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Abstract

We present an a posteriori error estimator for a mixed finite element method 
for the Reissner-Mindlin plate model The finite element method we deal with 
was analyzed in [16] and can also be seen as a particular example of the general 
family analyzed in [13]. The estimator is based on the evaluation of the residual 
of the finite element solution. We show that the estimator yields locally lower and 
globally upper bounds of the error in the numerical solution in a natural norm 
for the problem, which includes the H} norms of the terms corresponding to the 
deflection and the rotation and a dual norm for the shearing force. The estimates 
are valid uniformly with respect to the plate thickness

1 IntroductionIn the implementation of numerical methods for approximation of partial differential equations, the definition of a posteriori error estimators is the basic tool for adaptive mesh-refinement techniques, necessary when we are in presence of local singularities of the solution.In this paper we present an a posteriori error estimator for the finite element approximation of the Reissner-Mindlin plate model, which describes the displacement of a plate with moderate thickness subject to a transverse load. The definition of the estimator is based on the evaluation of the residual of the finite element solution.Several a posteriori error estimators have been defined for different linear and nonlinear elliptic problems by using the residual equations (see for example [3, 4. 5, 15. 20, 21])For a fixed plate thickness the Reissner Mindlin plate model is a linear elliptic problem. But for small thickness the ellipticity constant deteriorates and makes difficult the treatment of the problem. In particular in the definition of an estimator the main difficulty is the attainment of equivalence with an error norm, independently of the plate thickness.For the numerical solution of the Reissner-Mindlin equations there are several mixed finite element methods which present good approximation of the solutions [2, 6, 7, 9, 10. 11, 16, 18] and are free from locking [8, 12, 13, 16, 18].
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We present an a posteriori error estimator for a method analyzed in [16] which can 
also be seen as a particular example of the genera] family analyzed in [13].We define the error estimator for the norm of the deflection and the rotation, and for a sum of norms for the shear force which includes the Ho(rot)z norm, and show that it yields locally lower and globally upper bounds of the error in the numerical solution, valid uniformly with respect to the plate thickness. It must be remarked that even though these norms are natural for the problem: in particular the inf — sup condition holds for the Ho(rot)' norm [12] and. when t → 0, Ho(rot)z becomes the appropiatre space for the shear, convergence for the shear force in this dual norm has not been proved, as far as we knowThe rest of the paper is organized as follows. In section 2 we introduce the Reissner - Mindlin model and we analyze its approximation with the finite element method. We also give an aditional a priori estimate related with the L2 norm of the error in the rotor of the shear force. In section 3 we define a weak norm for the error in the rotation and in the shear force and obtain estimates for this norm. Finally in section 4, we define the estimator for the whole error and show the corresponding relations beetwen the estimator and the natural error norm.
2 The Reissner-Mindlin equations and mixed finite 

element approximationLet Ω × [-t∕2,t∕2] be the region occupied by the undeformed elastic plate of thickness 0 < t < 1, where Ω C R2 is a simply connected polygon.Let us denote by w and β the transverse displacement of the midsection of the plate and the rotation of fibers normals to it, respectively. Then, assuming for simplicity, that the plate is clamped along the boundary of Ω, the Reissner-Mindlin problem is:Find w ∈ 7∕⅛(Ω) and β ∈ Hθ(Ω) , such that
t3a(β, τt) + λt(Vw -β,Vζ-η) = (g, ζ) Vη ∈ H⅛(Ω) , ∀ζ ∈ Zf*(Ω)  (2.1)where ( , ) denotes the scalar product in either T2(Ω) or L2(Ω), and a(β,τ∕) is a coercive and continuous bilinear form, defined by

where —(τ7) is the symmetric part of the gradient of η, D is defined byPT = [(1 - u)T + ι4r(T)Z]E is the Young modulus, v is the Poisson ratio, λ = Ek∕2(l + ι∕), where k is the shear correction factor, and g represents the transverse load.To analyze the problem for small values of t, g is scaled in the form g = t3f , so that the solution tends to a nonzero limit as t tends to zero [12]. Taking, for the sake of simplicity Λ = 1, and introducing, 7 = t 2(Vw — /3) (2.2)2



