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Abstract. We investigate the effects predicted by an alternative model
of gravity on the shape and trajectory of relativistic plasma ejections from
the central region of Active Galactic Nuclei. Specifically, we calculate the
effects of gravitational Lorentz-like forces that arise in the context of Mof-
fat’s Scalar-Tensor-Vector Gravity (STVG), produced by a supermassive
black hole on a relativistic plasma blob.

1. Introduction

The Scalar-Tensor-Vector Gravity (STVG) theory (Moffat, 2006), also referred
as MOdified Gravity (MOG) theory, has successfully explained solar system ob-
servations (Moffat, 2006), galaxy rotation curves (Brownstein & Moffat, 2006),
and the dynamics of galactic clusters (Moffat & Rahvar, 2014). The theory has
also been applied with success to describe the growth of structure, the matter
power spectrum, and the cosmic microwave background (CMB) acoustical power
spectrum data (Moffat & Toth, 2007). It remains as one of the most attractive
alternatives to general relativity as a theory of gravitation, with the advantage
that it offers a solution to the dark matter and dark energy problems.

Most of the applications published so far are based on vacuum solutions in
the weak field limit. Recently, Moffat (2015) has found black hole solutions in
this theory. Here, we use the STVG-Kerr solution to study geodetic motion of
relativistic ejections in AGNs and compare them with results obtained in the
framework of General Relativity (GR).

2. STVG field equations

In STVG, the gravitational coupling constantG is replaced by a scalar field whose
numerical value usually exceeds Newton constant GN. This enforces a gravita-
tional attraction that adjusts galactic and cosmological observations without
requiring the postulation of dark matter. In order to counterpart the enhanced
gravitational constant on Solar System scales, Moffat proposed a gravitational
repulsive Yukawa-like vector field φµ, so Newton’s gravitational constant can be
retrieved and STVG coincides with GR in every Solar System prediction.

153



154 F.G. Lopez Armengol & G.E. Romero

The equations of the theory are obtained through the following action for
the gravitational field:

S = SGR + Sφ + SG + Sµ + SM, (1)

where
SGR =

1

16π

∫
d4x

1

G

√
−gR, (2)

Sφ = ω

∫
d4x
√
−g

(
1

4
BµνBµν −

1

2
µ2φµφµ

)
, (3)

SG =

∫
d4x
√
−g 1

G3

(
1

2
gµν∇µG∇νG+ V (G)

)
, (4)

Sµ =

∫
d4x
√
−g 1

Gµ2

(
1

2
gµν∇µµ∇νµ+ V (µ)

)
. (5)

Here, gµν denotes the spacetime metric, R is the corresponding Ricci scalar, and
∇µ is the covariant derivative; φµ denotes a Proca-type massive vector field, µ
is the mass of the field, Bµν = ∂µφν − ∂νφµ, and ω = 1/

√
12; V (G) and V (µ)

denote the potentials of the scalar fields G(x) and µ(x), respectivly. We adopt
the metric signature ηµν = diag(1,−1,−1,−1), and choose units with c = 1.
The term SM refers to possible matter sources.

In this work, we neglect the mass of the vector field because its effects man-
ifest on kilo-parsec distances from the supermassive source (see Moffat, 2015).
Also, since there is still a lot of freedom on the functional form of the scalar field
G, in this first work we consider it as a constant, in accordance with Moffat’s
previous works on vacuum solutions.

Varying the action with respect to gµν and taking previous simplifications
into account, we obtain the metric field equations:

Gµν = 8πG
(
TM
µν + T φµν

)
, (6)

where Gµν denotes the Einstein tensor, and TM
µν , T

φ
µν are the matter and vec-

tor field energy-momentum tensors, respectively. We adopt for the enhanced
gravitational coupling constant the same prescription as Moffat (2006):

G = GN(1 + α), (7)

where GN denotes Newton gravitational constant, and α is a free parameter.
Within these approximations, STVG coincides with GR for α = 0.

Variation of the simplified action with respect to φµ yields:

∇νBνµ =

√
αGN

ω
Jµ, (8)

where Jµ denotes the four-current matter density, and the constant
√
αGN is

determined to adjust the known phenomenology.
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Finally, variation with respect to particle coordinates δxµ yields the modified
equation of motion:

m

(
d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ

)
= κmωBµ

ν
dxν

dτ
. (9)

With the mentioned approximations, STVG equations 6, 8 and 9, are similar
to Einstein-Maxwell equations. In the following, we make use of the equivalence
between these formalisms and integrate Eq. 9 for a relativistic jet ejected by
STVG-Kerr black hole.

