain, Switzerland [17,25,141]

~Z. nematoceris Diptera Bibionidae, Sciaridae Poland, Spain, Switzerland [17,25,141]

Z. obtusa Diptera Brachycerous, Calyptrate Poland, Switzerland [17,43]

Z. occidentalis (7) Hemiptera Aphididae Asia, incl. China; Europe: Poland, Slovakia,
Spain, Switzerland, UK; NA; SA, incl. Chile

[17,20,25,32,34,78,79,103,104,139,142,143]

Z. opomyzae Diptera Opomyzidae Austria, Germany, Poland [17,29,41]

Z. orientalis Hemiptera Aphididae Israel [30]
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Table 1. Cont.

Species Host Order (All Insecta,
Except as Noted)

Host Family Locations in Detail Reference (Based on Literature Search and
ARSEF Collection Records)

Z. pentatomis Hemiptera Pentatomidae China [28,51,52,137]

Z. petchii Hemiptera Aphrophoridae, Cercopidae,
Cicadellidae, Delphacidae

Asia: China, Israel; Europe: Austria,
Switzerland

[17,20,29,30,74]

Z. phalloides (2) Hemiptera Aphididae Argentina; Asia: Israel, Korea; Europe:
Germany, Poland, Slovakia, Switzerland, UK;
Australia NZ; NA, incl. Mexico

[17,20,21,29,30,78,79,83,99,107,144–146]

Z. phytonomi * &Coleoptera Curculionidae Asia: Israel, Uzbekistan; Australia; Europe:
Poland, Romania, Ukraine; USA

[17,23,30,147]

Z. porteri Diptera Tipulidae Ukraine; USA [23,140]

Z. psyllae Hemiptera Psyllidae, Triozidae Poland, Spain, Switzerland [17,20,25]

Z. radicans * (305) Diptera, Coleoptera,
Hemiptera, Homoptera,
Hymenoptera, &Lepidoptera,
Plecoptera

Agromyzidae, Aphididae,
Aphrophoridae, Aleurodidae, Argidae,
Chironomidae, Chrysomelidae,
Cicadellidae, Crambidae, Delphacidae,
Geometridae, Miridae, Muscidae,
Nemouridae, Pentatomidae, Pieridae,
Plutellidae, Psyllidae, Triozidae,
Thaumastocoridae, Tortricidae

Africa: South Africa, Tchad; Asia: China,
Indonesia, Israel, Japan, Korea, Kyrgyzstan,
Malaysia, Philippines; Australia, NZ; Europe:
Belarus, Denmark, Estonia, France, Moldova,
Poland, RF, Sakartvelo, Serbia, Slovakia,
Sweden, Switzerland, UK, Ukraine, former
Yugoslavia; NA: Canada, Cuba, Mexico, Puerto
Rico, USA; SA: Argentina, Brazil, Uruguay

[17,18,20,21,23,28,30–
32,34,51,56,61,62,64,78,79,83,92,93,93,95,
113,114,116,122,137,146,148–164]

Z. rhagonycharum Coleoptera Cantharidae Europe: Denmark, Poland, Switzerland; NA [17,20,165]

Z. suturalis Coleoptera Chrysomelidae France, UK [17]

Z. tachypori Coleoptera Staphylinidae Poland [17]

Z. viridis Hemiptera Miridae Western Europe, incl. Germany, Switzerland [17,21]

Total 123 species, in
ARSEF—683 specimens of
28 species.

Total 14 orders. Total 76 families. Total 57 countries, in ARSEF specimens from 29
countries.

Total 160 records.

Continents and countries placed alphabetically, ~—aquatic or moist habitats, *—cultivable, &—infects other or more stages than adult, in parentheses number of specimens in ARSEF
culture collection, NA—North America, RF—Russian Federation, SA—South America, UK—United Kingdom. French Guiana is merged with France in the map (Figure 1), but EFOPSZ
records do not come from French Guiana but rather from France in Europe.
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3.2. Host Specificity

EFOPSZ fungi show a range of host-specificity. One-third of EFOPSZ parasitize two
or more insect families. The species Erynia conica, E. rhizospora, E. selpulchralis, P. batallata,
P. blunckii, P. echinospora, P. nouryi, Z. aphidis, Z. canadensis are pathogenic to representatives
of at least two families. An absolute generalist is Z. radicans, which infects insects in
7 orders and 21 families (Table 1). However, two-thirds of EFOPSZ fungal species show
some host-specificity and can infect only a narrower range of insects, usually attacking
members of the same genus or family.