the equation (2.1) can be written equivalently as,’ α(∕3,i,) + (7, Vζ -η) = (/, ¢) ∀τ7 ∈ H⅛(Ω) ,∀( ∈ ^(Ω)< (2.3). *2(T, x) ~ (Vw - 0,χ) = O ∀χ ∈ L2(Ω)which in the limit t → 0 takes the form of a saddle point problem.Let Ho(rof,Ω) ={χ∈ L2(Ω) : rof(χ) ∈ L2(Ω) and χ.r = 0 on <9Ω}where <9Ω denotes the boundary of Ω and∣W∣Ho(r<rt,Ω) := ∣∣χ∣∣o + ∣∣roiχ∣∣θThe following Proposition, which is proved in [12], gives a descomposition for any 
X ∈ H0(rof,Ω) , showing also that 7 ∈ H0(rof,Ω).
Proposition 2.1 Let B defined on H⅛(Ω) × ∕∕q(Ω) by:

B∙Λη,ζ)~→^ζ~η)

The mapping B is surjective onto the space Ho(roi,Ω) and for every χ ∈ Ho(ro∕,Ω) there 
exists {η-,ζ) ∈ H⅛(Ω) × Hq(Ω) such that

χ = Vζ-η

and ∣∣Vζ∙∣∣o + ∣H∣1 ≤ c{∣∣χ∣∣0 + ∣∣roiχ∣∣0}
with C independent of χ. □

Let Γ = H0(rot,Ω)' = {χe H~1^∕diυχ ∈ H~1(Ω)}with the definition of the norm llxllr = llxll21 + l∣Λvχll2-1which is equivalent to the dual norm.From this follows inmediately that the following inf — sup condition holds:SUP (VC - n y)⅛()∈H⅛ ×Hi(θ> J∙ ' γ ≥ ∣∣X∣∣Γ Vχ∈Γ (2.4)⅛<)≠(o,o) H. + M.
Let {7λ}0<⅛<ι t>e a regular family of triangulations of Ω , where h stands for the maximum diameter of the elements in the triangulation 7⅛. In order to define a mixed finite element approximation we have to give finite element spaces for the rotations, the
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transverse displacement and the shear strain. Also we have to define an operator, usually some kind of interpolation, in order to relax the discrete equation corresponding to (2.2).We use the standard notation Pm for the space of polynomials of degree less than or equal to m and set Pτn = Pτn × Prn∙Given an element T, let {λ^}1<ι<3 be its barycentric coordinates and r, be the tangential vector to the edge ∂T∖ where λt = 0. We define,
φ1 = λ2A3T1 , φ2 = A3λ1T2 and, φ3 = λ1λ2T3then, the finite element spaces for the method , Ha C Hθ(Ω) for the rotations. 

Wh C Hq(Ω) for the transverse displacement and, Γ⅛ C L2(Ω) for the shear strain, are defined as follows,
h⅛ = {t7λ ∈ ho(ω) : τ∣h∖τ ∈ pι ® sPan{Φ^Φ2^Φ3}y τ ∈ 7⅛}

wh = {ζkeH10(ii) ∙.ζh∖τeτ∖yτ ∈ τh}and Γ∕l is a rotation of the lowest order Raviart-Thomas space [12],Γa = {ηh ∈ H0(rot,Ω) : 17Jτ ∈ Po Φ (*2,  ~zι)Po,∀ T ∈ Th}In particular the inclusion, VW∖ C Γλ (2.5)holds.We define the interpolation operator ∏ for this method by ∏η∖τ = τ∣∕ where 1j1 is such that,
[ η1.Ti=[ η.τi ι = 1,2,3 (2.6)

