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Abstract. The high energy radiation emitted by black hole X-ray bina-
ries originates in an accretion disk, hence the variability of the lightcurves
mirrors the dynamics of the disc. We study the time evolution of the
emitted flux in order to find evidences, that low dimensional non-linear
equations govern the accretion flow. Here we test the capabilities of our
novel method to find chaotic behaviour on the two numerical time series
describing the motion of a test particle around a black hole surrounded
by a thin massive disc, one being regular and the other one chaotic.

1. Introduction

In this paper we test our method for revealing the traces of non-linear dynamics
in the observed X-ray lightcurves on two numerical trajectories, from which one
is regular and the other one is chaotic. We developed and described the method
in details in the paper Suková et al. (2016). We also refer the reader to the
article by A. Janiuk et al in these proceedings to learn more about astrophysical
applications of this method. Here we only briefly summarize its key features.

In our procedure we combine the recurrence analysis1 with the method of
surrogate data. We compute the estimate of Rényi’s entropy K2 (Grassberger,
1983) and compare it with the values obtained for N surr = 100 surrogates made
in such a way, that they share the value distribution and power spectra with the
original series2. Such surrogates represent the hypothesis, that the time series
arose from linearly autocorrelated Gaussian process (Theiler et al., 1992). The
significance of the non-linearity is given by

S(ε) =
Nsl(ε)

N surr
Ssl − sign(Qobs(ε)− Q̄surr(ε))

N surr −NSsl
(ε)

N surr
SK2(ε), (1)

for chosen recurrence threshold ε, where Nsl is the number of surrogates, which
have only short diagonal lines in their recurrence matrix, Qobs and Qsurr

i are
the natural logarithms of K2 for the observed and surrogate data, respectively,
Q̄surr is the averaged value of the set Qsurr

i , Ssl = 3 and SK2 is the significance
computed from surrogates with enough long lines according to the relation

SK2(ε) =
|Qobs(ε)− Q̄surr(ε)|

σQsurr(ε)
. (2)

1Using software package provided at http://tocsy.pik-potsdam.de/commandline-rp.php.
2Produced by the software package TISEAN (Hegger et al., 1999; Schreiber & Schmitz, 2000).
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Figure 1. Poincaré surface of section of regular orbit o1 and chaotic
orbit o2 (left) and the corresponding time dependence of z coordinate
of these orbits (right).

The significance defined in this way expresses how much the value Kobs
2

differs from the mean value K̄2
surr measured in the units of the standard deviation

of the set {Ksurr
2 }100i=1 in the logarithmic scale σQsurr(ε). The more the observed

time series differs from the surrogates obtained assuming the linear process, the
stronger is the evidence for non-linearity in the system. We quantize the results
with S̄K2 , which is the average of SK2 over a range of ε.

2. Testing the method with simulated time series

In general our method can be applied to different kinds of time series, which are
produced by some dynamical system. Here we test the method applying it on
time series, whose nature is known. We choose the numerical time series, which
describe the motion of geodesic test particle in the field of a static black hole
surrounded by a massive thin disc. The background metric is given by an exact
solution of Einstein equations and is described in details in Semerák & Suková
(2010). The time series are obtained as the numerical solution to the geodesic
equation with this metric using the 6th order Runge-Kutta method As the input
data we use the time dependence of the particle’s z-coordinate.

We study two numerical trajectories, orbit o1 being regular and orbit o2
chaotic, whose Poincaré surface of section and time dependence of z coordinate
is depicted in Fig. 1. The two selected trajectories belong to the regular island
(o1) and chaotic sea (o2) depicted in Fig. 19 of Witzany et al. (2015).

We sample the trajectory with dτ = 10 M for τmax = 50 000 M yielding the
data set of N = 5000 points. The first minimum of mutual information is at
∆t = 90 M = k∆τ, k = 9 for o1 and ∆t = 110 M, k = 11 for o2, hence we adopt
∆t = 100 M, k = 10 for both orbits. We generate the set of surrogates and
perform the analysis in the same way as for the observed X-ray lightcurves in
Suková et al. (2016).
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Figure 2. Lmax for regular orbit o1 (left) and chaotic orbit o2 (right)
with added noise with σn = 0.4 plotted by thick red lines and the same
for the ensemble of surrogates.

At first we investigate the dependence of the length of the longest diago-
nal line present in the recurrence matrix Lmax on ε. As expected, the regular
trajectory yields very long diagonal lines for small thresholds and Lmax goes up
almost to the maximal value N . The surrogates behave in a similar way for a
little bit higher threshold. This is due to the way how the surrogate data are
constructed, as they have exactly the same value distribution but they repro-
duce the spectrum only approximately depending also on the available length of
the data set. In case of regular motion, very narrow peaks are in the spectrum
and the error in reproducing such spectrum causes the very long diagonal lines
to be broken. This higher value of ε for surrogates corresponds to the size of
the neighbourhood needed for covering the small discrepancies of the surrogates.
The chaotic orbit o2 provides shorter lines, so that Lmax < 2000 for the range of
thresholds we used. Yet it is significantly larger than the corresponding values
for surrogates. Only for very high thresholds, the difference decreases.

Because in reality the data always contain some level of noise, we take the
normalized times series for o1 and o2 and we add a white noise with zero mean
and increasing variance σn and rescale the resulting data back to zero mean and
unit variance. The surrogates created from the regular orbit with added noise
reproduce the spectrum better than for the regular orbit alone (normalised rms
discrepancy between the exact spectrum and the exact amplitude stage reported
by the surrogates procedure decreases from σn = 0 to σn = 0.25).

In Fig. 2 the plots of Lmax versus ε for the added white noise with σn = 0.4
are shown. The presence of noise shifts up the needed threshold for some lines
to occur in RP. For the regular orbit o1 there is no significant difference from
the surrogates. For chaotic orbit o2 the threshold is also shifted to higher values,
but the difference from the surrogates remains.

Our posed null hypothesis is that the data are the product of linearly au-
tocorrelated process and because the regular trajectory can be treated as such
(e.g. in the case of a periodic orbit, the points separated by the period T are
the same), the significance is small. On the other hand, the chaotic trajectory
cannot be treated as linear dynamics and yields high significance.

In Fig. 3 the estimate of K2 and the significance of its comparison with the
surrogates is given for the increasing level of noise (σn = 0, 0.05, . . . , 1.00). We
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Figure 3. The estimates of the Rényi’s entropy K2 computed for
RR∼15% and the significance of its comparison with surrogates with
increasing strength of the noise.

note, that for low levels of noise the regular orbit yields much lower value of K2,
which can serve as the differentiation between chaotic and regular motion (see
(Semerák & Suková, 2012)). However for increasing strength of the noise, the
regular orbit o1 seems to be more affected than the chaotic one, providing higher
K2 for the noise levels σn > 0.25. Therefore, the significance for the regular orbit
drops down bellow one quickly, while the significance for chaotic orbit reaches
values around 10 for low noise levels, near 6 for intermediate noise levels and
stays around 4 for high noise levels, even up to the case, when the variance of
the noise is the same as the variance of the data.

3. Conclusions

The test of the method for finding non-linear dynamics in dynamical systems
based on the observed time series shows that for a given length of observational
data set (5000 points) we can expect that chaotic dynamics would yield values of
significance between 2-10 depending on the strength of the noise. Regular motion
would not provide significant result, because even low level of noise present in
the measured data destroys the differences with respect to the surrogates.
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