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LECTURE

Faraway matter as a possible substitute for dark matter

A. Carati1, L. Galgani1

Planck was considering the elementary model in which one oscillator is acted upon by an 
external field, and was unable to deal with the full dynamical system of N oscillators with 
mutual retarded interactions. He assumed all single oscillators to be independent from each 
other. This fact plagues all of his work, from which one would deduce an emission of radiation 
proportional to volume rather than to surface.

2 A full microscopic treatment of the problem is lacking also in the celebrated book of Born and 
Huang, because radiation reaction force is neglected. Such a force was present in the previous 
studies of Planck, who actually was the scientist that discovered it. However, he did not 
recognize the existence of a cancellation which plays a fundamental role and was first proved 
by Oseen in the year 1916, and later conjectured on general grounds by Wheeler and Feynman.

(1) Dipartimento di Matemática, Università degli Studi di Milano

Abstract. A review is given of an attempt, made in two recent papers, 
to estimate the gravitational action of faraway matter on a test particle, 
in connection with the velocity dispersion in clusters of galaxies and with 
the rotation curves of spiral galaxies, respectively. Under the assumptions 
that faraway matter has a fractal distribution and that the gravitational 
action has a correlation length of the order of some kiloparsec, the grav
itational action of faraway matter appears to be sufficient to explain the 
observations relative to such two phenomena, without invoking any local, 
dark matter contribution.

1. Introduction

The thesis illustrated in this paper is that the gravitational action of faraway 
matter may be a substitute for the local action of invisible, transparent (usually 
called dark) matter, at least in the two cases in which dark matter was first 
introduced in order to save the phenomena, namely, the velocity dispersion in 
clusters of galaxies and the rotation curves of spiral galaxies. The main idea un
derlying such a thesis came to our mind quite occasionally, in connection with 
one of our main themes of research, foundational features of classical electrody
namics. Indeed, motivated by a critique (Carati & Galgani 2004) of the way in 
which Planck was dealing with microscopic models of a black body,1 we were 
involved in the problem of a microscopic foundation of dispersion of light in crys
tals2. In this connection it occurred to us to understand how dispersion of light 
in matter is strictly related to the so-called Wheeler-Feynman identity, which 
was conjectured by such authors (Wheeler & Feynman 1945) and we were able 
to prove in a simple model (Carati & Galgani 2003, Marino Carati & Galgani 
2007). Now, such an identity has an evident global character, inasmuch as it
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takes into consideration the retarded and the advanced potentials “created” by 
all the charges present in the Universe, and states that the sum of the semidif
ferences of the retarded and of the advanced fields created by all charges exactly 
vanishes. This introduced us into the frame of concepts of a global character 
involving the Universe.

Quite naturally we were thus led, especially after conversations with G. Con- 
topoulos and C. Efthymiopoulos, to consider the analogy between the roles far 
fields play in electrodynamics and in gravitation theory. Obviously, this analogy 
is evident to everybody, and was particularly pointed out for example by Ein
stein himself in his Princeton lectures (Einstein 1922), when he was commenting 
on the fact that the perturbation to the flat metric satisfies the d’Alembert equa
tion, so that even in general relativity one should deal with retarded potentials, 
as in electrodynamics. He also commented how one might think of implementing 
in such a way Mach’s idea on the role of faraway matter. However, he estimated 
that the inertial force due to faraway matter was too small. Now, such consid
erations were made before Hubble’s law on galaxies recession was established. 
In brief, our idea just amounts to implement Einstein’s estimate when Hubble’s 
law is assumed as a phenomenological fact.

This idea was implemented in the paper (Carati Cacciatori & Galgani 
2008), where it was shown how the gravitational effect of the faraway mat
ter vanishes if the matter is assumed to be uniformly distributed, while it does 
not if the distribution is assumed to be fractal. In fact the latter hypothesis 
had been previously suggested by some authors on an observational basis (Sylos 
Labini et al. 1998), although there is an open debate on this point. So, taking 
a fractal distribution of dimension 2, the force per unit mass on a test particle 
was shown to have the typical value of 0.2cHq, which appears to agree with the 
observed one (Milgrom 1983, Milgrom & Beckenstein 1987). An application to 
the velocity dispersion in the Coma cluster of galaxies was also given in that 
paper.

