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Abstract

In this paper we construct the Calderén Projector for an elliptic operator
in divergence form with Lipschitz coefficients on a C! domain 2, and we prove
some results about the continuity of this operator on the LP(9Q) spaces.

The projection on the Cauchy data, usually called Calderén Projector. is one
of the most important tools in the study of boundary value problems for elliptic
operators.

This projector has been constructed first by A. P. Calderén for elliptic operators
with €™ coefficients in a C* domain ( in this case, the projector is a pseudod-
ifferential operator), and it allowed one to formulate non local elliptic boundary
value problems. thus extending the classic local elliptic boundary value problems
{Lopatinsky conditions)(1], see also [11].

For the Laplacian operator, even on a C! domain, the results of E.Fabes. M.Jodeit
and N.Riviere [4] allow us to construct this projector as a continuous operator on
LY (99) x LP(9Q), V1 < p < oc .

In this paper we construct the projector for elliptic operators in divergence form
L = —div(AV) on C' domains when the coefficients of A are Lipschitz functions.
and we obtain the same results as for the Laplacian.

In the first section we show how the Calderdn Projector is an important tool in
the analysis of the solutions of boundary problems like Dirichlet and Neumann. and
we recall the classic results about its construction, by means of the layer potentials.

In section 2 we analyze the behavior near the diagonal of the fundamental so-
lutions for the operator L, specially the relation with the fundamental solutions for
operators in divergence form with constant coefficients.

In sections 3 and 4, we prove some contuinity results on the L?(9Q) spaces of the
traces single and double layer potentials and the relation with the nontangential lim-
its of the potentials. The main result in this section is Theorem 3.3, where we state
n(z) — nly)

that a singular operator with kernel k(z,y) = Bz o)z —v.0lx) — o))"

. where



B is an n x n matrix with Lipschitz coeflicients, and 7, ¢ are two Lipschitz function,
1s a continuous operator on LP(IR™).Indeed we prove that it is a Calderén-Zygmund
operator (we give the proof in the Appendix).

In section 5 we prove the invertibility results that are necessary for the analysis
of the Dirichlet and Neumann problems for L in a C' domain, then we prove some
regularity theorems that are necessary for the construction of the projector.

Finally, in section 6 we construct the Calderén Projector for our case, taking
into account the results obtained in the previous sections.

1 Preliminaries

In this section, we will show the construction of the Calderén Projector in the
smooth case.

Let A(X) = (a;;(X))];=, be a real, symmetric, n x n matrix. with 4(X) €
C°>(IR™). and uniformly elliptic, i.e. there exists A > 0, such that

MEP? < (A(X)E €) < A7Hel? (1.1)

for all £ € R™\ {0}.

Let us now consider the elliptic operator L = —div(A(X)V) in a C* domain
QCR" n>3 For X € Q and Q € 91, the potential operators of single layer S.
and double layer T are defined by

SF(X) = /aQ K(X.Q)f(Q)dQ. (1.2

TH(X) = /a _onaK(X.Q)f(Q)dQ (13)

where K is a symmetric fundamental solution for L, dn4(0) = (A(Q)Vgq, Ng). Ng is
the unit normal vector to 9Q in @, and we have denoted by dQ the surface measure.

Take ' D Q and u(X) C C§°(Y') to be a solution for Lu = 0 in 2, then we have
the well known representation formula:

wX) = fa 9K (X, Qu(Q) + K(X.Q)onau(Q)dQ (1.4)

By means of the layer potential operators, we can write

w(X) = -Tu(X)+ S(0au)(X), X €Q (1.5)



And taking limits (non-tangential) for X — P € 9S), we have

w(P) = %u(P) — Tu(P) + S(8nau)(P) (1.6)

where S and T are the respectives traces of the single and double layer potentials.
le

Tf(P) =up[30(AQ)VoKI(P,Q).Ng) f(Q)dQ. (L7

and since the singularity of K (X, Q) is integrable. even when X € 9. the corre-
sponding trace is given by

Sf(P) = /m K(P.Q)f(Q)dQ. P € 9. (18)

If we consider for example, the Dirichlet problem for L in Q, with boundary
value u = f in J0f2. we obtain the following identity:

Sg=(T+%I)f (1.9)

where ¢ = S~YT + %I)f = Onau is the unknown data on 9

We can also see the problen in a diferent way: we define the operators

Df(X) = Onax) | Onaq)K(X,Q)f(Q)dQ (1.10)
80

and
Df(P)= \limpanA(p)Tf(X), P € 990. (1.1

Now, taking the conormal derivative on 92 of equation (1.5), and considering the
boundary values f and ¢, we have:

Df = (T - %I)g (1.12)

where T* is the adjoint operator of T.
On the other hand, given two functions, f and g € C°(99Q). we define

U(f ghX) = =T f(X) + Sg(X). (1.13)



It is obviously a solution for Lu = 0 in Q.And

. 1
xAm_ U(f,9)(X) = (31 =T)f(P) + Sg(P) (1.14)

(taking this limit by nontangential inner cones to 9%2).

Also under enough regularity hypotheses,

im8nal(,9)(X) = ~Df(P) + (& + Ta(P). (115)

Now, if we write the following matrix operator:
1
(i1-T S \

P=
I\ -D +T)

(1.16)

we have that ImP C {(u|zq, Onaulzq) : Lu = 0 en Q}. As we have just seen, if

we take (f,9) € {(ulzq, Onaulsq) : Lu = 0 in Q}, thenP( £ ) = ( g )

Definition 1.1 With the hipotheses and the notation considered above, the Calderdn
Projector for L in 2 is the operator P given by 1.16. And this operator has the
following properties:

o P:C®(80) x C®(N) = C*®(IN) x C*®(9N)
e P2=P
o ImP = {(u|yq, Onaulyq) : Lu =0 in Q}

e P is a pseudodifferential operator.

For the details of the construction of this operator in the smooth case (as we have
just considered, and for more general elliptic operators) see for instance, Calderén
(1].

As we have seen, the projector P depends on the fundamental solutions of L
(really we have a family of projectors!), then we will construct P for a suitable fun-
damental solution of the operator L = —div(AV), when the matrix A has Lipschitz
coefficients and L is defined on a C! domain.



2 About the singularity of fundamental solutions

The main tool in this section is the work of Griiter and Widman [5] where they
analyze the properties of the Green function for an elliptic operator, with even less
regularity than Lipschitz coefficients.