The flies (order Diptera) are the most frequent hosts for EFOPSZ fungi, as more than
one-third of these fungal species were found killing Diptera. Nearly 25 percent of EFOPSZ
fungi infect insects in the order Hemiptera (31 pathogenic species), and nearly half that
number were found infecting Coleoptera (16 pathogens) and Lepidoptera (15 pathogens).
Within the Diptera, families most attacked by EFOPSZ fungi are Calliphoridae (eight pathogen
species); Tipulidae (seven); Muscidae, Psychodidae, and Sciaridae (six each); and Chironomidae
(five). In the genus Strongwellsea, species specialize exclusively in four dipteran families:
Anthomyiidae, Muscidae, Sarcophagidae, and Scatophagidae. Among Hemiptera, the families
Aphididae (14), Miridae (7), and Cicadellidae (6) are most infected by EFOPSZ fungi. All other
insect families have less than five pathogenic EFOPSZ species infecting them (Figure 4).
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Figure 4. How many EFOPSZ species infect different arthropod orders.

3.3. Biological and Ecological Characteristics of EFOPSZ Fungi as Biocenose Components

Most species in the Erynioideae primarily infect insects in natural and agricultural
environments. These habitats include aquatic biocenoses, forests and natural areas, and
agrocenoses. It might be more precise to discuss the distribution of insect hosts, even if
fungal infections can lead to infected insects relocating from their typical habitats [86].
Many EFOPSZ species infect the imago (adult stage) of hosts. Among holometabolous
hosts, species in the genus Strongwellsea only infect adults, while some species from the
other genera infect larvae or nymphs. No EFOPSZ species have been found attacking
insect eggs.

These different host life cycle stages may occur in various ecosystems, so this factor
should also be considered. In most cases, infected insects are found and collected on plant
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parts, partly due to the so-called climbing effect caused by many EFOPSZ fungi [166].
This altered behavior may also be attributed to better visibility for researchers compared
to the soil surface beneath vegetation. A comprehensive analysis of the distribution of
entomophthoralean fungi in European biocenoses, focusing on forests and agrocenoses,
was carried out by Bałazy [17]. Bałazy’s analysis emphasizes the importance of insect
mobility, particularly because many insect hosts have wings and can migrate to neighboring
ecosystems, spreading infection. This mobility is supported by the collection of dispersing
aphids infected with P. neoaphidis [167] and the isolation of P. delphacis from planthoppers
caught on a weather ship off the coast of Japan [76].

Most EFOPSZ fungi are prevalent in aboveground ecosystems. The cadavers of insects
infected with EFOPSZ are often found on wild and cultured plants in various ecosystems.
The presence of representatives of the genus Zoophthora, in particular, is well-documented
in numerous agricultural crops, orchards, and different types of forests. Species like P.
dipterigena, P. philonthi, Z. anglica, Z. miridis, Z. opomyzae, Z. petchii, Z. phytonomi, and
Z. radicans are commonly observed in annual and perennial crops, meadows, pastures,
orchards, and forests. These species seem to be well-adapted to drier habitats. Species of
the genera Strongwellsea and Zoophthora appear to be the most adaptable to a wide range of
habitats, whether natural or human created. Furthermore, aphid pathogenic species, like
P. neoaphidis and P. nouryi, have been found worldwide in many crops and are commonly
observed at different temperatures and humidities.

All Entomophthorales require high humidity to release and disperse their conidia [168].
Interestingly, half of the species in the genus Erynia were found in aquatic or notably moist
areas, e.g., E. aquatica, E. conica, E. curvispora, E. nematoceris, E. ovispora, E. sepulchralis,
and E. variabilis. These species may serve as efficient biological control agents for insects
requiring aquatic habitats during specific life stages due to their higher humidity needs
compared to other species in this group. Additionally, five species in the genus Pandora,
one species in Furia, and one species in Zoophthora were found in moist habitats. However,
no Strongwellsea species were recorded in explicitly aquatic or moist environments (Table 1).

Soil is an unusual habitat for predominantly insect-pathogenic EFOPSZ. Nevertheless,
at least one species, Pandora nouryi, infects root aphids (Pemphigus) and follows its hosts to
this habitat, becoming a soil dweller [78]. Zoophthora myrmecophaga infects ants that move
along their paths on the soil surface. Pandora brahminae, which infects scarabs inhabiting
the soil surface, also might be considered soil inhabitants.

