
Asociación Argentina de Astronomía
Third La Plata International School on Astronomy and Geophysics:
Chaos, diffusion and non-integrability in Hamiltonian Systems 
Applications to Astronomy , 2012
P. M. Cincotta, C. M. Giordano & C. Efthymiopoulos, eds.

LECTURE

The periodic and chaotic regimes of motion in the 
exoplanet 2/1 mean-motion resonance

T.A. Michtchenko1, S. Ferraz-Mello1, C. Beaugé2

1. Introduction

Asteroids and exoplanets are amongst the most striking sources of problems in 
Celestial Mechanics where chaos and order play an important role. Asteroids 
have always puzzled astronomers by their peculiar distribution: in some regions, 
they avoid resonances, but in others, they prefer to be exactly where the res
onances are found. The famous problem of the Kirkwood gaps, solved in the 
last quarter of the past century, is the better example. Asteroids have benefited 
from more than one century accurate observations and the number of aster-
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Abstract. We present the dynamical structure of the phase space of the 
planar planetary 2/1 mean-motion resonance (MMR). Inside the resonant 
domain, there exist two families of periodic orbits, one associated to the 
librational motion of the critical angle (c-family) and the other related to 
the circulatory motion of the angle between the pericentres (Aw-family). 
The well-known apsidal corotation resonances (ACR) appear at the inter
sections of these families. A complex web of secondary resonances exists 
also for low eccentricities, whose strengths and positions are dependent 
on the individual masses and spatial scale of the system.

Depending on initial conditions, a resonant system is found in one of 
the two topologically different states, referred to as internal and external 
resonances. The internal resonance is characterized by symmetric ACR 
and its resonant angle is 2 A2 — Ai — cti, where A¿ and Wi stand for the 
planetary mean longitudes and longitudes of pericentre, respectively. In 
contrast, the external resonance is characterized by asymmetric ACR and 
the resonant angle is 2 A2 — Ai — c^2 • We show that systems with more 
massive outer planets always envolve inside internal resonances. The limit 
case is the well-known asteroidal resonances with Jupiter. At variance, 
systems with more massive inner planets may evolve in either internal 
or external resonances; the internal resonances are typical for low-to- 
moderate eccentricity configurations, whereas the external ones for high 
eccentricity configurations of the systems. In the limit case, analogous to 
Kuiper belt objects in resonances with Neptune, the systems are always 
in the external resonances characterized by asymmetric equilibria.
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oids whose orbits are known with high precision is presently of order of many 
thousands. Accurate observations allowed us to map the phase space where the 
asteroids evolve and obtain the boundaries of regular and chaotic motions. In 
addition, the increasing computer capacity allowed us to understand why they 
are distributed in such a way.

Exoplanets on the other hand are being observed at the limit of our technical 
capabilities. We are far from having accurate knowledge of their orbits. We 
know presently more than 700 planets. Most of them are in systems composed 
of only one planet. But the number of multi-planet systems is increasing and 
may reach its first hundred in a short time. Besides, what is important, they 
show a striking diversity. They range from the small systems of super-Earths 
and mini-Neptunes, as those discovered by the space missions CoRoT and Kepler 
in circular orbits very close to their central stars, to systems of giant planets in 
very elongated elliptic orbits reaching enormous distances from their host stars, 
as far as the outskirts of our Solar System. Eccentricities larger than 0.5 are not 
infrequent: in multi-planet systems they reach up to 0.75 and in single-planet 
systems they reach up to 0.97.

Many multi-planet extrasolar systems exhibit resonant behavior. Systems 
of resonant planets is a novelty for the Celestial Mechanician. We were used 
to study the resonant problems of small objects, whose mass can be assumed 
as zero (restricted three-body problem), or a few planetary satellites in which 
restricted models cannot be used but which are dominated by the oblateness of 
the central planet. So, exoplanets are a prime source for cases of the three-body 
problem in which we cannot neglect the mass of the bodies and in which the 
mutual point-like gravitational interaction is by far the dominant force. The 
most frequent resonance found is the 2/1 mean-motion resonance (e.g. GJ 876 
c-b, HD 40307 c-d, HD 73526 b-c, HD 82943 c-b and HD 128311 b-c).