Let A(X) = (a,,;(X))};= be a real, symmetric, n x n matrix, uniformly elliptic.
with Lipschitz coefficients, i.e., |a;;(X) —a;;(Y)] < ¢ ;| X - Y|V X,Y € R". We
denote A' = maxc, ;.1 <i<n,1<j<n.

Let {2 € IR"™ be a bounded and Lipschitz domain and consider the elliptic oper-
ator L = —div(A(X)V) on this domain.

Definition 2.1 We say that u € W2, (Q) (where W2(Q) = {f € L%(Q) : [, |f* =
Jo |V 12 < 0o}, the usual Sobolev space) is a solution for Lu = 0 in § if

/Q wY)L$(Y))Y =0, ¥ ¢ € C2(Q)

Definition 2.2 We say that K(X,Y) is ¢ fundamental solution for L in  .f
“L(K(X,.)) = LK(.,X)) = 0x”. and if we put uw(X,Y) = K(X,Y) - G(X.Y).
then u € WZ(Q) is a solution for L in the two variables and G(X,Y) is the Green
function for L in Q.

For the definition and properties of the Green function in this case. see for in-
stance [5]. For any fundamental solution, near the diagonal X = Y, we have the
same behavior as for the Green function and its derivatives proved there. but we
need a more accurate analysis of their singularities. Then, we state the following
theorem:

Theorem 2.1 Let L be the elliptic operator defined above, in a bounded. Lipschit:
domain @ C R"™,n > 3, and let K(X,Y) be a fundamental solution for L. then
vVXYeQ: X#Y,

IVyK(X,Y) = VyKX(X,Y)| < C(Q,An,8X),6(Y),ANX -Y>™ (21)

where KX(Z,Y) is a fundamental solution for the elliptic operator with constant
coefficients LX = —divy (A(X)Vy), and 6(Z) = dist(Z, 08).

If XY € QCCQ, then C(,\n,6(X),8(Y)) <C(Q,0An). (22

Remark 2.1 As s natural, it is also true that .
IK(X,Y) - KX(X,Y)| < C(UAn,6X),8Y),A)X -V, (2.3)

but we do not need this estimate. The proof is easily obtained from (2.5) below.



Proof. Let X € Q, then in the distribution sense, VY # X, we have
Ly(K(Z.Y) - KX(2.Y)) = —divy [(A(X) - A(Y))VyKX(2,Y)] = fx.2(Y).

Moreover KX(Z,Y) € C®(Q\ {Y}), then we can evaluate this function in
Z = X. and if we put ux(Y) = K(X,Y) - KX(X,Y), we have that

Lux(Y) = fx(Y) ; with [fx(Y)| < CpalX - Y['™", (2.4)

Then, for ux(Y) we have the following representation formula:

ux(¥) = = [ fx(2)G(Z,Y)dZ + [ (AQVoG(Y.Q) No)ux(@)dQ (25
VXY €eQ: X#Y. (Wedon't prove this formula here, it follows taking into ac-

count that A has Lipschitz coefficients and the estimates in [5]). Now, differentiating
with respect to Y;, we see

Ovux(Y) = —/Qfx(Z)av,G(Z'Y)dZwL/ (A(Q)9,VoG(Q,Y). No) ux(Q)dQ.

0N

then

Vyux(Y) < Crmar / 1Z - X"™Z - Y|'T"dZ + Oy /m Q-YITQ - X2 "dQ
Q

IA

ConalX = Y™ + CAS(Y)8(X)* |09

Then foreach X € Q, and VY € Q2
IVyK(X.Y)-VyKX(X,Y)] < C(Q,A4,6X),8(Y),n)|X -Y]* ™"

and we also obtain the estimate (2.2) for the function C(Q, A’,4(X),8(Y),n) O

3 Existence and continuity on L” of the trace single and
double layer potentials for L. The relation between
the nontangential limits of the double layer potential
and its trace.

In the analysis of the layer potentials operators for the Laplacian, we need to know
n(z) — n(y)
(z —y.o(z) — oY)l

the continuity of operators with kernel k(z,y) = —, with n and



o Lipschitz functions from IR* ! to R. These operators are included in the family
of operators with kernels k(z,y) = F (MI) . tp(yJ\

o \ (z-y) Jz-y
function in a disc depending on the Lipschistz constant of ¢, and it is well known

that these are Calderén- Zygmund operators (3]. But in this work, we are interested

n(z) — n(y) _
|B(z, d(z))(z — y, o(z) — d(y))|"’ whith B(X) an

(nxn) matrix, uniformly elliptic, and with Lipschitz coefficients. For these operators.
in Theorem 3.3, we obtain the same result as in the case B = I.

, where F is an analytic

in operators with kernel k(z,y) =

Definition 3.1 Let Q C IR" be a bounded domawn. It is called a Lipschitz domain. 1f
we can cover a neighborhood of QY by finitely many balls B so that, in an appropriate
orthonormal coordinate system, BN = {(z,s8) : s > ¢(z)} N B, where (z,s) : T €
R"!, s€ R, and ¢: R* ! = R is a Lipschitz function, with Lipschitz constant
M < oo, re. |¢p(z) — ¢(y)| < M|z —y|, Vz,y € R*!, wath ¢(0) = 0. The domain
15 called a C' domain if ¢ can be chosen to be of class C*

Let K(X,Y) be a fundamental solution for L in a domain ' C IR®,n > 3, and
let @ — Q' d(Q,90') =d > 0 be a Lipschitz domain.

Now, we recall that the double layer potential in Q of f is given by

THX) = /a _(A(Q)VoK (X, @), No) £(Q)dQ. X €0 (3.1)

where Ng is the outer unit normal to J{ in Q. On the boundary. the trace of the
double layer potential is defined as follows: for P € 95} let

T.f(P) = / (A(Q)VoK(P,Q), Ng) £(Q)dQ, (3.2)
3Q,|P—Ql>c

and. when it make sense,

Tf(P) =vp[5q (AQ)VeK(P,Q),No) f(Q)dQ = lmTf(P).  (33)

Similarly, the single layer potential of f is given by
10 = [ K(X.Q)f(QuQ, X €0 (34)

and since the singularity of K (X, Q) is integrable, even when X € 9. the corre-
sponding trace is given by

SF(P) = /B _K(P.Q)f(Q)Q. P Q. (3.5)

-
i



Obviously, it is a continuous operator on LP(9€). And, for the trace of the
double layer potential, we have the following result:

Theorem 3.1 Let L = —div(AV), in a bounded Lipschitz domain Q C R™, n > 3.
and A(X) a symmetric n x n matriz with Lipschitz coefficients such that, M¢2 <
(A(X)E,€) < AHEPR, VX e Q1.

