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AN EXPLICIT RIGHT INVERSE OF THE DIVERGENCE OPERATOR 
WHICH IS CONTINUOUS IN WEIGHTED NORMS

RICARDO G. DURAN AND MARIA AMELIA MUSCHIETTI

Abstract. The existence of a continuous right inverse of the divergence operator in W01'p(Ω)n, 
1 < p < ∞, is a well known result which is basic in the analysis of the Stokes equations.

The object of this paper is to give a constructive proof of the existence of such an operator 
and to show that the continuity holds also for some weighted norms. Our results are valid for 
Ω C IP.π a bounded domain which is star-shaped with respect to a ball B C Ω.

The continuity results are obtained by using the classical theory of singular integrals of 
Calderon and Zygmund and general results on weighted estimates proven by Stein.

The weights considered here are of interest in the analysis of finite element methods. In 
particular, our result allows to extend to the three dimensional case the general results on 
uniform convergence of finite element approximations of the Stokes equations.1. IntroductionA basic tool for the theoretical and numerical analysis of the Stokes equations in a bounded domain Ω C Rn is the existence of a continuous right inverse of the divergence as an operator from the Sobolev space Rθ(Ω)n into the space iθ(Ω) of functions in Z2(Ω) with vanishing mean value. In other words, given a. function f ∈ Lθ(Ω), the problem is to find a solution u ∈ Z7(’(Ω),' of the equation

div u = f in il (∣∙1)such that
llul∣H(*(Ω)" ≤ C∣I∕I∣L2(Ω)where, here and throughout the paper, the letter C denotes a generic constant.If the domain has a smooth boundary or if it is a convex polygon then, the existence of u can be proven by using a priori estimates for elliptic equations. Indeed, taking υ ∈ R1(Ω) as the solution of the Neumann problem
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∫ -∆υ = / in fit f£ = 0 on an (1-3>we have that u = Vw satisfies the equation (1.1) and, from a priori estimates for (1.3) (see [11, 9]), it follows that ||u||H1(n)„ ≤ C||/||£3{n). Although ΰ is not in HtJ(Ω)n it is not difficult to modify it by adding a divergence free vector function in order to impose the homogeneus boundary conditions and to obtain u satisfying (1.1) and also (1.2) (see [4, 10. 3, 12]). This argument can not be applied for a non smooth domain since the solution of the Neumann problem (1.3) is not in general in H2(Ω) and so ΰ will not be in H1(Ω).If Ω is a non convex polygon, solutions of (1.1) satisfying (1.2) were constructed in [2]. The argument in that paper is based on solving the Poisson equation in a larger smooth domain in order to obtain an ΰ as before. Then, the modification to impose the boundary conditions requires trace theorems for non convex polygons which were developed in [2].More generally, the result can be proven for a Lipschitz domain in R” by looking at the dual problem. Indeed, by standard functional analysis arguments it can be seen [16] that the existence of u satisfying (1.1) and (1.2) is equivalent to the existence of a constant C such that for all q ∈ Z2(Ω)
l∣9∣∣L2(∩) ≤ C,∣∣Vg∣∣w-i(∩)n (1.4)This inequality can be proven for a Lipschitz domain by using compactness arguments. The first and most technical part of the proof is to show that, for any q ∈ L2(Ω),

I∣9∣Il2(∏) ~ I∣9∣Ih->(ω) ÷ ll^9∣∣H-ι(Ω)nthen, the existence of C such that (1.4) holds follows from this equivalence of norms arguing by contradiction and using the compactness of the inclusion of L2(Ω) in H~1(Ω) (see [13] for details).The ob ject of this work is to give a constructive proof of the existence of solutions of (1.1) satisfying (1.2) and also, some analogous weigthed estimates. Our results hold for domains Ω which are star-shaped with respect to a ball B C Ω. The solution u will be defined by means of an integral operator and, in order to prove (1.2) we will show that the derivatives of u can be written in terms of a singular integral operator of the Calderon-Zvgmund type acting on the right hand side /. Therefore, our proof is valid also for the general case of Zp(Ω), 1 < p < oc.The weigthed estimates for the solution of (1.1) defined here follows also from the representation of the derivatives of u as singular integral operators. Indeed, we will show that these estimates can be derived from general results on the continuity of singular integral operators in weighted norms. Weighted a-priori estimates are a well known tool for the analysis of uniform convergence of finite element methods (see for example [7]). In particular, the result obtained here allows to generalize to 3-d the general error analysis given in [8] for finite element approximations of the Stokes equations.2. Construction of the solution and a-priori estimateLet Ω C R" bea bounded domain with diameter d. Take ω ∈ Cl]c(Ω) such that ∣jj ω = 1 and define G = (G]. ∙ ∙ ∙ , Gn) as



AN EXPLICIT RIGHT INVERSE OF THE DIVERGENCE 3

G(χ,y) = ^(χ-y)ω(y+^-)ds (2.1)
The following lemma gives a bound for G(x,y) that will be fundamental in our subsequent arguments.