Finally, in the work (Carati 2011) an estimate of the gravitational effect of 
faraway matter on the rotation curves of spiral galaxies was given. To this end, 
a new assumption was needed, namely that of the field due to distant matter 
should be uncorrelated beyond a length I, which constitutes a free parameter of 
the theory. With such an assumption is was shown that the theory fits pretty well 
the observations, with I of the order of 1 kpc. And this, not only for the most 
common cases in which the rotation curves decay more slowly than expected 
from the Newtonian action of the local matter, but also for the few cases in 
which the decay is faster, to which dark matter cannot provide a solution.

So our “theory” is of a conservative character, entirely framed within classi
cal general relativity, the only new idea being that of estimating the gravitational 
action of matter when the latter is described as constituted of a discrete sys
tem of point-galaxies which are assumed on empirical grounds to obey Hubble’s 
law. The computations then show that the relevant contribution comes from 
the galaxies which are near the border of the visible Universe, which we call 
here the faraway matter. Actually, their gravitational action turns out to be 
negligible if matter is assumed to have a homogeneous distribution, while turns 
out to be of the correct order of magnitude if the distribution is assumed to be 
fractal of dimension 2. So our “theory” has little to do with other ones, such
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as for example MOND (Milgrom 1983) which constitutes a kind of “effective” 
theory, or TeVeS (Beckenstein 2004) which is one among the theories alternative 
to classical general relativity.

In the present paper a short review of the works (Carati Cacciatori & Gal- 
gani 2008) and (Carati 2011) is given. In section 2 the analogy between far 
fields in electrodynamics and in gravitation theory is recalled. In section 3 the 
model is described, and the first significant result is illustrated, namely, a deduc
tion of the FRW metric. Moreover, the Friedmann-Robertson-Walker (FRW) 
metric is deduced as a mean metric, and an estimate is obtained for an effective 
local density, which turns out to be five times the observed one. Finally, the 
applications to velocity dispersion in clusters of galaxies and to rotation curves 
in spiral galaxies are illustrated in section 4.

2. Far fields in electrodynamics and in gravitation theory

The relevance of faraway matter can be illustrated through the example of the 
electromagnetic field. As is well known, the electromagnetic field due to a charge 
e can be split, according to Maxwell’s equations, as the sum of two terms:

• The Coulomb field (or near field) E ~ k^

e The far field E ~ ^, where a is the charge acceleration and c the speed 
of light.

Clearly, the electromagnetic interaction between distant bodies just reduces to 
the far field, which decreases with the distance much more slowly than the 
Coulomb one, and manifests itself as a radiation emitted by the source. If one 
tries to take into account the radiation emitted by all charges present in the 
Universe, one meets with paradoxes as that of Gibers, which is just due to the 
radiation emitted by the faraway objects. It is true that modern cosmological 
theories allow one to escape such a paradox, but at any rate the far away sources 
still play a role in producing some background field, the 3 °K cosmic background 
radiation. In a similar way we will try to take into account the background grav
itational field due to distant galaxies, estimating its magnitude, and discussing 
its possible effects.

First of all one has to recall that, in the electromagnetic case, the far field 
comes into play because the 4-potential Ap due to a point charge, of position 
vector q, is a solution of the d’Alembert equation

□Ap = dvreq^ 5(x - q)

(5() being the Dirac delta function), i.e., is a relativistic effect. So, in order 
to compute the gravitational effects of far away matter, one has to go beyond 
Newton’s theory, and make use of general relativity.

This cannot be done in full generality, as the full problem is intractable. In 
fact, in computing the field produced by distant sources, one is faced with a non 
linear coupled problem, namely,

• The gravitational field is a solution of the Einstein equations having as 
source the energy-momentum tensor corresponding to the galaxies, dealt 
with as “particles”;
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e the motion of the particles (and thus the corresponding energy-momentum 
tensor) is determined by the force field, that they themselves create as 
sources

3. The model. First result: the effective FRW metric and the effec
tive matter density

The problem is too complicated, and no one is able to say anything definite about 
it. One can simplify it, as we will do, by making the following assumptions:

1. the motion of the galaxies is assigned, according to the observation (this 
corresponds in electrodynamics to the antenna problem, in which the cur
rents are assigned)

2. the Einstein field equation is linearized.