Let T f(P) be the truncated trace double layer potential given by (3.2). Then the
mapping T* f(P) = sup,q |T.f(P)| 1s bounded in L2(8R) ,and T f(P) = lim,_.o T, f(P)
ezists pontwise a.e and s a Calderdn-Zygmund Operator. Moreover, when Q 1s a
C! domawn. Tf(P) 1s compact in LP(8Q), 1 < p < co.

Proof. We will not give here all the details of the proof, because most of them are
the same than for the Laplacian operator (i.e, when A = I), see [4]. We prove the
results where there are differences due to the Lipschitz coefficients of the matrix A.

First of all, we will use the relation established in Theorem 2.1 for the fundamen-

tal solutions: Let us consider the operator LX = —divy(A(X)Vy) in the domain
2. and let
b b'e 1 _1 1 2-n
K*ZY)=K*(Z-Y)= —mldetA H(X)WAT2(X)(Z -Y) (3.6)

be the homogeneous fundamental solution for LX. Taking now Z = X, and differ-
entiating in Y, we obtain:

1 AN XWX -Y
VyKX(X,Y) = ——[detA_%(X)l ] (X ),,, (3.7
wn [A72(X)(X - Y)|
And for this particular fundamental solution, we have ¥ X,Y € Q :
\IVyK(X,Y) - VyKX(X,Y)I <CEOUNANX -y (3.8)

where A’ is the Lipschitz constant of the matrix A.
Now, let T, be the operator defined in (3.2), then we have

T.f(P) = (AQVe(K(P,Q) - KP(P,Q)), No) f(Q)dQ

-/t;Q,IP—Q|>e

) ((AQ) - A(P))VoKP(P.Q), No) £(Q)dQ
3N, |P—Q|>e

+ [ A(P)VoKP(P,Q)Nof(Q)dQ
Joq, | P-Q|>e

= Tyef(P)+ Ty f(P) + Ty f(P)



Clearly T; f(P) = lim._o T; . f(P), i = 1,2 exist pointwise a.e. in 0 and in LP(99).
1 < p < oc. because both operators have integrable kernels (using 3.8 for T  and the
fact that the matrix A is Lipschitz for T3 ¢, both kernels are bounded by C|P-Q|?~".
with C depending on A',Q,Q', A, and n). Moreover they are compact operators in
LP(0N), 1 < p < o0.

Now, we only need to analyze T3 .. We put T, = T3¢, and using (3.7), we have

TAP) = —w'|deta 3(P)| [ P-QNol _s01d0 (39)
JaP-Q>¢ |A"3(P)(P - Q)]

In order to establish the continuity in LP(9Q) of this operator, we begin studying
the operator

Rfe)=[  kzyfwdy, (3.10)

Jlz—y|>e
where

|A™% (2, ¢(z))(z — y, b(z) — 6(v))|

And we have the following result:

Theorem 3.2 Assume ¢ : R"™! — R 1s a Lipschitz function with Lipschatz con-
stant M < oc. Let k be the kernel in (8.11) and K. f the operator defined in (3.10).
Then the mapping K* f(z) = sup,-g |K.f(z)| 1s bounded in L2(R™~'). Furthermore
lime g Kef(z) = K f(z) exists pointwise a.e. and is a Calderon-Zygmund operator.
Moreover when ¢ € C!, K 1s a compact operator in LP(R"71), 1< p < oc.

Proof. By taking into account the next theorem, the proof follows as in the case
A=1

Theorem 3.3 Let ¢ and 1 be two Lipschitz functions in R™!, and B(X) an nxn
matrz. uniformly elliptic with Lipschistz coefficients, i.e there exist p and A, such
that wlé[2 < (B(X)E,€) < MEP2, uniformly in X € R", and |B;j(X) - B;(Y)| <
B X-Y|VX,)YeR" Vi,j=1,..,n. Let

n(z) — n(y)
K.(B)f(z =/ = d
BV )= |, yse 1Bl d(N) 2 — 32 002) — daT VY
Then K*(B)f(x) = supsgo|Ke(B)f(z)| is a bounded operator in L?(IR™1).
Moreover. there exists lim,_,o K.(B)f(z) = K(B)f(z) a.e. = € R""! and n L*.
then K(B) s a Calderén-Zygmund operator in R™ 1



Proof. The proof involves very cumbersome technicalities and will be included as
an Appendix.

Theorem 3.4 Let T, be the operator defined by (3.9) in a Lipschitz domain (.
Then T*f = SUP, 5 \T. f| 15 bounded in L?(8Q), there exists T f(P) = lim_ T.f(P)
powntwise a.e. and T s a Calderon-Zygmund operator.

When Q 15 @ C! domain. T 1s a compact operator in LP(8S2), 1 < p < co.

Proof. By means of a partition of unity argument and by passing to local coordi-
nates. the theorem is readily seen to follow from the corresponding statements for
the Euclidean operator

—w; Y |det A™ 3 (z, ¢(z))| K. f(z) (3.12)
where

K.f(z) = JL k(z.y)f (y)dy, (313)

with k(z.y) the kernel defined by (3.11), ¢ : R""! — IR a Lipschitz function as
in definition 3.1, and U, = {y € R} : |z — y|2 + (o(z) — o(y))? > €2}. By the
hipotheses on the matrix A, we see w;ll'detA'%(P){ € L*°(0R), then it’s enough to
proof the theorem for the operators K.. We begin showing that

sup |K f(z) — K f(z)] < CMf(z), z € R} (3.14)

>0

where K, is the operator in (3.10), M f(z) the Hardy-Littlewood maximal function,
and C is an absolute constant which depends only on the Lipschitz constant of o
and on the ellipticity constant A. Let

Acf(z) = Kof(2) — Kef(z) = /R o HE D)y (3.15)

where R(e) = {y e R" ! : |z —y| < ¢, and |z — y|? + |¢(z) — o(y)|* > €?}. For
y € R(e), we have |k(z,y)| < Cel™™, with C depending only on M and A, so

sup A f(z)| < Csupel™ [ |f(y)ldy < CMf(z) (3.16)
e>0 e>0 Jz-y|<e

and (3.14) follows. In turn, (3.14) gives K*f(z) < K*f(z) + CM f(z), and conse-
quently by theorem 3.2, ||K* f(z){|2 < cl|fll2 as we wanted to show. In order to prove