Although other resonance sites may also be inhabited (e.g. HD 60532 b-c 
in the 3/1 or HD45364 b-c in the 3/2 resonance), the 2/1 is presently the most 
populated. Notwithstanding the limited accuracy of the observations, resonant 
configurations have at least two strong arguments in their favor: The long-term 
stable motion of close planets in high eccentricity configurations is possible only 
if the planets are locked in (and protected by) MMRs. Secondly, resonance 
trapping appears to be a natural outcome of planetary migration processes due 
to planet-disk interactions, which are believed to take place in the latest stage 
of the planet system formation (e.g. Kley 2000; Snellgrove et al. 2001; Kley et 
al. 2005). ~ '

The classical studies of the general three-body problem with their averaged 
Hamiltonians have been quickly extended to the case of exoplanets (Hadjide- 
metriou 2002; Lee & Peale 2002; Beaugé & Michtchenko 2003; Ferraz-Mello et 
al. 2003). The periodic solutions, dubbed as corotation resonances or apsi
dal corotation resonances (ACR), were obtained to cover all possible families in 
low-order resonances (Lee 2004; Beaugé et al. 2006; Michtchenko et al. 2006b, 
Giuppone et al. 2010). ACR are stationary states of the resonant Hamiltonian 
averaged over the synodic period and correspond to equilibrium solutions of the 
averaged equations of motion.

Notwithstanding the attention devoted to ACR and periodic orbits, not 
much was known on the topology of the phase space outside their vicinity. A
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detailed analysis was presented first by Michtchenko & Ferraz-Mello (2001) for 
the 5/2 MMR, by Callegari et al. (2004) for the 2/1 MMR and by Callegari et al. 
(2006) for the 3/2 MMR. However, these works were limited to the study of a few 
specific systems and are only valid for very small eccentricities. Even so, results 
showed the complex structure of the phase space, populated by several different 
families of periodic orbits, modes of oscillation and possible regimes of motion. 
ACR appear to be only one of several distinct types of stable configurations.

It was necessary to extend our knowledge of the resonant dynamics of the 
MMR beyond the ACR. This has been done for the 2/1 resonance in two papers 
published by Michtchenko et al. (2008 a,b), for arbitrary mass ratios and with no 
restrictions in the orbital eccentricities, providing a complete map of the phase 
space around the ACRs. These results, summarized in this paper, help us to 
understand the results of numerical simulations and pinpoint where future (or 
even currently known) extrasolar systems may be found. Even if all planetary 
systems in this commensurability seem to be restricted to the very close vicinity 
of ACR, the maps allow to see the possible evolutionary routes inside the 2/1 
MMR from initially non-resonant configurations.

2. The model of the resonant three-body problem

When the ratio of the orbital periods of two planets is close to a ratio of two 
simple integers, we say that the planets are close to a mean-motion resonance 
(MMR). A mean-motion resonance is often written in a generic form as

ni/n2 = (p + y)/p,

where nt are the planetary mean motions and p and q are integers, the latter 
one representing the order of the resonance. The critical (or resonant) angles ot 
are defined as

0-1 = (1 + p/q)X2 - Çp/qW - cti, 
02 = (1+p/^)A2 - (p/7)Ai - ^2, (D

where Xi and Wi are mean longitudes and longitudes of peri centre of the planets; 
index 1 denotes the inner body, while index 2 is reserved for the outer body. The 
behavior of the critical angles defines the location of the system with respect to 
the resonance: when one of these angles is librating, the system is said to be 
inside the resonance. It is worth noting that the secular angle defined as a 
difference in longitudes of pericentre of the planets, is Act = oi — 02.

The dynamics of two resonant planets, with masses m-i and m-2, orbiting 
a star of the mass m-o is defined by the averaged Hamiltonian Utes and two 
integrals of motion, AM and A, where the first is the total angular momentum 
and the second is the so-called spacing parameter. These analytical functions 
are given by the expressions, up to second order in masses:

2 Gmomi 
2=1 2d,

- iH € Wlii epOi, Q) dQ,

AM = m-i ni a^ ^1 — f/ + m2 n2 a2 \/l — 62, (2)