The motion of the galaxies (of position vectors qj) is assigned according to 
Hubble’s Law q, = Hq qj , where, for the sake of simplicity, Hubble’s constant 
Hq is taken time-independent. So, if one thinks of the galaxies as point sources, 
for the energy-momentum tensor one gets the expression

where N is the number of galaxies, of mass Mj, and yj is the usual Lorentz 
factor, while g is the modulus of the determinant of the metric. All derivatives 
are meant with respect to proper time. In this expression one has to think of 
the positions qj of the galaxies as distributed at “random”, i.e., the vectors q^ 
are random variables, distributed according to some definite law. The galaxy 
masses Mj too could in principle be thought of as distributed at random, but 
we will instead take them all equal, just in order to simplify the discussion.

The second step is the linearization of Einstein’s equation for the metric 
g^v = 9P.V A-h^v about an unperturbed solution 77^. For g^ we take the vacuum 
solution, i.e., the Minkowsky metric, so that the perturbing metric h^v has to 
satisfy the equation (with G the gravitational constant)

i.e., essentially the d’Alembert equation, with the energy-momentum tensor T^ 
as source. Then the gravitational force will contain a far field term as in the 
electromagnetic case.

However, before addressing this problem in the next section, we will pre
liminarily look here at the expression for the metric. As solution of the Einstein 
equations we consider here (as commonly made in electromagnetism) the re
tarded one. This is given by

-2G
^ “ c4

Mj 2q^q^ - c^g^

Ix-qjl (D
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where the time is the retarded one, i.e., tiet = t— |qj—x|/c, which is a function of 
the position x. We note in passing that this is not the unique solution, because 
for example one could consider the semisum of the retarded and the advanced 
potentials, as was recently done by Romero and Pérez (Romero & Pérez 2011). 
Now, with the retarded solution one deals with the observed positions of galax
ies at time t, while the advanced solution requires to know their positions in 
the remote future, which are unknowable. Thus the estimate of the advanced 
potentials is quite difficult, and we choose the retarded ones.

Now the metric hp,v is a random variable, because such were assumed to be 
the positions of the sourca-galaxies. Then, on averaging, one can get the “mean 
metric”, which should give the properties of the metric in the large: the actual 
value of the metric will “fluctuate” about the mean value, and such a fluctuation 
turns out to produce the peculiar effects we will describe later.

If one assumes the distribution of galaxies to be isotropic, for the mean 
metric one gets the expression

( 9p.v ) dx^dx" = (1 — a — 3/3) c2dt2 — (1 + a + 3W2 ,

where dl2 = dx2 + dy2 + dx2, and

2G , \ AT , 4GHn , \ i i . , .

j J j

So the mean metric turns out to be a Friedmann-Robertson-Walker one.
We meet here with a consistency problem, because in a Friedmann-Robertson- 

Walker metric the Hubble constant is related to the coefficients a and 3 by the 
relation

Id 1 + a + 3 
Ho = lo8 3W • 2 dt 1 — a — 3p

So the value of the r.h.s. has to coincide with the value of Hy we have assumed 
phenomenologically for the motion of the galaxies.

On the other hand, one also meets with a big difference with respect to 
the usual treatment in which matter is dealt with as a continuum. Indeed, 
in our case a and 3 depend heavily on the distribution of faraway matter (as 
the expression (2) explicitly shows), while in the continuum approximation they 
depend only on the local density. In fact the sums in (2) diverge, as one sees 
for example in the case of a uniform distribution of galaxies, so that the larger 
contribution comes from the faraway galaxies.

Introduce an effective density of matter yeff, defined by requiring that one 
has

( 12 ~ 47r^ff ’ ^52 MM\ ) ~ 47ryeff

where Ry is the “radius of the universe” (or better of our chart of it).
Then one finds that, between effective density and Hubble’s constant, one 

has the relation

i fr 4 8ttG ‘
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Thus, using the accepted value for Hq, one finds

&ff — 5yo ,

where qo is the (estimated) present density of visible matter. So, our model 
can fit the observations if the contribution of the distant galaxies (in principle 
divergent, as remarked above) is four times the contribution of local visible 
matter. This is the first effect in which the contribution of distant objects might 
replace the contribution of local dark matter.

4. Application to the velocity dispersion in clusters of galaxies, and 
to the rotation curves in spiral galaxies

To describe the effect faraway matter has on the velocity dispersion in clusters 
of galaxies and on the rotation curves of spiral galaxies, we have to compute the 
“gravitational force” due to the distant galaxies.