3.4. Cultivability

Few species in the EFOPSZ group have been isolated into pure culture or even had
their cultivability tested. Most species have been described only from insect cadavers,
and there are no cultures preserved. The USDA ARSEF culture collection contains fungal
strains isolated from infected insects. While most strains belong to the Ascomycota, ento-
mophthoralean fungi are also well represented. This collection preserves 683 total isolates
of EFOPSZ [14]. These include 28 species known in the genera Erynia, Furia, Pandora,
Strongwellsea, and Zoophthora, as well as 36 isolates from these 5 genera, which are not yet
identified at the species level. Most species are represented by a single or just a few isolates.
However, there are over a hundred isolates representing species such as P. neoaphidis and
Z. radicans, which reflects the common occurrence and easy cultivability of those species.

Few EFOPSZ fungi can be cultivated on typical fungal nutritional media such as malt
extract or potato dextrose agar or in the corresponding liquid media [168]. In the past, to
ensure the fungal growth of entomopathogens, special media containing animal protein
from additives such as liver, extracts of fresh or dried insects, blood serum, or egg yolk were
used [23,169], providing the pathogens with specific nutrients absent in the usual laboratory
media. Sometimes rare and exotic media components such as fly fat bodies are used to
stimulate spore germination or hyphal growth. The addition of yeast extract, arginine, or
other amino acids to the medium substantially improves the growth of entomophthoralean
fungi. Nowadays, the most used liquid medium for entomophthoralean growth is Grace′s
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Insect Medium (Sigma-Aldrich, St. Louis, MO, USA), often with additives such as fetal
bovine serum (ThermoFisher Scientific, Waltham, MA, USA).

Larger-scale production using simpler media has been developed for a few species.
A method for producing Z. radicans dry-formulated mycelium has been developed with
sporulation equivalent to cadavers. Recent examples of successful production on a large
laboratory scale of the fungus P. cacopsyllae are the studies by Muskat et al. ([170,171],
in press). This fungus that infects psyllids of the genus Cacopsylla has been fermented,
encapsulated, and tested for above-ground application.

The most fastidious EFOPSZ species can so far only be cultured in vivo. They require
the maintenance of an insect colony either in the laboratory or in the natural environment
to maintain their population and complete their life cycle. The best results are obtained
from using the natural hosts of the pathogenic fungus. In vivo production is the most
difficult and labor-intensive method for growing entomopathogenic fungi.

The ability to grow EFOPSZ in culture is often connected with the ability of these fungi
to infect insects at various stages of their life cycle, or at least stages other than the imago
(adult), as seen in species like E. curvispora, Z. bialovienzenzis, Z. lanceolata, Z. phytonomi,
and Z. radicans [17,23]. One of the remarkable characteristics of EFOPSZ fungi, particularly
those with high-host or life-stage specificity, is the loss of their vigor and viability after
several transfers on laboratory media despite strong initial growth [168,172]. These features
of highly host-specific members of the EFOPSZ can pose a challenge to mass production in
biotechnology.

3.5. Molecular Data, Genomics, and Biotechnology

Molecular data have been obtained for only ca. one-fifth of Erynioideae species, which
has complicated their identification. Most available data used for the molecular taxonomy
of this fungal group are the small (18S) and large (28S) RNA subunit sequences, which
are successfully used to build phylogenetic trees and provide molecular identification of
species (e.g., see Figure 2). The most frequently used primers are LROR and LR3 or LR5
(28S) and NSSU1088r and NS24 (18S). Amplification of the internal subscribed spacer (ITS)
region, which is usually used as a barcoding gene for fungal species identification, can
be challenging in the case of the Erynioideae, possibly because of its length, which varies
from 0.9 to 1.3 k nucleotides in known species using the typical fungal barcode primers
ITS1f and ITS4. However, partial ITS sequences (ITS2 region) were used to genotype the
species of Strongwellsea and describe several new species of this genus [128,129,131,132].
Pandora formicae, P. gammae, P. kondoiensis, P. neoaphidis, P. nouryi, and Zoophthora radicans
have also been genotyped with ITS sequences [86,173–176]. Some species have informa-
tion available for genes encoding elongation factor 1-alpha, RNA polymerase II subunits
(RPB1 and RPB2), mitochondrial small subunit ribosomal RNA, white collar-1 protein, beta-
tubulin (btub), elongation factor 1 alpha-like protein (efl), cell division control protein 25
(CDC25), chitin synthase (CHS3), chitin deacetylase (CHD1), chitinase 1 (CHI1), endochiti-
nase (CHT1), triacylglycerol lipase (LIP2), glucan binding protein (GBP1), subtilisin-like
protease precursor (SPR2), polyketide synthase (PKS), triacylglycerol lipase precursor
(LIP1), trypsin-like serine protease precursor (TRY1). The most intensively genotyped
species are definitely P. neoaphidis and Z. radicans, from which most of the aforementioned
gene fragments have been obtained [174,175,177–183]; these species have also been consid-
ered the most promising agents for biocontrol. Zoophthora radicans transcriptomes were also
extensively investigated in regard to fungal pathogenicity [184]. As an example of limited
genetic information, no DNA sequence information is available from the single species in
the genus Orthomyces.