J∂T, J∂T,and which satisfies ∣∣T7 - ∏∏∣∣o ≤ C⅛∣∣η∣∣1 V17 ∈ H⅛(Ω) (2.7)Therefore the approximate solution (0a,w⅛,7a) ∈ H∕l × Wza × Γ∕l is defined by.
( a<βh,τlh) + (7λ,vCa - ∏τlh) = (fXh), Vtja ∈ Hλ, ∀G∈⅜{ (2.8) I 7a = Γ2(Vwh - ∏βh)Also the discrete inf - sup condition holds for ∣∣ . ∣∣rh defined in an appropiate way [13]. For this method, it is known [13], [16] that when Ω is a convex polygon,∣∣0 - 0∕l∣∣ι + *l∣7  - 7λJI0 + llw ^ w⅛l∣ι ≤ Ch{∣∣01∣2 + i∣∣7∣∣ι + l∣7∣∣0}, (2∙9)and also [13], ∣∣7 - 7ft∣l-1 < Ch{∖∖β∖∖2 ÷ 11∣7∣∣1 + I∣7∣∣o} (2.10)with II0II2+ 1ll^>,ll1 + Ho ≤ C∣∣∕∣∣o (2.11)
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In [17] it is also proved that ∖∖β - βh∖∖0 < Ch2∖∖f∖∖0 (2.12)Here and hereafter C denotes a constant which could depend on the minimum angle of the triangulation but is independent of the thickness t and the meshsize ∕ι, and the symbol ∣∣.∣∣ denotes a norm over the region Ω, if no explicit reference to the region is madeWe add to this a priori estimates an estimate related with ∣∣r0t(7 — 7a)∣∣o∙
Lemma 2.1 Let LI be a convex polygon, thenf2∣∣rot(7 - 7J∣∣0 ≤ Ch∣∣∕∣∣0 (2.13)PROOF. From de definition of 7 and 7h it follows thatt2rot(7 - 7a) = -rot(β - ∏βh)Then, i2∣∣rot(7 - 7a)∣∣o ≤ ∖∖rot(β - ∏β)∣∣o + ∖∖rot(∏ β - ∏βh)∖∖o (2.14)It is known [12] that for η ∈ Ho(roi,Ω) ,

rot(∏η) = Prot(τf) (2.15)where P denotes the L2 proyection operator into Q⅛ : = rot(Γ⅛) and∖∖rot(η - ∏η)∖∖o ≤ Ch∖∖η∖∖2 (2.16)From (2.14), (2.15) and (2.16) we obtaini2∣∣r<rf(7 - 7k)l∣o ≤ C{⅛PI∣2 + 113 - 3⅛III} < c⅛∣∣∕∣∣o (2.17)where the last inequality follows from the a priori estimates in (2.9) and (2.11), so (2.13) is proved. 
3 Preliminary Error EstimatesOur first estimates are for the errors in the rotation and the shear force.Let k be a fixed integer, k > 1. The estimator is defined for any T ∈ 7⅛ as:ετ = ∣∣∕5Vl∣o,τ∣71∣v2 + ∣∑aτicaτ l∣[7λnt]j∣∣o,aτi∣^T,∣1∕2.. (3.1) 

+ ∣∣divOΞ(3k) + 7k∣lo,r∣7Ιv2 + ∣Σ8τ,caτl∣mA)n.]j∣lo.<>τ.∣57,.∣1'2where Pk is the L2 projection onto P⅛, ∣71∣ and ∣∂7i∣ are the area of T and the length of 
∂Tx, n, is the normal vector to the edge ∂Ι∖ and [.]j denote de jump of the corresponding function across 9T,.Next we define a weak norm for the error in β and 7, as the dual norm in Hθ(Ω) x ∕fθ(Ω) of the operator a(β - βh,η) ÷ (7 ~ 7a,^7( ~ ∏), that is:5



(3.2)For each T ∈ Th let ωτ = {U T ∈7jl : T∩T≠0}
Theorem 3.1 There exist two constants C  and C2, depending on the minimum angle of 
the mesh such thatII(0 - 3k), (7 - 7JII. ≤ c, ∑ {ετ + ∣∣∕ - Pt∕∣∣0.τ∣T∣1'2) (3.3)r∈τhετ<C2{∣∣(∕3-3t),(7-74)∣U+ ∑ |ΪΊ,/2||/-/7|Ιο.τ) (3.4)T∈ι*'7 ,Proof. From (2.3) we have