(p + 7) mi nx a^ + p m2 n2 a^
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where R is the disturbing function. All orbital elements, including the semi
major axes at and eccentricities e¿, are canonical astrocentric variables; their 
relation to the usual osculating heliocentric orbital elements can be found in 
(Ferraz-Mello et al. 2006). The averaging of the disturbing function R is done 
with respect to the synodic angle Q = À2 — Ai. In the vicinity of the MMR, 
Q is much faster than the resonant and secular angles, and does not influence 
significantly the long-term evolution of the system. Thus, all periodic terms de
pendent on Q can be eliminated (i.e. averaged out) of the Hamiltonian function, 
and only secular and resonant terms need to be retained.
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Figure 1. Numerical simulation of two planets displaying large-amplitude 
librations around a (0, 0)-ACR, with masses and initial conditions drawn from 
Fit B of Ferraz-Mello et al. (2005) for the HD 82943 system. Plot shows 
the resonant evolution of the semimajor axes (left panel) and eccentricities 
(right panel), averaged over short-term oscillations. It is worth comparing 
the resonant oscillation timescale (left panel) to the secular one (right panel).

The invariance of AM and R has important consequences for the orbital 
evolution of the system. It indicates that, after the averaging process, from 
the set of the variables («1,^2,61,62), only two are independent, and the pla
nar resonant problem has two degrees of freedom. Each degree of freedom is 
characterized by its proper mode of motion. Note that R depends only upon 
masses and semimajor axes; therefore, the invariance of the spacing parameter 
R defines a coupling of the semimajor axes: they oscillate with opposite phases 
and with amplitudes that are inversely proportional to the planetary mass. We 
say that the semimajor axes have no secular variation and their evolution occurs 
in timescales associated with the resonant mode of motion. This effect can be 
seen in Figure 1 (left panel).

On the other hand, the integral of the total angular momentum AM causes 
a coupling of the planetary eccentricities, in such a way that, when one eccentric
ity grows, the other decreases, as seen in Figure 1 (right panel). The oscillation 
generally occurs in timescales much longer when compared to those of the reso
nant mode. This mode is defined as secular mode of motion of the system and 
is associated with the secular angle Act. AM is a function of both semimajor 
axes and eccentricities, that implies that both modes of motion, resonant and 
secular, are present in eccentricity variations. In the example shown on the right 
panel in Figure 1, the amplitudes of the resonant component in the eccentricity 
variations are much smaller (and frequencies are much higher) than those of the 
secular mode. However, as will be shown below, for some initial conditions, both 
amplitudes and frequencies can be comparable.
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3. Stationary orbits of the averaged 2/1 resonant problem

The Hamiltonian function given in Eq.(2) is very complicated, even in the planar 
case, and generally possesses several extrema, which define stationary solutions 
of the averaged problem. These solutions are often referred to as Apsidal Corota
tion Resonances (ACR). To obtain these special solutions over a large domain of 
the parameters of the problem, we employ the geometrical method presented in 
Michtchenko et al. (2006b), where each equilibrium solution is identified looking 
at local maxima of the Hamiltonian function, for given values of the total an
gular momentum AM and the spacial parameter KL. The location of the global 
maxima of the 2/1 resonance Hamiltonian calculated for all possible values of 
AM and a fixed A, are shown on the plane (ei, 62) in Figure 2, in the form of 
families parameterized by the mass ratio m^/mi.

@1

Figure 2. The 2/1 resonance stable apsidal corotation solutions parameter
ized by the mass ratio m^mi. The cases with m^lmi > 1 are shown on the 
left panel, while those with m^mi < 1 on the right panel. The mass ratio 
1.064 corresponding to the HD 82943 system is illustrated by a gray curve.

Usually, ACR are classified in two types: symmetric and asymmetric solu
tions (e.g. Beaugé et al. 2003, Lee 2004, Voyatzis & Hadjidemetriou 2005). The 
symmetric solutions are characterized by stationary values of both critical an
gles (1) at 0 or 180°. The symmetric ACR-solutions evolve monotonically with 
the increasing eccentricities of the planets. For instance, for m,2/m,i > 1.015 
(Ferraz-Mello et al. 2003), all ACR families are symmetric; some are plotted on 
the left graph in Figure 2.