We recall that the gravitational field affects the motion of a test particle 
inasmuch as the motion satisfies Lagrange equations with a Lagrangian that 
involves the metric tensor, namely,

d./v d^C/y 
dr dr

So, the equations of motion of a test particle, with position vector x = (aq, ^2, ^3) 
have, for small velocities, the form

1 def
xk = -ôkhoo - Tg^thok + smaller terms = fk .2c

One can check that

• 9kh-oo corresponds to the Newtonian force ~ I/?'2

• g^^thok corresponds to the far field ~ a/r, a being again the acceleration 
of the source.

The analogy with electromagnetic theory is thus complete.
From (1), it is possible to estimate the force per unit mass, f, acting on a 

test particle. The most important term is that given by the far field. Notice 
that the acceleration of a galaxy can be obtained by differentiating Hubble’s 
law, so that not only velocities, but also accelerations increase linearly with the 
distance. In such a way one finally gets

f =
4GH2 

c2 (3)

Notice that, again, f is a random vector because such are the position vectors qj. 
So, for what concerns the mean, assuming an isotropic probability distribution 
of the galaxies one has

(f ) =0,
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as expected. Now, although having a vanishing mean, f is not a vanishing 
quantity at all. In fact, for a random variable X with vanishing mean, one 
knows that its typical value is given by its standard deviation ctx, in our case 
ctj. At this point, in order to compute the variance a2 of f, a crucial role is played 
by the probability distribution of the galaxies. Two cases may be considered.

1. The positions of the galaxies can be assumed to be independent and iden
tically distributed (as for gases). Then f is the sum of N independent 
identically distributed random variables, so that its variance ct2 is simply 
the sum of the variance of each term. In this way one gets

aj ~ cHqJVÑ ~ 0 ,

i.e., the force due to the faraway matter is negligible.

2. Some authors (Sylos Labini et al. 1998) have proposed that the distribu
tion of the galaxies is a fractal, with dimension D ~ 2. This means that 
the galaxy positions are correlated, so that the computation of a2 is no 
more immediate. In any case, a2 can be estimated numerically by gener
ating samples from a distribution of points with fractal dimension 2. We 
generated such a distribution using the recursive relation

q,+i = q, + z
where z is a random vector with a Gaussian distribution. A numerical 
estimate of the standard deviation ay gives

dj ~ 0.2 cHq ,

Thus, in the fractal case the contribution of faraway matter is no more 
negligible. In fact, it is even of the order of magnitude of that ascribed to 
dark matter (Milgrom 1983, Milgrom & Beckenstein 1987), both in clusters 
of galaxies and in connection with the rotation curves of spiral galaxies, as 
will be discussed below.

So we have estimated the size of the force (per unit mass) due to distant 
matter, under the fractal assumption. However, one has to recall that the rele
vant force which effectively acts on an object within a system is the tidal one, 
namely, f — f*, where f is the force acting on the object, and f* that acting at 
the center of mass of the considered system. Indeed, in the presence of a locally 
constant force field, according to the equivalence principle (think of Einstein’s 
lift example), the locally constant field can be eliminated by a suitable change of 
coordinates. Now, the relevant force f — f* turns out to be completely different 
in the two cases, smooth or nonsmooth.

Indeed, let us estimate the variance a2 of f — f* in the two cases. In the 
smooth case one can estimate f — f* by Taylor expansion, getting

a2 H2L2

where L is the linear dimension of the system (the cluster of galaxies, or the 
galaxy). This contribution is found to be totally negligible for the case of the
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“Coma” cluster, and also for the galaxies we studied. On the other hand, for the 
variance of f — f* in general one has

u2 = 2 oj -2C(f,F) , 

where
c(f,r) = (f-n

is the correlation of the two considered quantities,, () denoting mean value. Thus, 
under the nonsmoothness assumption, which means that the correlation of the 
tow forces f and f* is negligible, the size of the tidal force is just equal to V2 
the size of the force itself.

Having determined the size of the tidal force under the decorrelation as
sumption, there remains now the problem of its global effect on the system 
considered. The most significant cases are those in which the force field acts as 
a pressure or as a tension, i.e., the cases in which the force field is locally pre
dominantly centripetal or centrifugal, respectively. Actually one expects that, 
in the Universe, local structures be formed where the far field conspires to pro
duce pressure. Obviously this remark raises a consistency problem for a possible 
future more complete theory, in which one abandons the simplifying assumption 
considered in the present ’’theory”, in which the motions of the sources were taken 
to be assigned (according to the phenomenological Hubble law). At the present 
level of approximation, we just consider the choice of the direction (pressure or 
tension) as a free element of the theory, to be determined form observations. 
Obviously, one expects that in the large majority of cases, a pressure will be 
found.