In addition to using these species directly for biological control, other potential biotech-
nology applications based on the use of genes or proteins derived from these fungi have
yet to be explored. The early diverging lineages of fungi, here defined as the paraphyletic
group, not including the Dikarya (e.g., Ascomycota and Basidiomycota), have emerged through
the characterization of their genomes as distinct among fungi in containing numerous genes
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and traits shared with animals that were lost in more derived members of the Dikarya. Such
homologs may, in the future, provide new insights into fundamental biology or even lead
to therapeutics for human health. Entomopathogenic fungi themselves are well known
to produce diverse small-molecule secondary metabolites/natural products with activity
against insects [185]. Genome sequences have revealed evidence of greater biosynthetic
capability for such molecules, even among some lineages of early diverging fungi [186],
and the potential for EFOPSZ fungi has not been thoroughly explored. Additionally, ento-
mopathogens, including some in Entomophthorales, also produce protein toxins that show
insecticidal activity [187,188].

At present, just a single species from the Erynioideae has had its genome sequenced, i.e.,
Z. radicans [189]; this was possible in part due to the ease of its cultivability. The genome
was generated as part of a large collection of species in a study that addressed the ploidy
levels of the early fungal lineages, and so features about what this genome contains have
not been described yet in detail. This genome sequence carries the information for how Z.
radicans completes its lifecycle, including as an entomopathogen, but the mechanism is not
immediately obvious. The Z. radicans genome is large, with the assembly at over 650 Mb
currently divided over nearly 7000 scaffolds and estimated to encode over 14,000 genes.
The large size is due to the large amount of repetitive DNA within the genome (Figure 5).
The entomopathogens in the Hypocreales (Ascomycota) contain numerous gene clusters for
the synthesis of secondary metabolites, one of the best known being the cluster for the
immunosuppressive cyclosporin from Tolypocladium inflatum [190], as well as other types
of toxins (e.g., enterotoxins) with possible roles in altering host behavior [191]. However,
such detailed information based on the Z. radicans genome is not yet available, and a
cursory examination of the genome indicates no examples of gene clusters for the synthesis
of toxins.

As pointed out above, one challenge toward generating more genome sequences is
being able to obtain sufficient DNA, usually through culturing of isolates in vitro, which
has not been possible for many of these species. Difficulties with culturing EFOPSZ fungi
make sequencing their genomes complicated because of the challenge of isolating high-
quality and high-molecular-weight DNA and RNA for sequencing. For many species,
extraction of total DNA from the host insect cadaver might be the only option. However,
the recent advances in single-cell genomics [192] may provide a way in the near future
to generate more genomic information about the genetic composition and potential vir-
ulence factors of EFOPSZ species. Once identified, these genetic components could be
utilized in vector-based expression systems for application as biopesticides. There are
also a few genomes available for the closely related subfamily—the Entomophthoroideae—
including Entomophthora muscae, Entomophaga maimaiga, Massospora cicadina, as well as
other species in Entomophthorales: Conidiobolus coronatus, Neoconidiobolus thromboides, and
Basidiobolus meristosporus [193]. Summarizing genome features for the available entomoph-
thoralean genomes, it can be predicted that the genomes of most EFOPSZ fungi are much
larger compared to the average ascomycete fungal genome size (40–60 kB) and can reach
600,000–1,000,000 kB in size and consist of many duplicated gene copies and repeated
regions [194].
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4. Discussion

The goal of using entomopathogenic fungi in various biotechnological applications,
particularly to control populations of agricultural insect pests, has existed for several
decades. However, entomophthoralean species have not been successfully developed and
applied for biological control despite numerous attempts. The major challenges in their
application as biocontrol agents include the difficulty with the cultivation of many species,
requirements for specific abiotic conditions in the field, and the potentially low survival
rates of these fungi outside of the host. However, EFOPSZ fungi possess significant poten-
tial, which is still largely unexplored. Recent advances in genome sequencing technologies
may allow researchers to access key genetic factors that are involved in virulence against in-
sect hosts, even in those EFOPSZ species that cannot be easily cultivated, and biotechnology
could then potentially be used to deploy these in various ways for pest control.