For mass ratios smaller than this critical value, the smooth evolution along 
a symmetric family is interrupted by a sudden increase of the outer planet’s 
eccentricity (the case of the family with m,2/m,i = 1 on the left graph). The 
corresponding symmetric solutions become unstable and the stationary systems 
evolve now along an asymmetric segment of the corresponding family. Asymmet
ric ACR are characterized by stationary values of both critical angles different 
from zero or 180°. The families shown on the right graph in Figure 2 exhibit 
this feature.
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A second critical value of the mass ratio occurs at ~ 0.36 and is illustrated 
by cyan and magenta curves in Figure 2 (right panel). Below this limit, asym
metric ACR-families split into two disconnected branches on the (ei,e2)-plane, 
marked by labels A and B. In these cases, there may exist two distinct station
ary configurations described by different sets of orbital elements, but leading to 
the same values of total angular momentum and the spacing parameter.

We analyze the evolution of the proper periods (inverse of the proper fre
quencies) along each ACR-family, employing a method of dynamic power spectra 
(Michtchenko et al. 2006a). The left graph in Figure 3 shows, in logarithmic 
scale, the period of the resonant proper mode of motion (T/) and the period of 
the secular mode (Ta^), both obtained along the ACR-family parameterized by 
the mass ratio of the HD 82943 system. The ratio between both periods, plotted 
by a dashed line on the same panel, indicates that the characteristic times of the 
resonant component of motion are generally shorter (at least in order 1) than 
the secular ones. Both periods are comparable solely for very small eccentricities 
when, for some initial configurations of the planets, they can be commensurable 
originating a complex structure of secondary resonances inside the primary 2/1 
resonance.

Figure 3. Left: Evolution of the period Tc of the resonant mode of motion 
and the period T/xm of the secular mode along the ACR family parameterized 
by >712/7711 = 1.064, with the individual planet masses of the HD 82943 system. 
The ratio '1\- /T„ is shown by dashed line. Right: Evolution of the secular 
period IX- along several ACR families. The values of the mass ratio are 
indicated by numbers.

The right graph in Figure 3 shows the secular period, in logarithmic scale, as 
a function of the outer planet eccentricity obtained along several ACR-families 
with different mass ratios. For large values of m2/mi, there is a little change in 
the period with a maximum value at 62 roughly between 0.1 and 0.2. However, 
for decreasing values of 777.2 /mi, the maximum becomes more pronounced until it 
reaches a singularity near 62 — 0.1, for the mass ratio m^Jm^ = 1.015. In Figure 
3 (right panel) we show discontinuities which appear along the ACR-family 
parameterized by m2/mi = 1. A comparison with the plot of Figure 2 shows 
that these discontinuities are associated to the bifurcation of the symmetric 
ACR leading to the origin of the asymmetric stable solutions. The existence of 
the singularities indicate that the difference between symmetric and asymmetric 
ACR is not restricted to the equilibrium values of the angles, but constitutes 
qualitatively distinct solutions, each belonging to separate regions of the phase 
space.
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Figure 4. Examples of stable symmetric (a) and asymmetric (b) and (c) 
stationary configurations of two planets in the 2/1 resonance, with the mass 
ratio 772-2/772-1 = 0.3. The continuous lines are apsidal lines, while the dashed 
lines are conjunction lines (in the case (a) two lines coincide). The full circles 
show the positions of the planets on the orbits at the instant of the closest 
approach between them.

4. Geometry of the stationary orbits

Figure 4 shows three different configurations of the ACR-solutions of the 2/1 
MMR, obtained for 772-2/772-1 = 0.3. The case (a) illustrates a symmetric solution 
with anti-aligned pericentre fines. In this case, the closest approach between 
two planets occurs when the planets are in conjunction: the inner planet in the 
pericentre and the outer planet in the apocentre of their orbits (Act = 180°).

Two asymmetric ACR-solutions are shown in Figure 4(b) and (c). Both 
configurations are characterized by the same set of the constants AM and A, but 
the solution (b) belongs to the branch A of the ACR-family, while the solution 
(c) corresponds to the branch B in Figure 2 (right panel). The secular angle Act 
defines the relative orientation of the pericentre lines of two orbits. The positions 
of the planets on their orbits are strongly tied by the 2/1 resonance relationship 
between the planetary mean anomalies which are related to the critical angles 
through Mi = 04 + (p + g) Q and M2 = 02 + pQ,where Q is the synodic angle 
and p = q = 1 (Beaugé & Michtchenko 2003). Full circles in Figure 4 show 
positions of the planets, for which their mutual distance is minimal.