a(β - βh,rl} + (7 - 7a, Vζ - η) = (f,ζ) - a(βh,η) - (^yh,Vζ - η) (3.5)For ψ ∈ ∕∕q(Ω) or Hθ(Ω) we denote by ψ∕ ∈ ∕∕θ(Ω) or Hθ(Ω) respectively, a piecewise linear average interpolant as defined in [14, 19], satisfying∣∣≠ - ≠∕∣∣o ≤ CA∣∣≠∣∣1 (3.6)and ∣l≠z∣∣ι ≤ C∣∣≠l∣ι (3.7)Taking ηh — ηl and ς^⅛ = ζ∕ in (2.8), and subtracting it from (3.5) we get
a(β - ∕3⅛, ∏) + (7 - 7∕l, vC - 17) =(/, C - <√) - α(∕3⅛, ∏ - ∏z) - (7⅛, (Vζ - η) - (Vζ∕ - η1) + ⅛ η1 - ∏η1}= ∑τ∈τh {(∕,< ~ 0)τ - ∣∑aτicaτ∕9τ, [7∕ln.]j(ζ - C∕) + (divD≡(βh) + yh.η - η1)τ

- ξ∑3τ,caτ∕9τ1 K,≡(Z3∕Jn*b( τ7 - ηι)} + (7∕l, ∏∕ - ∏Vι)≤ ∑τ∈τh {∣∣∕∣∣o,τ∣K - ζz∣∣o,τ + ∣Σaτic3T II[7Λn*]^l∣o,aτ i∣∣< — <z∣∣o,aτi+ ∣∣divr>Ξ(∕3J ÷ 7J∣0,τ∣∣τ7 - i7∕∣∣o,τ + ∣ ∑9τicaτ ∣∣KΞ(∕3ft)∏i]j∣∣o,aτi∣∣∏ - ηz∣∣0,aτ.}
+ hhTΙι -∏rh)≤ C∑τe7h{∣∣∕∣∣o,τ∣Γ∣1∕2 + I ∑aτicaτ II [7a«] J∣o,aτJc^∣ιz2 ÷ l∣divZ)Ξ(∕3J + 7d∣0,τ∣T∣1∕2+ ∣ ∑aτicaτ IIKΞ(∕30∏,jj∣∣o,aτi∣∂71,∙∣1∕2]}{∣∣*7∣∣ι  ÷ ∣K∣∣ι} + hh,η1-∏τh) (3.8)6



We are going now to bound the term (7⅛,∏7 — ∏Η1∖It is known ([17], Lemma 3.3) that for η1 as'defined above, there exists φ ∈ 7∕θ(Ω) such that φ∖τ ∈ P2 and
^φ = ηr- ∏η1In [17] it is also proved that φ vanishes at all the nodes of the triangulation. Let φι the Lagrange interpolant of φ. Then,(7∕l, τ∣1 - ∏η1) = (7h,Vφ) = ∑τeτh I ∑aτ,caτ ∕aτ, l^Ihn>]AΦ ~ Φι)≤ ∑τ∈τh 2 ∑aτicaτ l∣[7∕ιn>]jl∣o,aτ1 ∣∣Φ - ≠∕∣∣o,aτ, (3.9) ≤ C,∑τe7λ {∣ ∑9Ticaτ l∣[7λn∣]jl∣o,aTil^T,∣Ω2}∣∣V<jil∣∣o7.≤ C∑τ∈τh {∣ ∑aτicaτ l∣[7Ant]jl∣o,9Ti∣∂71.∣1∕2∣^∣1∕2∣∣Π∣∣1,τ}where we have used (2.7) and (3.7) to obtain the last inequality.This shows that the last inner product in (3.8), can be bounded by the previous terms of the same expression.From (3.8) and (3.9) we obtain:∣α(g-^t,n)-t-(τ, - 7'..V^-η)l < c £ (ετ + _ ^y∣∣0∣7-∣i∕2j ⅛l0)IW∣ι + IICι∣ι r⅛from which it follows (3.3).In order to proof the inequality (3.4) we need the following lemma:

Lemma 3.1 Let T ∈ T⅛. Given q ∈ L2(T). p ∈ L2(∂T), there exists ητ ∈ Pfc+3 such 
that

’ (τ∕τ,r)τ = (q,r)τ r∈Pfc(Γ)

< ∕9τ. ητs = f9τ. ps s∈P⅛+1(∂T) (3.11)
ητ = 0 at the vertices of T.