Lemma 2.1. For y ∈ Ω we have

∣G(≈,il)∣ < Mt~(n)(n.1)∣l.y∣n-ι (2.2)
Proof. Since ω ∈ Cqo(Ω) it follows that the integrand in (2.1) vanishes whenever z = y + (x - 
y)∕s ¢. Ω. Therefore, since y ∈ Ω, we can restrict the integral defining G(x,y) to those values of 
s such that ∖z - y∣ < d, that is, ∣ar - j∕∣∕d ≤ s and (2.2) follows easily. □In the next lemma and its corollary we introduce the explicit right inverse of the divergence.
Lemma 2.2. For any φ ∈ Cqo(Ω) we define φ = ∫fl φω. Then, for y ∈ Ω we have(≠-≠)(y) = - f G(x,y) ∙Vφ(x)dx

Jq

Proof. For y ∈ Ω we have
(φ-φ)(y) = ί i (y - z) ∙Vφ(y + s(z - y))ω(z)d3dz 

Jn Joand interchanging the order of integration and making the change of variable x = y + *{z - y) we obtain
and the proof concludes by observing that we can interchange again the order of integration. Indeed, using the bound given in (2.2) for G, it is easy to see that the integral of the absolute value of the integrand is finite. □
Corollary 2.1. Given f ∈ i1(Ω) such that ∫∩ f = 0 define

(2.3)
then. div u = f in Ω
Proof. For φ ∈ Cqo(Ω) we have

/ f(y)Φ(y)dy= lf(y)(<t>-Φ)(y)dy=-i [ f(y)G(x,y)∙Vφ(x)dτdy
Jn Jn Jn Jnand interchanging the order of integration, which can be done in view of (2.2), we obtain
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I f(y)Φ(y)dy = - i u(x)-Vφ(x)dx
Jn JQwhich concludes the proof. □Up to this point, we have not imposed any condition on the domain Ω other than boundedness.Assume now that Ω C Rn is star-shaped with respect to a ball B C Ω (i.e., for any z ζ B and any x ∈ Ω, the segment joining z and x is contained in Ω). The following lemma shows that in this case the function u defined in (2.3) vanishes on ∂Ω.

Lemma 2.3. If Ω is star-shaped with respect to a ball B and ω ∈ Cqo(B) then. G(.r,y) = 0 for 
all x ∈ ∂V and all y ∈ Ω. In particular, u defined as in (2.3) vanishes on dil.

Proof. For x ∈ ∂Ω, y ∈ Ω and any s ∈ [0,1] we have that z = y + (τ — y)∕s B. Otherwise, since Ω is star-shaped with respect to B, x = (1 - s)y + sz would be in Ω. Therefore, the result follows from the definition of G(τ,y) recalling that ω ∈ Cq°(B). □We want to see that ∈ Zp(Ω) whenever / ∈ Lp(Ω), 1 < p < ∞, and moreover, that there exists a constant C depending only on p and Ω such that ∣∣∣j2-∣∣lp(q) < C∣∣∕∣∣lp(Ω)∙For our subsequent arguments it is convenient to introduce the characteristic function Λq of Ω. In this way, we will be able to work with operators defined on Lp(Rn). A function f ∈ ∕,p(Ω) will be extended by zero outside of Ω.In the next lemma we give an expression for jn terms of f. In order to do that we introduce the following singular integral operator
and its adjoint

T*jf(χ) = l∖m[ Xn(y)^i(χ,y)f(y)dy j r-°7∣y-r∣>e OXiAfterwards, we will prove that the limit defining T,j exists and defines an operator which is bounded in Lp for 1 < p < 00. By duality, the same will be true for Tt*.

Lemma 2.4. Hr have

where

Proof. From the definition of G, and using again (2.2) to interchange the order of integration we have, for any φ ζ C^c'(Ω).
(2.1)
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(2.5)Now, we can decompose the integral on ∂B(y,ε) in two parts in the following way

and it easy to see that IIe → 0. Indeed, using the bound given in (2.2) for Gj and the fact that 
φ has bounded derivatives we obtain that there exists a constant C depending only on d. n and ∣∣d>∣∣¼.Ι.∞(∏j such that

∖∏e∖ < CεOn the other hand we have
Then, making the change of variables r = ε∕s and σ — (ζ - j∕)∕ε and denoting with Σ the unit sphere we obtain

and therefore, replacing in (2.5) we obtain that for y ∈ Ω
which together with (2.4) yields the result. 