In the configuration (b), when the orbits are not intersecting, the closest 
approaches occur when the planets are in conjunction, forming a co-linear con
figuration with the central star. It is interesting to observe that the planetary 
conjunctions avoid positions between the two pericentra. As a consequence, con
junctions always occur when two planets are far away from positions where the 
two orbits are very close one to another; this feature can be seen as a protection 
mechanism due to the 2/1 mean-motion resonance.
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In the case (c), two orbits are intersecting and the mutual distance is not 
more minimal when the planets (open circles) are in conjunction. The closest 
approaches occur when the central star and the two planets (full circles) are in a 
triangle configuration and the outer planet is localized close to the intersection of 
the two orbits. In this case, again, the protection mechanism prevents very close 
approaches between two planets (see also Lee et al. 2006, for similar analysis).

5. Two regimes of resonant behavior: interior and exterior reso
nances

In the previous sections, we have seen that the resonant behavior is actually 
composed of two proper modes of motion, the resonant and secular ones. It 
is generally characterized by the libration of one angle and the circulation of 
the other. We refer to the librating angle as the resonant angle and to the 
oscillation/circulation angle as the secular angle. The secular theories provide 
us with the secular angle: it is defined by the difference in longitudes of pericentre 
Act = CT2—CTi or, from our definitions (1), as Act = U| — o"2. The last expression 
shows that only one of two critical angles defined in Eq. (1) is independent and is 
a truly resonant angular variable of the problem (the other independent angular 
variable is Act). The question which rises now is which one of two critical angles 
can be chosen as a resonant variable.

When the outer body is more massive (m-2/m-i > 1.015), the situation is 
similar to that of an asteroid evolving in a resonance with Jupiter, when the 
librating angle is ui. In this case, all ACR-solutions are symmetric. Thus, we 
choose the critical angle ui as a resonant angular variable of the problem and 
adopt the name interior resonance for this regime of motion.

For the planets with the mass ratios m-2/m-i < 1.015, both kinds of ACR- 
solutions are possible, symmetric and asymmetric ones. If m-2/m-i << 1, which 
is the case of a Kuiper belt object in resonance with Neptune, the asymmetric 
solutions are dominating. Therefore, in the case of asymmetric ACR, we choose 
the critical angle 02 as a resonant angular variable of the problem. We refer to 
the regime of motion characterized by asymmetric ACR as exterior resonance.

The behavior of the secular angle Act has also some special characteristics. 
In both interior and exterior resonances, it may be either a circulation or an 
oscillation. However, the oscillation in this case should be differentiated from 
the regime of motion defined as a libration in Celestial Mechanics. Indeed, the 
motions are akin to a family of concentric curves around one center displaced 
from the origin; the curves which are close to the center, do not enclose the origin 
- they correspond to oscillations, while the outer curves enclose the origin and 
correspond to circulations. The separation between them is not a dynamical 
separatrix, but just one curve passing through the origin. The whole set of 
curves forms a homeomorphic family of solutions and the distinction between 
oscillations and circulations in this case is merely kinematical. To stress this 
behavior we use the word oscillatiory/circulatory, when describing this regime 
of motion.
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6. Dynamics around the ACR solutions: Interior resonance

Independent of the mass ratio, the dynamics associated to all symmetric ACR 
is qualitatively similar, showing interior resonances. To portray the phase space 
of the interior resonance, we introduce a symmetric representative plane (ni/n2, 
62), with the resonant angle oq fixed at 0 and the secular angle Act at 0 (positive 
values on the 62-axis) or 180° (negative values on the 62-axis). A typical example 
of the dynamical map of the phase space around one symmetric ACR is shown 
in Figure 5.

The map contains one center, which represents the ACR solution; its posi
tion shown by a red circle. Around the center, we find a region of quasi-periodic 
motion, coded in gray scale on the dynamical maps. Light gray color indicates 
regular motion, while darker tones correspond to increasingly chaotic motions.

Figure 5. Dynamical map of the domain around the stable symmetric (0, 0)- 
ACR (red dot) with ei = 0.1 and mz/mi = 1.064. The initial value of cq 
is fixed at 0 and the initial value of Act is fixed at 0 (positive values on the 
e2-axis) or 180° (negative values on the e2-axis).