10



the existence of the principal value K f(x), we shall see that lim,_,¢ A.f(z) = 0 point-
wise a.e.. It's enough to see it when f is a Lipschitz function. We return to the nota-
tion P = (z,6(x)). Q = (y,9(y)), Ng = (—Vo(y).1), dQ = dy. Now, almost every
+ 2 R™"! is a Lebesgue point for Ng, i.e. lim,pel™ fl:c-yISe INo — Np|dQ = 0.
Then replacing for all Lebesgue point of Ng, Ng by Np. we only need to see

lim [ pP-Q
1m I
«=0JR(e) |AT2(P)(P - Q)|

dQ = 0. (3.17)

for every r where ¢ is differentiable. And this statement follows in the same wav
that in the Laplacian case, see for instance, Coifman-Meyer [8]. Then K f(x) exists.
and

Kf(z) = limK.f(z)+limA.f(z)

= Kf(z), ppz e R}

And obviously we have also the compactness of K in LP(IR*"!) when ¢ € C!. T

—

And then. we have stated all the results that are necessary for the proof of The-
orem 3.1.

Next we consider the behavior of the double layer potential 7 f(X) given by (3.1}
for X near the boundary 9f2. Since the notion of nontangential convergence is the
appropriate here, we begin by defining inner and outer cones to 2.

Definition 3.2 Given P € 092, I'(P) will denote the doublely truncated cone. with
two conver components, non empty, with verter at P, one component in Q and the
other one in R™ \ .

Let o : R""! = R be a Lipschitz function as in Definition 3.1, with Lipschatz
constant M. If we note X = (r.t) the points in Q with r € R™ ! and t ¢ R.
and P = (z9, ¢(xp)) a fized point in 0. we can assume that s globally defined by
t > o(x). Let a > M, then for each P € 92 we have a nontangential cone, totally
mncluded in ()

Lo(P) ={(z,t) : t > ¢(z),t — &(zo) > a|lz — zo|} N B(P.T) (3.18)

with 7 a constant depending only on a and . Simalarly we can define the outer
cones as

FE(P) = {(z.t) : t < o(x).t — d(xg) < —alz — xo|} N B(P. 7) (3.19)

11



Theorem 3.5 Let Tf(X) be the double layer potential corresponding to a Laipschat:
domarn Q0 given by (3.1), and let consider

Nqu(P) = sup |u(X)| (3.20)
Xela(P)

(NGu(P) = supycre(p) [u(X)]). Then of f € LP(OQ), 1 < p < 0o. gwen a as n
definition 3.2. we have

I Na(T )l ING(T)llp < ellfllpy 1 <p<o0 (3.21)
where ¢ depends only on p,a,and A. Furthermore, for almost every P € 95

. 1
XGI‘(.}gx)l,X—sPTf(X) = (T - §)f(P) (3.22)

1
hi = - 2
XGI‘;(IPH)I,X——»PTf(X) (T+2)f(P) (3.23)

where T f(P) 1s the trace double layer potential given by (3.2).

Proof. As in Theorem 3.1 we only need to study the operator

Ti(X) = [ (AX)VoK™(X.Q), No) /(Q)dQ.

where KX(X.Y) is the function given by (3.6).

Let @ be a Lipschitz function as in Definition 3.1. we denote X = (r.¢), with t >
o(x) the points in Q, and Q = (y,é(y)) or P = (zg, ®(zg)) the points in IO (de-
pending on the context we shall use the different notations). Now, let a and M be
constants such that @ > M > ||V¢||eo, ['a(P),and I'{(P) the inner and outer cones
defined by (3.18), and (3.19) respectively. By the definition of KX (X,Y), the kernel
of the operator T3 is

|detA™% (z, )| ( t— d(y) — ((z — y). Vo(y)) )
—wn |A™3 (2, t)(z — y,t — d(y))|"
Now, taking € = t — ¢(zq), for (z,t) € Tx(P)

t—¢(y) — (z —y)Vo(y)

_1 :k€(¢~z0»y)+R€($0vl‘*y) (324)
A7z (z. t)(z -y, t — o(y))I
where
k(z,y), iflr—y|>e¢
ko, z.y) = (3.25)
0, if[x—y|<e

12



and k(r.y) is given by (3.11). Moreover there exists C' = C(M,a. X, A'), such that

|Re(zo,z.y)| < Ce!™, for |zo — yl <e (3.26)

and
|Re(xo, x,y)| < Celzg —yl™", for [zg ~ y| > € (3.27)

The proof of these estimates is merely technical, then we have omitted it. but it
follows esentially by taking into account that the matrix A is uniformly elliptic and
it has Lipschitz coefficients, all the details are in [10].

By other hand, fflzo—yl>e (zo -yl ™" f(y)ldy < CnM f(zq), where M f(zq) is the
maximal function of Hardy-Littlewood. Then

No(T3f)(P) < Cxn(T*f(P) + Mf(P)) (3.28)

where T f(P) = sup,.o | [ k(0. z.y)f(y)dyl. Now by Theorem 3.2,
INa(T3f)lp < Crallfllp, ¥1<p< oo

and (3.21) is proved.

To see the nontangential boundary values of 7 f(P) we consider f € Lip(dQ1.
then

it

[ (AQ)VoK(X,Q).No) [f(Q) - f(P)dQ

Tf(X) og

+ £(P) [ (A(QVoK(X.Q). No)dQ

Jas

= 11+I;>_.

Since |f(Q) — f(P)| < C|Q — P|, the integrand of I; has a summable singularity and
the limit exists. and it is T f(P)+ 1/2f(P), and the integral in I is = -1,V X € Q
{both results follow in the same way that for the Laplacian operator. essentially
because we can apply Green’s theorem, the technical details are in {10]), then we
have

1
Xer(lllDI)I,lx_;pr(X) =(T - §)f(P)

13



and taking the limit by outer cones we have :

: 1
xEr=(l}>n)n.x_.p THX)=(T +3)§(P)

By the continuity in L” of the nontangential maximal function, we have the conti-
nuity for all f € LP. O

4 The single layer potential. Its gradient.

In this section we are interested in the nontangential limits of the gradient of the
single layer potential defined by (3.4), when X approaches the boundary.
We will need the following result:

Theorem 4.1 Let T! f(P) be the potential corresponding to a Lipschitz domain de-
fined as

T/f(P) = [ (A(P)VPK(Q,P), Np) f(Q)dQ, P € 5 (41)
N, |P-Q|>¢

Then the mapping (T*)* f(P) = sup,.q |T!f(P)| is bounded in L2(0Q), T'f(P) =

lime .o T! f(P), ezists pointunse a.e. and T® 1s a Calderon-Zygmund operator.