3. STVG-Kerr spacetime

The vacuum axially symmetric solution that represents a rotating black hole in
STVG theory is (Moffat 2015):

ds2 =
∆

ρ2
(dt− a sin2 θdφ)2 − sin2 θ

ρ2

[
(r2 + a2)dφ− adt

]2
− ρ2

∆
dr2 − ρ2dθ2, (10)

where we have taken units such that c = 1, and:

∆ = r2 − 2GMr + a2 + αGNGM
2, ρ2 = r2 + a2 cos2 θ. (11)

Here, a denotes the black hole angular momentum per unit mass and G the
effective gravitational constant (see Eq. 7). A Kerr black hole is recovered for
α = 0. The STVG-Kerr black hole has two event horizons and an ergosphere, just
like the classical Kerr geometry. It resembles Kerr-Newman black hole, where
the electric charge is replaced by Q =

√
αGNM , with M the mass of the black

hole.
Field equations 6, 8, and geodetic equation 9 for a test particle in the Kerr-

Newman black hole geometry have been studied by Carter (1968) and Misner,
et al (1973). Replacing the electric charge in Kerr-Newman formalism by Q =√
αGNM , leads us to STVG-Kerr geometry results. In this way, the equations

of motion for a test particle in the STVG-Kerr geometry are:

ρ2
dr

dλ
=

√
R(r)

c2
, (12)

ρ2
dθ

dλ
=
√

Θ(θ), (13)

ρ2
dφ

dλ
= −

(
aE

c2
− L

sin2 θ

)
+

aP (r)

∆(r)c2
, (14)

ρ2
dt

dλ
= −a

c

(
aE sin2 θ

c4
− L

c2

)
+

(
r2 +

a2

c2

)
P (r)

∆(r)c2
, (15)

where
R(r) = P 2(r)−∆(r)

(
m2r2c4 + c2K

)
, (16)
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Figure 1. xz-plane trajectories of a test particle ejected by a STVG-
Kerr supermassive black hole. The parameter χ quantifies the action
of vectorial forces of STVG and corresponding deviations from GR.
We model the STVG-Kerr black hole with mass M = 109 M� and
normalized spin a = 0.99. We study a test particle with m = 1 g,
initial radial velocity v = 0.97c, and initial position rini = 1× 1019cm,
θini = 0.1, φini = 0, pθ,ini = 0.

Θ(θ) = Q− cos2 θ

[
a2

c2

(
m2 − E2

c2

)
+

L2

sin2 θ

]
, (17)

P (r) = E

(
r2 +

a2

c2

)
− La+

mQr√
12
. (18)

Here, we have reinstall the speed of light c, λ denotes a time parameter, (t, r, θ, φ)
are the particle Boyer-Lindquist coordinates, E stands for the test particle en-
ergy, L its angular momentum around the symmetry axis, and m its mass. Fur-
ther, we have defined the constants of motion:

K = p2θ + cos2 θ

[
a2
(
m2 − E2

c2

)
+

L2

sin2 θ

]
, (19)

Q = K −
(
L− aE

c2

)
. (20)

In the next section, we integrate equations 12, 13, 14, 15 for a relativistic
jet, and show preliminary results of the xz-plane trajectories.

4. Preliminary results

As a first step, we have calculated the geodetic motion of a particle ejected close
to the rotational axis of a STVG-Kerr supermassive black hole. We take for the
parameter α the same prescription as Brownstein & Moffat (2007):

α2 = χ (60.4± 4.1)× 1014M�

(
M

1014M�

)0.39±0.1

M, (21)
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and we sample different values of the χ parameter.
We use a fourth order Runge-Kutta method to integrate equations 12, 13,

14, 15. The resulting xz-plane trajectory is plotted in Figure 1. As can be seen
from the graphic, the effect of the gravitational Lorentz force that appears in
STVG results in a lateral deviation of the trajectories from what is expected in
GR.

5. Conclusions

We conclude that STVG theory can be tested in a context not explored before:
the environments of a rotating supermassive black hole. Deep, multi-epoch radio
interferometric observations are ideal to test the theory, since blobs are expected
to produce synchrotron radiation. Best targets are nearby AGNs such as Cen A
or systems harbouring more massive black holes as 3C273 or 3C279.
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