The quasi-periodic behavior is the composition of two independent modes 
of motion: the resonant (with the frequency /□-) and the secular (with the fre
quency /act) ones. The first one is associated to the resonant angle oy, while 
the second one to the difference in longitudes of pericentre, Act. Thus, any 
regular solution will be given by a combination of two periodic terms and their 
harmonics, each with a given amplitude and phase angle. Generally, both modes 
are well separated in the frequency space, with fCT much higher than the secular 
frequency f¿xw (see Figure 3 left panel). However, at small eccentricities, both
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frequencies may have same order, and it is possible to find initial conditions 
corresponding to low-order commensurabilities between them. They give origin 
to secondary resonances inside the primary 2/1 resonance, whose locations on 
the representative plane are indicated in Figure 5.

For some initial conditions, the amplitude (not the frequency) of one mode 
tends to zero, and the solution changes from quasi-periodic to periodic. Since 
we have two independent frequencies, we can also have two independent families 
of periodic motion inside the 2/1 resonance, which we refer to as a-family (the 
amplitude of the resonant mode is equal to zero) and Aw-family (the amplitude 
of the secular mode is equal to zero). On the dynamical map shown in Figure 
5, the periodic families appear as continuous narrow white strips inside the gray 
tone domains of quasi-periodic motion. By definition, the intersection of two 
families gives us the position of the central ACR solution.

Apart from the characteristic frequencies, the resonant and secular modes 
also differ in dynamical behavior. The resonant mode is always librating and the 
passage to circulation must occur at a separatrix, which gives origin to domains 
of highly chaotic motion, with possible disruption of the system. At variance, 
the secular mode is generally oscillating/circulating; only in the domains of very 
high eccentricities it is possible to find initial conditions which lead to a true 
secular resonance inside the 2/1 MMR (see Section 7.2.).

The domains of chaotic motion (and large instabilities) are always present 
on dynamical maps of the 2/1 resonance. The chaotic behavior is associated 
with the existence of separatrices between: (i) the 2/1 resonance region and the 
regions of near-resonant and purely secular motion; (ii) the regions of qualita
tively distinct regimes of motion inside the 2/1 mean-motion resonance, and (Hi) 
secondary resonances inside the primary 2/1 resonance. The domains of highly 
chaotic motion are always shown in dark tones on the dynamical maps, while the 
hatched regions are regions of large-scale instabilities followed by disruption of 
the system within the time interval of each simulation (130,000 years). Finally, 
the domains of forbidden motion are filled by dark gray color in Figure 5.

7. Dynamics around the ACR solutions: Exterior resonance

The dynamics associated to all asymmetric ACR is characteristic of exterior 
resonances. Asymmetric stationary solutions arise for mass ratios m-2/m-i lesser 
than 1.015 (see Figure 2, right panel). Moreover, for m-2/m-i < 0.36 and at high 
eccentricities, each asymmetric family bifurcates into two disconnected branches 
on the (ei, f'2) plane. referred to as branches A and B in our work. The ramifica
tion of the asymmetric families indicates the advent of the true secular resonance 
inside the mean-motion resonance. As a consequence, the phase space of the ex
terior resonance shows a very complex picture marked by the presence of several 
distinct regimes of resonant and non-resonant motion, crossed by families of 
periodic orbits and separated by chaotic zones.

7.1. Dynamical map around the one-branch asymmetric ACR

One-branch asymmetric solutions are characteristic for the mass ratio values in 
the range from 0.36 to 1.015. The dynamics around a single asymmetric ACR is 
illustrated in Figure 6 on the two representative planes: the left graph is a plane
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n1 ■ n2 n^ / «2

Figure 6. Left panel: Dynamical map on the representative plane obtained 
for cq fixed at 0 and Act at 0 (positive values of the e2-axis) or 180° (negative 
values of the e2-axis). The position of the unstable ACR is shown by a blue 
circle. Right panel: Dynamical map on the asymmetric representative plane 
obtained with initial values of the angular variables equal to those an asym
metric ACR: <ti = 45.4° and u2 = —68.4°, for m^/mi = 0.3. The position of 
the stable ACR. is shown by a red circle.

analogous to one introduced for the interior resonance and shown in Figure 5( 
the right graph is a plane defined by the initial values of the resonant angles 
fixed exactly at those of the stable asymmetric stationary solution.