AN EXPLICIT RIGHT INVERSE OF THE DIVERGENCE 6Since ωtj is a bounded function, in order to see the Lp boundedness of it is enough to show that the operator Tij is continuous in Lp. We will show that Tij is a'singular integral operator of the Calderon-Zygmund type and so, it is bounded in Lp for all 1 < p < oc.Calling ηj(y,z) = Zjω(y + z) we obtain from (2.1) that
∂GThen, the kernel <⅜∩(t∕)^√-(ar, y) and so, the operator Ttj can be decomposed in two parts as follows

and
Ttj = Tι + T2 (2.6)with

First, we will show that the second part T2 defines a bounded operator in Lp for 1 ≤ p < oc. This will be a consequence of the bound for A'2 given in the next lemma.
Lemma 2.5. IΓf have

(2.7)
Proof. From the definition of ηj we can see that
Now. since suppω, C B C Ω it follows that A∏(y)∣^(y, x∕,s) vanishes for ∣z∣∕.s > d. In particular, the integral defining A2 can be restricted to those values of ,s such that .s > ∣s∣∕√ and from (2.8) we obtain
Therefore.
which conlndes the proof.

(2.8)
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Corollary 2.2. The operator T2 is bounded in Lp for 1 < p < <x>.

Proof. Using (2.7) and the Holder inequality it follows that, for g ∈ Zp(Rn), the integral defining T2 is absolutly convergent and moreover, there exists a constant C depending on d.n.ω and p such that
∣7ι29(j∕)∣ ≤ C∣∣g∣∣LP(Rnjand the proof concludes by observing that 72<j has compact support. In view of the decomposition (2.6) and Corollary 2.2, it remains to analyze the continuity of the operator T↑. With this goal, we will show in the next two lemmas that h∖{y, z) is a singular kernel satisfying conditions which, according to the classical theory of Calderon and Zygmund [6, 5]. are sufficient for the continuity in Zp, 1 < p < 00, of the associated singular integral operator.

Lemma 2.β. We have

... . M (1 + d)ll II rfn∣Aι(i∕,z)∣ < —- ----∣∣ω∣∣Wl,∞(Rn) j-pj∙
Proof. It follows by the same arguments used in the proof of Lemma 2.5. 
Lemma 2.7. Kl(y,z) is homogeneous of degree -n and with vanishing mean value on the unit 
sphere Σ, in the second variable.

Proof. Given A > 0, making the change of variable t = s/A in the definition of A^1 we have
Kl(y,λz) = λ^"^ ~ λ^nΛ'ι(t∕,i)

On the other hand, making the change of variable τ — 1/s in the integral defining A 1 we have A'1(t∕,z) = j ^n(y)^(y,rz)rn~i dr

and therefore,
[ K↑(y,σ)dσ= [ i A∏(i∕)^-(ι∕, rσ)rn~1 dr dσ = i Aq(i∕)∣^-( t∕, z) dz = 01∕∑ JΣ Jθ √R" Oziwhich concludes the proof. 

Remark 2.1. A different way of proving Lemma 2.7 is the following. Define
H(y'z}=l0then, proceding as in that lemma it is easy to show that H(y, 2) is homogeneous of degree -∏ + 1 in the second variable and. since A'1(X,2)=^ the desired properties of A^ι follows (see [I. page 152]).
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Remark 2.2. We have considered f such that ∫n f = 0. However, the operator giving the solution u is defined for any f ∈ L1(Rn). It is easy to show directly that
(2.9)indeed, using the expressions for the derivatives given in Lemma 2.4 and observing that ∑'L1 ^∣∣ 1 we have that

and so, we have to check that
But, we have

(2.10)
with

(2.11)Now.
and so. making the change of variable r = l/.s in (2.11) we obtain
which together with (2.10) concludes the proof of (2.9).Summing up the above results we obtain the following
Theorem 2.1. Let Ω be bounded and star-shaped with respect to a ball B C Ω. If f ∈ L,'(Ω)1 < p < -χ. and ∫n f = 0 then, the function u defined in (2.3) is in I4'01'p(Ω)" and satisfirsdiv u = f in Ω∏7ld. ∣∣u∣∣¼'0ι'p(Ω)n ≤ (-1ll∕l∣Lp(Ω)
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Proof. In view of Lemmas 2.6 and 2.7, it follows from the theory developed in [6] that the limit defining T∖ exists and defines an operator which is continuous in Zp for 1 < p < oo. Then, the boundedness of Tij in Zp, for 1 < p < ∞, follows from the decomposition Γ,j = T↑ + T2 recalling that T2 is continuous in Lp. Then, by duality, T1*∙ is also bounded in Lp for 1 < p < 00 and the proof concludes by using the representation for given in Lemma 2.4. □