Moreover. when 9Q € Ct, Ttf(P) is compact in LP(9Q).

Proof. We only need to prove that lim,_,o T! f(P) exists, the other statements fol-
low from Theorem 3.1 (because in this case, the operator T is the adjoint operator
of T). As in this theorem we compare the fundamental solution for L with the
fundamental solution for LY u(X) = —div(A(Y)Vu(X)), given by (3.6). Now. the
relevant operator has distributional kernel

(AQVPK2(Q,P).Np).

and the proof is almost the same that in Theorem 3.4. O

From now on, in order to do the notation easier, we shall consider symmetric
fundamental solutions.

Theorem 4.2 Let 2 be a Lipschitz domain, for f € LP(OQ), 1< p < oo, and X ¢
N, let Sf(X) be the single layer potential given by (3.4). Then there exist numbers
a depending only on Q, so that N,(|VSf|)(P) and N5(|VSf|)(P) belong to LP(9Q).
and there 1s a constant ¢ which depends only on p,a, and A so that

INa(IVSfDllp: ING(IVSFDIp < cllfllp, 1 <p< oo (4.2)

Furthermore, imxer, (py x—p (A(P)VSf(X),Np) = (T* + %)f(P) and
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limx_re(p) x —p (A(P)VSf(X).Np) = (T‘—%)f(P) ezist pointwise for almost every
P € 00Q.

Proof. Observe that
vSiX) = [ VxK(X.Q)f(Q)dQ,
an

then the proof of estimates (4.2) follow along the lines of Theorem (3.5) and is there-
fore omitted. For the nontangential convergence it suffices to prove the existence of
the pointwise limit for almost every P € dQ when f € Lip(8Q). The proof is again
taking fundamental solutions for elliptic operators with constant coefficients. Let
KXo(X.Y) be the fundamental solution for LXo = —div(A(Xo)V) given by (3.6).
then the single layer potential in this case is given by

SXo f(X) = / KX0(X,Q)£(Q)dQ.
an

And we know that

limxcr,(p)x~p ( A(Xo)VSX0 f(X). Np) =
(4.3)

LidetA 3(X (P-Q).Np) dQ + Lf(P
un| e 2(Xo)|vp 50 ;.4“ﬂX.;.|fP—Q}|"f{Q) Q + 5f(P)

Now, returning to the gradient of the single layer potential for L. we write
(AP)VSF(X).Np) = [ (A(P)VxK(X.Q).Np) /(@)dQ
= [ (A(PYVxK(X.Q) - VxK"(X.Q)).Np) £(QdQ
+ [ (AP)VxKF(X.Q).Np) (Q)dQ
N
= L+1 (4.4)

Clearly, as the limit in (4.3) exists pointwise for almost all P € 95). and as the
matrix A is defined in all 2, we can take X = P. then

| i (P - Q), Np)
plim L B= e detA PYp [ e ol (@@
| (4.5)
- P
+ §f( r

15



Now. = Q < d and = X ¢ T,(P), by the properties of the matrix A and of the
tundamental solutions volved. we have that

IVxK(X,Q) - VxKF(X,Q) < ClP-Q*™ (4.6)

where C is a constant depending on A,n,a and on the Lipschitz constant for A.
Then by Lebesgue dominated convergence,

Jim, 1, :LQ<A(P)(VXK(P.Q)—VXKP(P,Q))‘Np>f(Q)dQ (4.7)

Now. by (4.7). and (4.5)

1
li {A(PYVSH(X), Np) = (T  + =) f(P (1.
g . (P)VSf(X), N} (T+2)f( ) 4.8

and in the same way,

1
I (A(P)VSf(X),Np) = (T' - -)f(P .
(xero By py APIVSF(X). Np) = (T" = 5)f(P) (1.9)

L1

5 Invertibility theorems. Dirichlet and Neumann prob-
lems.

5.1 Invertibility theorems on LP(9%).

Let us first describe under which conditions we can construct the inverse operators.
We consider the operator L = —divy(A(Y)V) in a bounded and C! domain
Q' C R" n > 3. where A(Y) is a real, symmetric, n x n matrix with Lipschitz
coefficients in ' and uniformly elliptic, and let  be a C! domain such that Q ¢ '
Henceforth. we will take as fundamental solution, the Green function for L in
Q. i.e.. the symmetric and positive fundamental solution vanishing on 9Q', and we
will note it by G'(X.Y) (also we can take a fundamental solution with the same
behavior at the infinity). In the following sections, we will note by G and G. the
double layer potential and its trace, related to the fundamental solution G'.
Remark. Some proofs in this section make use of some ideas developed n [12'.

Theorem 5.1 Assume Q s a bounded C! domain and ' \ Q 15 connected. Let
Gf(P) denote the trace double layer potential defined by (3.3) with K(X.Y) =
G'(X.Y). Then G — %I 15 wnvertible on LP(0N2) for each 1 < p < oo.
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Proof. We show in fact that the adjoint of G — %I, re. G' - %I. 1s 1nvertible on
LP(09)). Since. by Theorem 4.1, G' is compact in LP(8Q). it is enough to prove
that G' — %I is injective (by Fredholm’s theory). First we observe that if f €
LP(8Q), and (G! - —%I)f =0, then f € LY(0N) Vq:1 < q < cc. (the proof is no
different than that for L = A, in [4]). Now consider the single layer potential of the
function f over 91 i.e.,

Sf(X) = - G'(X,Y)f(Y)dY (5.1)

By the ellipticity condition and applying the Green's theorem , we have

A wsrxPax < [ AX)VSHX)VSF(X)dX
Jana Jana

IN

- [ o nasr@s£(Q)dQ =0 (5.2)
2 19)

where (0°n4) = limxere(Q),x— (A(Q)VSSf(X),Ng). and we have used the fact
that Sf(X) is a solution in '\ ©, and Sf(P) = 0 in 92'. By Theorem 4.2, the last
integral in (5.2) is absolutely convergent and (9°n4)Sf(Q) = (G' — 1)f(Q) = 0
a.e. in 0. Therefore Sf(X) is constant on ' \ , and since Sf = 0 on Q.
by continuity Sf(X) = 0in '\ 2 and Sf = 0 on 90. Now, in the same way
as for V' \ Q, we can see Sf(X) is constant on 2. Thus Sf(X) = 0 on all Q' so
that InaSf(Q) = (Gt + %I)f(Q) = 0 for almost every @ € 952, and we conclude for

these Q. £(@) = (31 +GYF(@) - (G - 31f(@) =0. ©

Theorem 5.2 Assume Q is a bounded, connected, C' domain, and let Gt be the

operator defined in Theorem 5.1. Then for each 1 < p < oo, Gt + %I 1s tnvertible in
L5(89). where