The plane defined by symmetric resonant angles does not allow us to fully 
describe the dynamics of the exterior resonance. The basic properties of the 
resonant phase space, such as the existence of the intersecting families of periodic 
orbits and, thus, of the stable centers, are not seen on the resulting dynamical 
map. However, the analysis of this map allows us to detect the co-existence of 
the two regimes of motions named as interior resonance and exterior resonance 
for the same set of the constants m^lm-v, AM and XL. Note the Act-families of 
symmetric periodic solutions (with Act = 0 or 180°), which appear as narrow 
light strips inside the chaotic regions on the map in Figure 6, left panel.

To better represent the dynamics in the neighborhood of the asymmetric 
centers, we re-calculated the dynamical map for the same sets of constants of 
motion, but with the initial values of the resonant angles fixed exactly at those of 
the stable asymmetric stationary solution (right graph in Figure 6). Now we can 
observe the existence of the stable center at the intersection of the two periodic 
families (white strips), u and Act. The stable domain surrounding the center (in 
light tones), is composed of quasi-periodic motions with two independent modes: 
resonant libration around the c-family and secular oscillation/circulation around 
the ACT-family. Generally, the global dynamics of the single exterior resonance 
is similar to the structure of the interior resonance presented in the previous 
section. However, there are two main differences: (i) the librating angle is 02 
and the oscillating/circulating angle is oq (and Act), and (ii) the angles oscillate 
around values that are not simply 0 or 180°.
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Figure 7. Smoothed planetary paths around one-branch asymmetric ACR 
in the (ei, Act) (left panel) and (eg, erg) (right panel) polar coordinates calcu
lated with ei = 0.09 and m^/m^ = 0.3 and the same energy. The smoothing 
has been done using a low-pass filter.

The planetary motions around a stable asymmetric ACR are shown in Fig
ure 7, in the polar coordinates (ci,Act) on the left graph and in the polar 
coordinates (eg, og) on the right graph. Only the secular components are pre
sented; the fast resonant oscillations were eliminated using a low-pass filter. All 
planetary paths enclose the asymmetric ACR whose coordinates are ei = 0.13, 
eg = 0.26, eg = 284° and Act = 108°. The orbits close to the ACR are pre
sented by black curves: they show oscillations of both the resonant angle eg and 
the secular angle Act. For initial conditions far away from the stable center, 
the amplitudes of the oscillations increase and the angle Act starts to circu
late, as shown by blue curve in Figure 7, left panel. In this case, the curve 
separating the oscillatory and circulatory solutions represents a solution passing 
through the origin ei = 0; we say that the secular angle Act (and oy) is in the 
oscillatory/circulatory regime of motion.

At variance, the red curve in Figure 7, right panel, separating the oscilla
tions of the resonant angle eg around the asymmetric ACR from the oscillations 
around zero, is formed by solutions asymptotic to the unstable symmetric ACR. 
Hence this curve is a true separatrix and the oscillations of eg around the stable 
asymmetric ACR are true librations.

Outside the separatrix, the resulting orbits (as an example, the external 
black curve in Figure 7) are horseshoe-like orbits encompassing both asymmetric 
centers and appearing to oscillate around zero (analogous of orbits known from 
the dynamics of the asteroidal 1:1 mean-motion resonance with Jupiter). On 
the dynamical map on the right panel in Figure 6, the domain of the horseshoe 
orbits is separated from the central resonance region by the blue curve; this 
curve is the locus of the initial conditions corresponding to the true separatrix 
corresponding to the red color path in Figure 7. The detailed analysis of the 
dynamics in its close vicinity reveals that the transition across the blue curve is
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topologically discontinuous, but the associated large-scale instabilities followed 
by disruption of the system are not observed on the dynamical map.

7.2. Dynamical maps around the two-branch asymmetric ACR
Two-branch asymmetric solutions are characteristic for mass ratio values lesser 
than 0.36. In this case, there exist two distinct stationary configurations de
scribed by different sets of orbital elements, but leading to the same value of 
total angular momentum. To better illustrate the bifurcation phenomenon, we 
analyze and compare planetary paths in the vicinity of the two-branch ACR: 
one belongs to the branch A and other to the branch B. This is done in Figure 
8, where, in order to simplify the visualization, we concentrate solely on the 
secular behavior of the system. The paths of both planets were smoothed us
ing low-pass filtering (resonant oscillations were eliminated) and were plotted in 
polar coordinates (ei, Act).