3. Weighted a-priori estimateA well known technique to prove error estimates in the L°° norm for finite element approximations is based on the use of weighted norms (see for example [7] and references therein). In particular, weighted a-priori estimates related with the equation being considered are needed when this approach is used.For finite element methods for the Stokes equations, a general error analysis for the i°o norm has been given in [8]. The results obtained there are based on a weighted inf-sup condition or, equivalently, on a weighted a-priori estimate for a solution of the divergence operator. The proof of this estimate given in [8] is restricted to the 2-d case while the rest of the arguments can be extended strightforward to 3-d.Here we will show that this weighted a-priori estimate can be derived from our result of the previous section together with a weighted estimate for general singular integral operators given by Stein [14]. Our result holds in any dimension. In particular, the general error analysis given in [8] can be extended to the 3-d case.In order to state our result we need to introduce first some notation.Let 0 < θ < 1/2 be a parameter and σ(x) = (∣x - Xo∣2 + θ2)1∕2 where x0 is a fixed point in the domain Ω. We are interested in the following result (see Lemma 2.2 in [8]):Given f ∈ Zθ(Ω). find u ∈ ffJ(Ω)π solution of
div u = / in Ωand such that [ ∣Vu(a∙)∣2σn(a∙)chr ≤ C'∣log0∣2 ί ∖f(x)∖2σn(x)dx

Jii Jawith the constant C independent of θ and a?o·In order to prove this estimate we will use the following general result of Stein [14]. We remark that, although Stein considered a kernel of the form K(x,y) = ^∖^xy∖ny^. inspection of his proof shows immediately that his arguments applies to a more general Λ(ar, y). In particular, his result holds for the operator T*j defined in the previous section. In the particular case ∣> = 2 the main theorem given in [14] can be sated as follows,
Theorem 3.1. Let T∕(x) = lim∕ A'(a∙, y)f(y) dy

f-→0 Jy-x>c

and assume that there exist constants /½ A such that

ll^il∣L2(R") ≤ ^2∣∣∕∣∣L2(R")
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and,

Then, for -n < a < nl

[ ∖Tf(x)∖2σa(x)dx <C2 ί ∣∕(at)∣2σo(x)dx
Jftn √Rn

where Co is a constant independent of xo and θ.

Remark 3.1. The theorem given in [14] is for the weight ∣x∣α instead of σa. However, it is easily seen that the arguments apply for the weight (∣x∣ + θ)a (see the proof in page 254 of [14]). Indeed, for θ = 1 this was observed by Stein in his book [15, page 49]. On the other hand, by translation, it is clear that the weight can be replaced by (∣at - xτ0∣ + θ)a (which is equivalent to 
σa), obtaining a constant which is independent of θ and loin order to make an extrapolation to the limit case a = n we need to know the dependence of the constant Ca on a. Although this dependence is not given explicitly in [14], it is easy to find out from the proof that, for 0 < a < n,

Cca = ------ (3.1)
n - awith C independent of a. Indeed, the restriction a < n is used in the proof only to bound the integral (see formula (6) in [14, page 252])

z∙l∕2/ ∣1 - A-z3∣Λn∕2-1 dA
Jowhere /3 = α∕2 and, it can be easily checked that the constant Ca behaves like this integral and therefore, (3.1) holds.We can now give the main result of this section.

Theorem 3.2. //Ω is bounded and star-shaped with respect to a ball B C Ω then, for f ∈ Lθ(Ω). 
there exists a solution u ∈ ∕∕θ(Ω)n of div u = / (given as in (2.3))such that, for 0 < θ < 1 /2.

i ∣Vu(τ)∣2σn(x)dx < C∣log0∣2 i ∣∕(τ)∣2σn(x)dx
Jn Jπ

with C independent of θ.

Proof. In view of the representation
given in Lemma 2.4 and recalling that ωtj is a bounded function, it is enough to show that

^∖T*jf{x)∖2σn(x)dx <C∖∖ogθ∖2 ^∖f{x)∖2σ"{x)dxBut. from the previous section we know that T*- satisfies the hypotheses of Theorem 3.1. Therefore. for any 0 < o < n we have
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^∖τijf^)∖2^a^)dx < - -j∩∖f(x)∖2σa(x)dx

Actually, we would have the integrals over all Rn but we recall that the f is extended by zero outside Ω.Now, using that Ω is bounded and so, σn~a is also bounded we have
and observing that σa n < θa n we obtain∣n∖T-f^σ∙'(1)d1< Q); jf ∣∕(x)∣=σ-"(x)dx
Then, given 0 < θ < 1/2 we can take α such that 0 < a < n and n - a = l∕log(l∕0) and we obtain
concluding the proof.
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