L300 = {f € P(6) : [ 1(@)dQ =0},
onN

Proof. Since the single layer potential is a solution for Lu = 0 in §2, and we can apply
1
the Green's theorem, we have / s pSf(P)AP = / (EI + GYHf(P)dP = 0.
N : N

For the invertibility on L}(852), again by the compactness of the operator G, it
is enough to prove that G' + %I is injective. As in the previous theorem, if we choose

f € LP(3N) such that f = —2G*'f, and /a f(Q)dQ =0, then f € L1(90), V1<
Q
g < 0o.
Now, integrating by parts we get,

[vssoopax < a7 [ 6+ 3DAQ)SH@Q4Q =0,
Q aQ
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Hence Sf(X) is constant in 2. By other hand. by the hypothesis over f we have
Joa! =31+~ G f(Q)Q = ~ [5 f(Q)dQ = 0. then

[ 9sixorax < a7 [ (6 - InfQiQ =0
Q0 a0 2

By definition Sf(P) = 0 on 9Q'. then we conciude that Sf = 0 on €. and then
f(P) = 0on 09 (as we have seen in Theorem ). so G + %I 1S Injective on Lg(i)ﬂ). O

5.2 Dirichlet and Neumann problems

Once we have proved the previous theorems. the proof of the existence and unique-
ness of the solutions to the Dirichlet and Neumann problems with boundary values
in LP(9Q) follow in the same way that the proof by Fabes. Jodeit and Riviere in 4"
when L = A. Then we only mention the statements and how the solutions may be
represented by potentials of LP(95?) functions.

Theorem 5.3 Suppose Q 15 a C! domain and R™ \ @ 1s connected. Given f <
LP(IN)). 1 < p < oo, there exists a unique function u(X) defined in Q such that
Lu =0. and

e Ny(u) (defined in (3.20)) belongs to LP(00). and ||[Ng(u)|lp < c||filp. wrth «
independent of f, moreover, a.e on OQ limy _.p xcrpyu(X) = f(P)

e u(X) s the double layer potential of (G — %I)‘lf(P) over 95}, defined by mean
of the Green function defined before, t.e

uX) = [ (AQIVeG'(X.Q1Ng) (G - 311 (Q1dQ

Theorem 5.4 Suppose §) is a bounded, connected. C' doman. and R™ \ Q s con-
nected. Gwen g € LP(0Q)), 1 < p < oo, with [, 9(Q)dQ = 0. there exsts a
function u(X) defined for X € Q such that Lu = 0. and

e The nontangential mazimal function (defined by (3.20) of Vu belongs to LP(9N2).
and we have ||No(IVul)|l, < cllgll, with ¢ independent of g. Moreover

im  (A(P)Vu(X).Np) = g(P)
X —P,X<T(P)
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o The function u(X) 1s uniquely determined up to a constant and can be taken
as the single layer potential of (G + %I)_lg(Q) over I, i.e.

uX)= [ G(X.Q)(C' + :1)'g(Q)dQ.
a9 2

5.3 Regularity theorems

Definition 5.1 f € LY(9Q), 1 < p < oo of f € LP(3R), and f(z,o(r)) has distr-
butional gradient in LP(R"™!) (where ¢(z) 15 given by Definition 3.1). It 15 easy to
check that of F' 15 any extension to R™ of f, then V F(z.o(x)) 1s well defined and
belongs to LP(ON). We call this Vif. Then

171200y = Ufllp + IV2S1lp

Theorem 5.5 . Let Sf(P) be the trace single layer potential over a Lipschitz do-
mawmn Q. then Vp : 1 < p < oc § : LP(8Q) — LY(8N) is a bounded operator
Furthermore. if Q 15 a C' domain. then S has bounded nverse on L2(9Q).

Proof. By Theorem 4.2 (really from the proof of this Theorem) we also get the
existence and the continuity of the nontangential limits of the gradient of S. by
means of Theorem 3.3. :

As in Theorems 5.1 and 5.2 we see that Sf(P) = 0 a.e. on 99 implies f =0 a.e.
on 9. so that S is one to one.

Since 3 + G' : LP(8Q) — L{(0%) and is invertible on the latter. there exists a
unique function fy, in the kernel of this operator such that [;, fo(Q)dQ = 1. now
S fo 1s constant on 2. and the constant is not equal to zero since S is one to one.

In order to prove that S is onto we take f € L?(9f) and we consider u such
that Lu = 0 in Q and u = f on 09, then dnau(P) belongs to L%(99Q) (bv Rellich
identity. see for instance J. Necas [9]).

Now. by Theorem 4.2

1
OnaS(51 + G 'onau(P) = Onau(P).
then S(%I+G‘)_16nAu(X) = u(X)+c, by Theorem 5.4, but we have shown that the

constants are in the rank of S, then we have f(P) = S((%I + GH'Onau + f)(P).
for almost every P € Q. Then S : L?(89) — L?(90) has bounded inverse
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Theorem 5.6 . When Q 15 a C! doman and 1 < p < oo. %1 -G : LY(81) —
LY(99Q) 1s an wnvertible operator.

p 1
Proof. Given g € L{(09), we take v(X) = 5(51 -~ GY) 'S 14(X). By Theorem
4.2. for almost every P € 9

I A(P)Vu(X),Np) = S~ 1g(P).
Xﬁnggﬂpﬁ (P)Vu(X).Np) = S "g(P)

obviously v is a solution for Lv = 0 in 2, and v = 0 on 9. then we can extend this
function as 0 outside ', and taking X € Q' \  we have

v(X) AY)VyG(X.Y)Vyo(Y)dY

Ql

- / A(Y)VyG'(X,Y)Vyv(Y)dY+/A(Y)VyG'(X,Y')V)-v(_Y)dY
Q. Q

I

/ anav(Q)C'(X,Q)dQ + [ G'(X.Y)Lv(Y)dY
Q) Q

Qn

+

/ LyG'(X.Y o(Y)dY + / IaG'(X.Q)o(Q)dQ
Q anN

-S(S71g)(X) + Gf(X)

Il

where f(P) are the boundary values of v. Taking nontangential limit by outer cones
to 2. we obtain for almost every P € 92

§(P) = ~g(P) + (31 + G)u(P).

then (G — %I)f(P) = g(P), and the operator 1s onto L#(8). Moreover. every
f € L3(89) can be written as S(G' — %1)-15-19. for any g € L(9Q), following the
previous proof we see (G — %I)f(P) = g(P), then

t_locr _ o1 .
S(G'-3DS =G - 3L (5.3

and we have proved not only the continuity but also the invertibility from L}(99)
into L3(99Q).