Figure 8. Smoothed planetary paths around two-branch asymmetric ACR 
in the (ei, Act) polar coordinates calculated with ei = 0.09 and m2,my = 0.3 
and the same energy. The smoothing has been done using a low-pass filter.

Two centers are now clearly observed in Figure 8, instead of one center as 
in the case of the one-branch asymmetric ACR (see Figure 7). The black curves 
surround the center associated to the branch A of the periodic solutions, while 
the red curves surround the center on the branch B. Among these paths, we 
find an infinite-period separatrix formed by solutions asymptotic to an unstable 
ACR (saddle point). Outside the separatrix, all paths follow similar patterns 
and are structurally stable. The existence of the separatrix, not present in the 
case of a single ACR, implies that there are motions near one of the two-branch 
asymmetric ACR that actually correspond to a true libration around the ACR 
and no longer a simple circulation/oscillation. This asymmetric ACR belongs to
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the branch B. In its neighborhood therefore both Act and a2 show true librations 
around the equilibrium values. In other words, the two-branch asymmetric ACR 
generates, inside the 2/1 mean-motion resonance, a true resonance of the secular 
angle Act = ui — 02. This novel behavior is absent in the cases of symmetric 
and one-branch asymmetric ACR (except for very-high, close to 1, eccentricities 
of the inner planet).

Figure 9. Top: Dynamical maps of the two possible asymmetric solutions: 
one with cq = 32.2° and cq = —62.4° belongs to the branch A (left panel), and 
other, with cq = 120.7° and cq = —69.1°, to the branch B (right panel). The 
positions of the stable asymmetric centers on the corresponding dynamical 
maps are marked by red dots. Bottom: The levels of the resonant Hamiltonian 
around the branch A ACR (left panel) and the branch B ACR (right panel).

n-j / no

Using the same constants of motion, but two distinct sets of critical an
gles, we constructed the dynamical maps on the two asymmetric representative 
planes, shown in Figure 9 (top panels). The positions of the stable asymmet
ric centres on the corresponding dynamical maps are marked by red dots. The



The periodic and chaotic regimes of motion 261

dynamical map of the branch A solution (left-top panel) displays qualitative 
similarities with the one-branch ACR map shown in Figure 6, right-top panel, 
mainly the existence of two families of periodic motion intersecting at the cen
ter and a large zone of the quasi-periodic motion inside the exterior resonance 
regime. The main difference is the existence of the separatrix whose location is 
indicated on the left-top graph in Figure 9.

In order to better visualize a separatrix feature, we present in the same figure 
(bottom panels) the neighborhoods of the stable asymmetric ACR, plotting the 
energy levels of the resonant Hamiltonian. A bifurcation phenomenon is clearly 
observed in the behavior of the Hamiltonian around the branch A ACR on the 
left-bottom panel, where the energy level in blue color presents a saddle-type 
structure. The continuation of the same level in the domain of the branch B 
ACR appears on the right-bottom graph as a blue curve. The fixed point of the 
centre (red dot) on the left-bottom panel appears as the energy level in red color 
on the right-bottom graph; that is, the branch B stationary solution is located 
at the global maximum of the resonant Hamiltonian.

The region surrounding the branch B ACR (right-top panel) is a domain of 
true secular resonance, when the passage from oscillation to circulation of the 
angle Act is chaotic. In this region, both the resonant angle 02 and the secu
lar angle Act líbrate around the corresponding asymmetric values (in the case 
shown in Figure 9, they are 120.7° and 189.1°, respectively). The equilibrium 
configurations of the planetary orbits are similar to those shown in Figure 4: the 
closest approaches occur when the central star and the two planets form a tri
angle configuration. Our numerical simulations have shown that the planetary 
motions in this region are very stable, even for very high eccentricities of the 
orbits.

Finally, on both maps in Figure 9 there exist regions of the horseshoe-like 
orbits at initial conditions situated outside the cyan curves. The horseshoe orbits 
are not centered on any single ACR, but actually contain all of them including 
the single (or double) stable asymmetric ACR and the unstable symmetric ACR.
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