and ΙΙϋτΙΙο.τ < C{∣∣q∣lo,τ + ∑ ∣ar.lv⅛llo,<>τi) (3.12)aτicaτ
In particular if p = 0 then τ)τ∣aτ = θ∙PROOF. The proof follows with arguments similar to those given in [1]. In particular the previous result is also valid for scalar functions, that is:
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Lemma 3.2 Let T ∈ 7⅛. Given q ∈ Z2(71), p ∈ L2(∂T), there exists ζτ ∈ 'P∣ς+3 such that

(Cτ> r)τ = (¢, r)τ Vr ∈ Pfc(71)* Λτi Cτ s — Jaτi P s Vsζ'Pk+ι(∂T) (3.13)
. ζτ = 0 at the vertices of T.

and ll<⅛llo,τ ≤ C{∣∣⅛,τ + £ lWz⅛llo,8τ1) (3.14)aτicaτ
In particular if p = 0 then ζτ∣gτ = 0. 

Now for fixed T ∈ 7j1 we take
q = Pkf∖T∖ ∈ Pfc(T) (3.15) P∣aτi = j∣∂71j∣(7∕ln,]j, p e P↑(∂T)and we take the corresponding ζτ defined in Lemma 3.2, making appropriate modifications when T intercepts <9Ω; whereas for each T ∈ ω7, T ψ T, ζ∣γ is defined by the same Lemma taking now

q = 0= i 0 if ∂TtΠ∂T = 0 (3.16)
? 9τ' ( the same as in (3.15) if ∂Tt ∩ ∂T ≠ 0Let ζ defined such that ζ^∣τ' = ζ7 if T ∈ ωq∙ and 0 outside of ωq-. From its definition we see that ζ ∈ Hθ(Ω) . and

∖∖Pkf∖∖lτ∖T∖ + ∖∑,dτlcdτ l∣[7∕1n,b∣∣Ui∣∣∣^.∣ (3.17) = Σ⅛J⅛. W + {Ptf.ζM = ⅛ - ι,v(M‰,(P1∫ - ∕.<)1For the same fixed T we proceed in the same way and determine ητ applying (3.11) for
q=-(divDΞ(∕3J + 7J∣T∣ ∈P1(T) (3.18) 
p∣aτ1 = ⅛D≡(βh)nt]j∖∂Tt∖, p ∈ P1(cLΓ)and η7 for T ∈ ω7. T fT, making the corresponding modifications as in (3.16). Let η ∈ H⅛(Ω) defined as 77∣τ = ητ if T ∈ ωτ and 0 outside of ωj. Then.

∣∣divjDΞ(^) +7⅛∣7Ι + ∣Σaτ1caτl∣[^Ξ(^)n,]j∣∣2,9τι∣5Tt∣ (3.19) = ∑τ∈u,τ{α‰*j)τ - (7b⅛)τ} = a(∕3⅛ - 0,‰ + (^fh ~ 7- -η⅛τ
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Adding (3.17) and (3.19) we obtain

(3.20)Replacing (3.15) in (3.14) and (3.18) in (3.12), we get the following boundIKIIo,t + ll⅛llo,t ≤ c∖t∣1'⅛, for teωτand by standard scaling arguments we also get,∣∣C∣∣ι,ωτ ÷ ∣∣0l∣ι,u,τ ≤ CετUsing these bounds in (3.20) it follows thatετ< C{∣l(0-Λ),(7-7k)Ur+ ∑ ∣i∙∣,z2∣∣P*∕-∕ll 0.τ)T ∈u√7,so the Theorem is proved. 
4 Error estimatorNow we are able to define an estimator for the whole error. For any T ∈ 7⅛ we define it as:

ητ = ετ + βκ ~ ∏βh o,T + ∣∣roi(βfl ~ ∏βh) o,τ (4.1)
Proposition 4.1 There exists a constant C, such that∣∣Vw - Vw∕l∣∣o + ∖∖β - /Ml + <l∣7 - 7⅛∣∣o + f2∣∣rof(7 - 7λ)∣∣0 (4.2) 

<c ∑τeτh{vτ + ∖∖f-Pkf∖∖0,τ∖T∖1'2}

PROOF. Consider the expression
(4.3)