The ability of entomophthoralean species to infect insects from different families or
even from different orders increases the diversity of target insect species for developing
efficient biocontrol measures and selection of suitable pests to control. At the same time,
the broad host ranges of some of these fungi make use of newly developed biological
control remedies riskier as they may also affect non-target insects, including those that are
beneficial for natural ecosystems and humans.

While further research investigating host range among EFOPSZ is needed, the search
for potential biocontrol agents within the Erynioideae might use information on current host
ranges and distributions, targeting hosts belonging to insect taxonomic groups that are
known to be attacked by EFOPSZ (Table 1). Even more important, prediction of possible
non-targets of entomopathogenic species should account for insects within those same
taxonomic groups in addition to pollinators and other beneficials. To some extent, it is an
advantage if a species already has been found on several continents and thus might be
adapted and developed for use in biocontrol over a larger area. These species, with high
adaptability to various environments, are promising candidates for targeting widespread
insect hosts. Each genus of the EFOPSZ group has several species that are distributed
on at least three continents: in the genus Erynia, E. aquatica, E. conica, E. ovispora, and
E. rhizospora; in the genus Furia, F. americana, F. gastropachae, F. ithacensis, and F. virescens; and
in the genus Pandora, P. blunckii, P. bullata, P. delphacis, P. dipterigena, P. gammae, P. neoaphidis,
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and P. nouryi. Many ubiquitous species are included in the genus Zoophthora: Z. aphidis,
Z. geometralis, Z. occidentalis, Z. phalloides, Z. phytonomi, and Z. radicans. Two species of
Strongwellsea, S. castrans and S. magna, have been found on two continents. With increasing
research on entomophthoralean fungi, we hypothesize that it is likely that a larger number
of ubiquitous species will be identified.

Representatives of the genera Erynia, Pandora, and Zoophthora are among the important
infective agents of insects under field conditions. The attempts at the introduction of
EFOPSZ species on different continents have had success with Z. radicans in Australia using
a strain originated from Israel to control the spotted alfalfa aphid, Therioaphis maculata [78].

A lower need for humidity could be considered an advantageous feature for potential
biological control preparations using EFOPSZ species. Aquatic species like E. aquatica
might be successfully used only in wet habitats where they are highly adapted to the moist
environment, and this could restrict application compared to the species found in diverse
ecosystems. The broad ecological and geographical range of Z. radicans, recorded from
numerous agricultural and natural habitats, makes this species unique within the EFOPSZ.

Cultivability is perhaps the main factor that determines the potential success of any
biotechnological application with EFOPSZ. If the fungus is hard to cultivate on artificial
media, then the only way to apply it as a biocontrol agent is to keep it in vivo, infecting
the insect population either in nature or under lab conditions. However, this is costly,
cumbersome, and risky. Development of the biotechnological process and especially
scaling it up demands easy culturing without losing virulence. The challenges of isolation
into a pure culture of the majority of EFOPSZ species, along with loss of vigor during
numerous culture transfers, significantly complicate the research on and development of
potential biocontrol.

A problem with successful pest control with many fungi is the level of susceptibility of
the active organisms to external factors, such as fluctuations in temperature, humidity, and
rainfall. Climate changes may significantly impact the relationship between fungi, insects,
and crops and the interactions among them [196]. Furthermore, additional information
needed for the eventual production of EFOPSZ as biopesticides would be the development
of optimal methods for formulation and application.

5. Conclusions

Analysis of the available data on virulence, growth in vivo and in vitro, formulation,
and field testing suggests that one promising candidate for the development of efficient
biological control agents would be the species Z. radicans. This species seems to have
the potential to control a range of lepidopteran larvae in many agricultural and forest
ecosystems. Another species, P. neoaphidis, has great potential for control of numerous
aphid species in cereals and legumes. Of special importance is the worldwide distribution
of aphids impacting crops and, thus, the large market that exists. In orchards, P. cacopsyllae
has recently been proven to possess a potential for control of psyllid pests. A major objective
here is that fruits are high-value crops that may favor biocontrol options. For the moist
and aquatic habitats, there are several species infecting dipterans. Erynia aquatica and E.
conica may have the potential for mosquito control; however, little is known about their
virulence and growth in vitro. Obviously, the aforementioned factors are not the only
factors determining the success or failure of biocontrol development; however, they play
essential roles. However, advances in genome sequencing methods may allow researchers
to access virulence factors and other genetic factors of these fungi that could be harnessed
for future biotechnological solutions.
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