In order to prove this result for all 1 < p < oo, we follow the same idea as
in Theorem 3.1. but taking into account that given P € 9Q,Gf(X) = G(f(X) —
f(P)) ~cf(P) and that using a local representation in formula (2.5). we get also
the following estimate for the function ux(Y):

18x,0v,ux(Y)| < CoaR'™™, when R < |X - Y| <2R. (5 4)
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Now. by means of the ideas developped in section 3, the proof follows in the same
way as for the Laplacian operator [4]. O

Corollary 5.1 Let Sf(P) be the trace single layer potential over a C' domain Q.
thenvp 1 <p<ooS.LPON) — LY(ON) is an invertible operator

Proof. Following the proof of Theorem 5.5, we only have to see that given f <
L7{99). if we we consider u such that Lu = 0 in Q and u = f on 99, then dnu(P)
belongs to LP(952).Now. by Theroem 5.6, this solution is given by u(X) = G((G -
1y-1

5)7 (X)) O

Corollary 5.2 . Gwen f € LY(89), 1 < p < oo, for almost every P € 0N there
exists (0n4(p)G)f(P), 18 a continuous operator from LY(0R) to LP(8N), and we have

lim (A(P)VGf(X).Np) = (G' + 11)(Gt %I)S_lf(P\
X —~P.Xel{P) 2 2

Proof. Define u(X) = Gf(X), then by 5.3limx ,p xecr(pyu(X) = (G - %I)f(P) =
S(G* - %I )S~! f(P). by uniqueness of the Dirichlet problem, we have

Gf(X) = S(G* - %1)5-1 F(X). so

| 1 .
i : T AP)VSIG! - SN f(X). N
L Am APIVGF(X), Np) x->P.lxn‘lsr(P)< WVSIG! - Z1)S™FX).Np )

= (G'+ %1)(@“ - %I)S"f(P).

And obviously from this we conclude existence and continuity ©

6 The Calderdon Projector

As we have seen 1 the Preliminaries, the construction and the properties of the
Calderén Projector follow from the analysis of the potentials, then now we are in con-
ditions to describe this Projector when the elliptic operator is L = —div(A(Y )Vy).
defined in a bounded, connected and C! domain €, and the n x n (n > 3) matrix
A is uniformly elliptic with Lipschitz coefficients. We take as fundamental solu-
tion G'(X.Y), the Green function on ', with ' C Q0. Recall that the Calderén
Projector P = (P; ;)i j=1,2, is given by
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PLif(P) = —  lm  Gf(X)

Piaf(P) = | lim  Sf(X)

Py, f(P) = —X_)I}’l)(ﬂémp)am(mgf(x)

P P) = i (
22f(P) X__Pl‘lxrréF(P)anA(P)Sf(X)
where f 1s defined on 99, with Q@ a C'! domain such that @ CC . And S and ¢.

are the single and double layer potentials respectively, defined by mean of the Green
function G'(X.Y )(section 5).

Theorem 6.1 Let Q2 be a connected and C' domain. The operator P defined before
has the following properties:

1 P L2(9Q) x LP(8Q) — LP(8) x LP(AN). with 1 < p < 0o

( 31-G S
2.P=

\ (¢t +1nlr-6Hs' Gt+lr

3.0ImP = U = {(ulzq. Onaulsg) : Lu = 0 in Q, ujg, € LY(OQ). naulyg <
L§(09)}

4. P2=P

Proof. We summarize here all the statements proved in the previous sections. e.g..
Py f(P) = (%I — G)f(P) and is a Calder6n-Zygmund operator by Theorem 3.1.
and is a bounded and invertible operator in L} (92) by Theorem 5.6.
Pi2f(P) = Sf(P) :LP(8Q) — L7 (89), is a bounded and invertible operator by
Theorem 5.5. :
Py, f(P) = (Gt + 3I) (31 — G*)S~! f(P) and is a bounded operator from L}(89) to
LP(99Q) by Corollary 5.2.
P,,f(P) = (G' + %I)f(P) and is a Calderén-Zygmund operator by Theorem 4.2.
This operator is invertible on LL(9Q) by Theorem 5.2.

Obviously. all these equalities are a.e. P € 0§2. And we have described all
the properties about the operators involved in P, particularly we have proved the
statements 1 and 2 of the Theorem.
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We take now (f.g) € LP(9) x LP(8€), 1 < p < oc. then

ol 1) ( (31 = G)f(P) + Sg(P) \
g

) =

If we put v(X) = —-Gf(X)+ Sg(X), obviously Lv = 0. and v has boundary values

m——

\ (G'+31)(3 — G")S~'f(P) + (G' + }1)g(P) )

given by P( ‘g ) then ImP C U = {(ulyq, Onaulsg) : Lu = 0 in Q. ujy, €
LY(0Q). Onaujzg € LE(0N)}.

Let now see that given (f.g) € U, we get P ( j; ) = ( g ) and it implies that

U Z ImP. and that P2 = P. By Theorems 5.3 and 5.4. for almost every P € 99
we have

f(P) = S(G" + 31) ' g(P) (6.1)
then
(31-GIf(P)+8g(P) = ~S(G'~ NS f(P) + S(G' + 1157 f(P)
= SIGT-6h+ (@ 4 DS P (6.2)
= f(P)

bv (5.3) and (6.1). and

(G + %1)(%1 - GYHS71f(P)+ (G + %I)g(P) =9(P)

by (5.3). (6.1) and (6.2). O

7 Appendix 1.

In this section we state the proof of Theorem 3.3.

Definition 7.1

Let be Tf(z) = [ k(z,y)f(y)dy. we say that the kernel k(z,y) satisfies “standard
estimates” if it 1s a continuous function in R" x R" \ {(z.y) : x = y}. such that
there exist constants C. andd. with

k(z,y)| < Clz —yI™"
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|k(z.y) — k(z'. y)| + |k(y.z) = k(y.2')| < Clz — 2'|%|z — y|" "+

if iz -2’ < %Im —yl. If 6 = 1. this second condition 1s equivalent to

|Vek(z,y)| + [Vyk(z,y)| < Clz —y|~17"

Definition 7.2
Let be T : D(IR") — D'(R") a hnear and continuous operator. we say that T 1s a
Calderon-Zygmund operator if,

e there erists a kernel k(z,y) wich satisfies the “standard estimates”.

o < Tf.g >= [[kiz.y)f(y)g(z)dzdy. with f and g two C>® functions wrth
compact and disjoint support.

o T 1s a continuous operator from L? to L?.