If we replace in (4.3) ζ = w - Wfl and η = β - βh, we obtain
(4.4)
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Taking into account that βh — ∏βll ∈ Ho(rot,Ω), and according to Proposition 2.1, there exist φ ∈ Hq(Ω) and ψ ∈ H⅛(fΓ) such that
Ph - ∏βh = 'V'Ψ - Φ (4.5)with ∣∣V≠∣∣o + ∣∣≠∣∣1 < C{∣]∕3λ - 77∕3λ∣∣0 + ∣∣roi(∕3h - Π∕3a)∣∣0} (4.6)Replacing again in (4.3) ζ = ≠ and η = φ, and using (4.6) we get∣u(∕3-∕3a,0) + (7~7⅛,^a - 7T3⅛)I < f, ∖a(β ~ βh, Φ) + (7 ~ 7⅛, V≠ ~ ≠)∣ , .∖∖βh - ∏βh∖∖o + ∖∖rot(βh - ∏βh)∖∖o ~ ∣∣V≠∣∣0 + ∣∣√>∣∣1 l4∙°≤ C,∣∣(∕3 — ∕3a), (7 — 7a)∣∣,Then,∖b -7κ,βh- ∏βh)∖ ≤

C{∖∖(β - βh), {ι - ~rh)∖∖.[∖∖βh - ∏βh∖∖0 + ∖∖rot(βh - ∏βh)∖∖0] + ∖∖β - ∕3h∣∣1∣∣φ∣∣1}< C{∣∣(∕3 - βh), (7 - 7∕1)II.[∣∣∕3∕l - ΠβhHo + ∖∖rot(βh - 7I∕3J∣∣0]
+ [∖∖βh - ∏∕3J∣o + ∣∣M∕3λ - ∏βh)∖∖o] ∖∖β - βh∖∖1}

< C{[∣∣(/3 - ∕3h), (7 - 7∕l)∣∣. + II∕3λ - ∏βh∣∣0 + ∖∖rot(βh - ∏βh)∖∖o]

l∖∖β - ∕3λ∣∣1 + ∣∣Vw - Vw⅛∣∣0 + ∖∖βh - ∏βh∖∖o + ∖∖rot(βh - ∏β⅛)∣∣0]} (4.8) where we have used continuity of a(,) to obtain the first inequality, and (4.6) to bound ∣∣φ∣∣ι in the second inequality.Returning to (4.4) we can see thatα(∕3 -βh,β- βh) + i2∣∣7 - 7⅛∣∣o ≤11(0 - βh∖. (τ - 7∕l)l∣.{∣∣∕3 - ∕3h∣∣ι + ∣∣Vw - Vw∕l∣∣0 + ∣∣∕3h - 77∕3J∣0 + ∖∖rot(βh - ∏βll)∖∖o} + 1(7 - Ιh,βh ~ ∏βh)∖ (4.9) so. using coercivity of α(,) and (4.8) we also havell∕3-∕Mi + *2l∣7-7jβ
< C{∣∣(/3 - ∕3λ), (7 - 7∕t)∣∣. + ∣∣∕3⅛ - π∕3J∣0 + ∖∖rot(βh - ∏βh∖∖o} (4.10){∣∣∕3 - ∕3h∣∣1 + ∣∣Vw - Vwλ∣∣0 + ∖∖βh - ∏∕3J∣0 + ∖∖rot(βh - ∏βh∖∖o}From the definition of 7 and ^fh we have the following identity:Vw - Vwh = f2(7 - 7a) + (/3- βh) ÷ (∕3λ - ∏βh) (4.11)10