We can now come to a description of the results for the clusters of galaxies 
and for the rotation curves of spiral galaxies.

In order to estimate the contribution to the virial of a cluster of n galaxies 
(Carati et al. 2008), one starts from the virial theorem, and for the variance c2 
of the velocity on gets

ncr2 d= ^ vi = $ - f*) ‘ x« ’ 

i i

where f, is the force (per unit mass) due to the faraway matter acting on the 
-¿—th galaxy of the cluster located at x¿, while f* is the value of the force field at 
the center of mass of the cluster.

Assuming that the forces acting on the different galaxies of the cluster be 
uncorrelated, and moreover that the force field acts as a pressure, which helps 
stabilizing the cluster3, one gets

3One should recall that the gravitational force due the visible matter of the cluster is utterly 
unable to keep the cluster together.

cr2 ~ 0.07 cHqL . (4)

For the Coma cluster (L of the order of 1 Mpc) this formula gives a, = 900 km 
s 1 against an observed value of 700 km s-1. So the contribution of faraway 
matter can explain the measured value of the variance u2. without any need of 
dark matter.
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Figure 1. The rotation curves for the galaxy NGC 3198 (left) and NGC 2403 
(right). Solid line is the theoretical curve with the contribution of faraway 
matter taken into account, dashed line refers to the contribution of the local 
matter.

Figure 2. The rotation curves for the galaxy NGC 4725 (left) and UGG 2885 
(right). Solid line is the theoretical curve with the contribution of faraway 
matter taken into account, dashed line refers to the contribution of the local 
matter.
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Figure 3. The rotation curves for the galaxy NGC 864 (left) and AGC 
400848 (right). Solid line is the theoretical curve with the contribution of 
faraway matter taken into account. The decrease of the rotation curve is 
faster then keplerian.

Table 1. Value of the correlation Z, for four galaxies.

Galaxy Mass Mass/Luminosity Correlation length
NGC 3198 4.0 1010 M^ 4.6 M^jL^ 0.6 kpc
NGC 2403 3.5 1010 M^ 4.4 M^/L^ 0.8 kpc
UGC 2885 1.0 1012 M^ 2.1 M^/L^ 1.7 kpc
NGC 4725 1.1 10n M^ 2.1 M^/L^ 3.1 kpc

For what concerns the rotation curves in spiral galaxies (Carati 2011), at 
variance with the case of the clusters of galaxies one cannot forget the contribu
tion of the local visible matter, which is the larger one. This force can be taken 
in the nonrelativistic approximation, i.e., expressed in terms of a potential V1"0, 
which depends on the distribution of the local matter.

In order to describe the effects of the force due to the faraway matter in 
this case, the treatment requires to assume a decorrelation property, i.e., that 
the correlation decreases exponentially on a certain scale I. which plays the role 
of a free parameter to be determined by fits with the observations.

In this case, one gets for the speed y of rotation the expression

3
= -arvlocM - arye" , (5)

2 T

where drVe^ comes from the contribution of the faraway galaxies. This term 
has to be understood not as a derivative of a potential, but as a random term 
with vanishing mean, the standard deviation of which can be estimated. One 
finds

9TVe^ ~ ±0.2^00^1 . (6)
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We still have a free choice for the sign of this term, which entails either 
a pressure, which helps keeping the galaxy together, or a tension, which tends 
to break it apart. One can conjecture that the positive sign has to appear 
more often. Actually, in the literature there are reported observations for a 
small percentage of galaxies, in which the rotation curves decrease faster than 
expected from the Newtonian action of the local visible matter, which means 
either that the galaxy is expanding, or that there is a force acting on the system 
as a tension.

One can obtain the order of magnitude of the parameter I, by fitting the 
observation with our formula. We report in Table 1 the value of I obtained by 
fitting the rotation curves of very different galaxies. One can check that the 
order of magnitude is always the same, I ~ 1 kpc.

5. Conclusions

So we have shown how the the gravitational action of faraway matter may explain 
the two classical phenomena for which local dark matter was first introduced. 
Other phenomena exist which are explained in terms of dark matter, and we hope 
to tackle them in the future. Obviously, the present “theory” introduces some 
hypotheses, such as fractal structure of the Universe or decorrelation properties 
of the gravitational field, as usual with scientific theories.
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