Theorem 7.1 Let ¢ and n two Lipschitz functions i R"" !, and B(X) a nxn
matriz. uniformly elliptic with Lipschitz coefficrents, t.e there exist u and \. such
that €12 < (B(X)E,€) < A€)2, unsformly in X € R", and |Bi;(X) — B, j(Y): <
B'|X-Y,vX.YeR" Vi,j=1....n. Let

3 n(z) —n(y) ,
KAB@ = [ mrammite sy str s W

Then K*(B)f(z) = sup,.q K B)f(z)| s a bounded operator in L%2(IR""1).
Moreover. there exist lim, o K (B)f(z) = K(B)f(z) a.e. z € R* ! and 1 L?.
then K(B) 1s a Calderdn- Zygmund operator in R" 1.

Proof. It is enough to consider the case when n(z) = ;. because for any Lipschitz
function n(z), the proof follows as in the classic case (when B = I), {3].

Let now be

Ty — Yy
k(z,y) = B 7 71
(*9) = Bz o)z ~ v, 0(2) — 4w i

Taking account that the matrix B has Lipschitz coeflicients. this kernel satisfies the
“standard estimates”. Now. as in the Method of Rotations. we write

1
K.(B)f(x) = 5/ . k(z.z +y)f(z +y) + klz.z — y)f(z — y)dy.
y_(
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now. by passing to polar coordinates. with £ = {y : |y| = 1},

1
K.(B)f(zx) = —2-/2/( )k(:c,a:+uy)f(z+uy)+k(1:,:c—uy)f(r—uy)u"_zdudcry

1
_ §/SKE,y(B)f(1:)day

Each r € IR" ! can be written uniquely as z = w + ty, where t € R .and w € Y
(Y denote the hyperplane orthogonal to y wich passes through the origin), with this
notation, we have

K.,(B)f(z) = Ke'y(B)f(w—kty):/ ka4 B9, & + wyllE — 872 e ~ wyidi

lu—t|>e

(7.2)

= /lu—u; Ny y(t, u) fu,y(u)du

where

o(w + ty) — o(w + uy) | "
t—u

Nugltou) = =1 |B(w + ty, ¢(w + ty))(y.
u

Y; (cb(w+ty)—¢(w+uy)>
= Fw.t,y
t—u t—u

and Fy4(0) = [B(w + ty, o(w + ty))(y,8)[7" is a C™ function in 6. furthermore.
we are only interested in 6 € [—||Vé|lco. || VO|loo), then we assume that given ¢ >
0. suppF C I = [—€ — ||[Vd|ico. € + [|VP|loo), s0 F € L%(I,dB)(obviously bv mean of
convolution with an appropiate mollifier). Then.

Fugy() = cx(w, t, y)e Fvers?
kEZ

. k¢ : .
with cx(w.t,y) = E:-—ﬂ%ﬂl—m J Fury(0)e VAT "dl.  Since Fy1y(8) 1s a smooth
function. the Fourier coefficients c; are rapidily decreasing, then we have

llex(w. t, )i oo an [kIM < C, ¥ k and M € Z. (7.4)
where C' = C(|Vdllo. M, A, u.n). We will later need this estimate with M = 2.\



Let now define

1 me)=n *
K(tu) = ——e 5= (7.5)

where 7(t) : IR — IR is a Lipschitz function, by Lemma 1 in [3], K(¢,u) defines a
continuous operator in L2(IR), and the norm of this operator is bounded by (1 +
0= )°. with C an absolute constant. Now, (7.3) can be written as

Nyy(tu) = y > cx(w t,y)Kiwy(t,u), (7.6)
kel

where Ky o, (t,u) is a kernel as (7.5), related to the function

mk Vool k|7

Nk wylt) = —————@(w + ty). satisfyin rwoBllo € —2220 < wlk|.

So. there exists the operator K ,,, with kernel Ki wy(t,u), and it is bounded
in L? as follow:

HKIc.w,yfw,y”L2 < C(l + !H)gnfw.y“Lz(dt) (7.7)

It 1s obviously a Calderén-Zygmund operator, then we can apply the following re-
sult:

Theorem 7.2 (Cotlar Lemma) Let T be a Calderon Zygmund operator. Then.
for all function f € L>(IR™) and ¥V z € R™, we have the following inequality

T*f(z) < C(M(Tf(z)) + M(f(z))

whith C depending of n and of the constants appearing in the “standard estimates”
of the kernel. M 1s the mazimal Hardy-Littlewood operator, and T* f = sup,q |Tef|.

We can find the proof of this result, for example in [8] (p.241) .

So. we have

IKiwyfllz < CUMKiwyfllz +[1Mf2)

< ClKrwyfllz + 11 £112) (7.8)

< CO+kD°NSll2
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Now. by (7.2) and (7.6), we have

o
HSu}gin.y(B)fw.yHm(dt) < > llex(w, t, y)y;ll Loo (@) 1Ky oo,y ()] L2 ar)
&> k=—-o00
[o ]
< C ) llew (w, ¢, )l Lo ar (1 + 1ED® | fwgll 2 (a
k=—00
w .
< CllfwyllL(at Z k|~ ™
k=00
<

Cll fwyllL2(ar)

using (7.4). and the estimates in (7.8).

So. by Minkowsky inequality and Fubini Theorem, we have

1K B)fl = ([ sup[K.(B)f(z)dn)}
= G L. supl [ Keo(B)ftw + t)dy e’
< 5 ISR IKey (B + 1) oty
< o[ [ 1w t)Patdw)idy
C < Clife

with C a constant, but not always the same.

Now. we recall that k(z,y) satisfies the "standard estimates”. and we have just
seen that the operators K (B) are uniformly bounded in ¢, so, following the classics
arguments. there exists K(B)f(x) = vpK.(B)f(z) ¥V f € L*(R*!). And K 15 a
Calderon - Zygmund operator. O

Remark. I was awarded by the referee about the preprint [7] of Marius Mitrea
and Michael Taylor where a similar problem is analyzed by a different way and
under differents assumptions, namely C! coefficients for the elliptic operator and
considering a Lipschitz boundary domain.
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