from which it follows that∣∣Vu, - Vt1⅛∣∣0 < i∣∣7 - 7λ∣∣0 + ∖∖0 - 0h∣∣, + ∖∖0κ - ∏0h]∖o (4.12)Adding ∖∖βh — ∏βh∣∣θ + ||roi(/3A — ∏βh)||§ to both members in (4.10) and making use of (4.12) we arrive to∖∖βh - ∏βh∖∖2 + ∣∣rot(Z3λ - ∏βfβ∖∖2o + ∖∖β - βh∖∖2 ÷ t2∣∣7 - 7λllo
≤ C{II(/3 - ∕3a), (7 - 7λ)I∣. + l∣X3h - ∏βh∖∖o + ∖∖rot(βh - ∏βh)∣∣0} (4.13){∣∣∕3a - 77∕3a∣∣0 + ∖∖rot(βh - ∏βh)∖∖o ÷ ∣∣∕3 - ∕3a∣∣1 + t∣∣7 - 7∕l∣∣o}from which we obtain∣∣∕3h - ∏βh∣∣0 + ∖∖rot(βh - ∏βh)∖∖o + ∣∣∕3 - ∕3a∣∣1 + i∣∣7 - 7J∣0 (4.14)< C{∣∣(∕3- ⅛),(7 - 7k)∣∣. + ∣∣Λ - ∏3h∣lo + ∖∖rot(βh - Π0MAlso from (4.11) we havei2roi(7 - 7a) = -rot(β - βh) - rot(βh - ∏βh) (4.15)from which i2∣∣ro∕(7 - 7a)I∣o ≤ ∣∣∕3 - ∕3a∣∣1 + ∖∖rot(βh - ∏βh)∖∖o (4.16)From (4.12) and (4.16) we see that<2∣∣rot(7 - 7a)∣∣o + ∣∣Vw - Vw⅛∣∣o + ∣∣∕3 - βh∣∣1 + 11∣7 - 7λ∣∣0 (4.17) 

≤ C{∣∣∕3a - 77∕3a∣∣0 + ∖∖rot(βh - ∏βh)∖∖o + ∣∣∕3 - ∕3a∣∣1 + 11∣7 - 7J∣0}From this inequality and (4.14) we getf2∣∣ro∕(7 - 7a)∣∣0 + ∣∣Vw - Vwa∣∣0 + ∖∖β - βh∖∖↑ ÷ 11∣7 - 7a∣∣0 (4.18) 
≤ C{∣∣(∕3 - ∕3a),(7 - 7⅛)ll∙ + l∣∕3∕l - ^∕3a∣∣0 + ∖∖rot(βh - ∏∕3a)∣∣0}Finally (4.2) follows easily from (4.18), using (3.3) and the definition of ηy- □

Theorem 4.1 There exist two constants C↑ and C2 depending on the minimum angle of 
the mesh such that∣∣Vw - Vw⅛∣∣o + ∣∣∕3 - ∕3a∣∣i + ∕2∣∣ro∕(7 - 7λ)∣∣0 + t∣∣7 - 7⅛l∣o + ∣∣7 - ~ih∣∣r (4.19) <C1 ∑τeτh{rlτ+∖∖f-Pkf∖∖0j∖T∖l∕2}

and

ητ < c2{∖∖(β - ∕3a)∣∣i,u,t + ∣∣Vw - Vwfc∣∣0,u,τ + i2∣∣rof(7 - 7λ)I∣o,u,t + <l∣7 - 7J∣0.^τ+ l∣7-7j∣r,ωτ + Σteu,τ∣iΙιz2ll∕-^∕l∣0,t} (4.20111



PROOF. For the proof of the first inequality, taking into account Proposition 4.1. we have to bound only ∣∣7 — 7λ∣∣γ∙ For fixed η

From this (4.21)Also (4.22)Combining (4.21) ,(4.22) and the results in Proposition 4.1 and Theorem 3.1. we arrive to (4.19).To obtain (4.20), we consider the bound for cy from Theorem 3.1. and the following inequality:∣∣(∕3 - ∕3λ), (7 - 7λ)∣I*, u>t ≤ l∣∕3 - ÷ l∣7 - 7a∣I-i,,wt + ∣∣<M7 - 7⅛)ll-ι.-τ (4-23 .On the other hand we obtain from (4.11)∖∖βh ~ ∏Ph∖∖o.τ ≤ ∣∣Vw - Vw⅛∣∣o,τ + ∣∣∕3 - βh∣∣ι,τ ÷ i∣∣7 - 7⅛l∣o.τ (4.24)and from (4.15) ∖∖rot(βh - ∏βh)∖∖0,τ < i2∣∣rot(7 - 7⅛)l∣o,τ + ∖∖β ~ ∕3a∣∣i,t (4.25)The proof is completed by adding (3.4). (4.24) and (4.25) and making use of (4.23). □
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