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1 Introduction.This paper presents new iterative projection methods for computing a solu­tion j·’ of a non-symmetric compatible linear system Atx = b, A e ,>Rn*m.Among the most frequently used iterative methods for solving large, sparse, non-symmetric linear systems Atx = ⅛, d ∈ Fxn are those of the conjugate gradients type, like GMRES and Bi-CGSTAB ([14], [16]). An excellent implementation of these algorithms is available in SPARSKIT2.Bi-CGSTAB is more convenient because its storage requirements do not grow with the number of iterations. These algorithms when convergent are extremely fast and efficient, but unfortunately numerical breakdowns occur.The row projection methods avoid those difficulties [3] although in their classical formulations ([6], [13])convergence is usually very slow.Block versions of these methods consider a partition of A = [Ai, A2,..., Aq and the corresponding partition of b. For each iterate xk, the projection onto the orthogonal subspace to the one spanned by the rows of Ait is computed by means of Al(AtiAi)~1 Atixk, for z = 1,..., ¢. This approach is particularly useful for parallel implementation when the system is appropiately decompo­sed [3].The PAM (Projected Aggregate Methods) sort of algorithms were intro­duced by Householder and Bauer in [12]. The idea is to generate the new point xk+l as the projection of xk onto an “aggregate” hyperplane usually arising from heuristic linear combinations of the hyperplanes defined by the blocks. Garcia-Palomares gave conditions for using these methods in con­junction with parallel processing [9]. He also extended them for solving the important convex feasibility problem in [8] and [10].Our first proposal to improve the speed of convergence is to use, instead of heuristic combinations, optimal aggregate hyperplanesin the sense that the distance between τ,c+1 and x* is minimized. The origin of this idea arose from the merit function presented in [15]. This optimization demands the solution of a small quadratic subproblem whose dimension is at most the number of blocks.The second idea is to accelerate even more the optimal algorithm by projecting the directions given by the blocks onto the aggregate hyperplane defined in the last iteration, and optimally combining them by means of the approach used in the first proposal.On the other hand, the performance of the projection methods is highly 
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dependent on the way in which the rows of the matrix are splitted into blocks. Bramley and Sameh [3] gave conditions that a block splitting algo­rithm should satisfy. We also present in this paper a new block splitting algorithm which fulfills those conditions, based upon sequential estimations of condition numbers. A very useful byproduct of the new splitting algo­rithm is that it provides (A∕A2)~1 for each block, necessary for computing projections.This paper is organized as follows: In Section 2 the new block projection algorithms are presented, together with the related convergence theory. In Section 3 the block splitting algorithm is given, as well as some of its theo­retical properties. In Section 4 some numerical results comparing the perfor­mance of the new algorithms with the preconditioned methods contained in SPARSKIT2 and also with two from the SLATEC Library are presented.
2 The Algorithms: Basic Properties and 

Convergence Results.Given a system Atx = b, A ∈ ∙Rnxm, m ≤ n, we will assume that it is compatible, and the matrix is not nil.Let x* ∈ 3?” be a solution of Atx = b.From hereafter ∣∣x∣∣ will denote the Euclidean norm of x ∈ jR”.Given Λ∕ ∈ ∙Rnxi, I < n, Pm will denote the orthogonal projector onto R(Λ∕), subspace spanned by the columns of M, and Pm± the orthogonal projector onto the orthogonal subspace to R(M).The block version of the projection methods consider a partition of At into q row blocks as follows: A = [Ai, A2,..., Aρ], Ai ∈ 3⅞nxm,. with X^=1 rnl = in. and the corresponding partition of bt = (btl,bt2,..., btq), where 1 < q < rrι.This yields a partition of the set {1,..., m} = I↑ Ul2U..........U∕y, where Ijcontains indices rows of Atx = b belonging to Atjx = bj, for each j = 1......... q.We denote, for i = 1,..., q
Ll = {x(ΞWl : Atix = bi,bi ∈ 5Rm∙}We will assume that each block of the matrix has full rank, that is 

rank(Ai) — m1. This hypothesis will be satisfied by the block partition strategy presented in Section 3.For every i = 1,... ,q the orthogonal projection onto Ll is the mapping 
Pτ : 3?” → Ll given by 3



Pl(x) = argmιn{∖∖x- y∖∖ : y ∈ Ll}In the Parallel Block Iterative Algorithms described in [4], given a current iterate xk, block iterations are first performed using xk, on all blocks simulta­neously, defining for i = 1,..., q,
yk = Bl(xk, {ωj}j∈λ)The next iterate xk+1 is generated from the intermediate ones yk by^+1 = S({½)where S and Bl are algorithmic operators, and Bl generates yk from the information contained in all rows of Atx = b whose indices belong to Il.The version of the block-iterative projections method described by Censor and Zenios ( Algorithm 5.6.1 [5]), to find x* ∈ ∩^1Li, has the form

Initialization: τ0 ∈ J?" arbitrary.
Iterative Step:τ⅛+ι = χk + λk w⅛(p.(x*) _ χkyfc = A; ÷ 1where λ⅛ are relaxation parameters and wk = (w,fc)’=1 are varying weight vectors such that wk > 0 and wk = ∖.In particular, choosing any sequence of weight vectors {w*} with wk > 0. for all i, k, leads to a fully simultaneous Cimmino type algorithm [1]. Aharoni and Censor [1] have shown that if e ≤ λk < 2 — e, for all k > 0, for an arbitrary e > 0, and if ∑⅛l0 wk = +∞, for i = 1,... ,q, then the sequence {rrfc} converges to a point x* ∈ ∩LAi .The basic idea in the parallel projection methods by blocks is given a point xk, a closer point yk to Ll is computed, and the next iterate is defined by means of a combination of the generated directions dk = yk — xk.In the special case where yk is the projection onto Lt, for all i = 1,..., q. we can get the following elementary results, which are here included because they are useful for understanding and proving the main theorems.

Lemma 2.1 Given xk, xk ≠ x*. If yk = Pl(xk), dk = yk — xk and 
rank(At) — mt for i = 1,... ,q, then

(i) dk -- Aivk, with vk ∈ 3Rm,, being being 
Vk = (AtA)^1(⅛ - A⅛fc) = (AA)-1A(** - **) M l∣d∙H2 = (dkY(x* -xk)

(Hi) If dk = wkdk then (dk)t(x* - xk) = ∑‰1 w*∣∣d1fc∣∣2.4



Proof. Considering yk = argmin{∖∖y - τfc∣∣2 y ∈ Zl}, according to the Kuhn-Tucker optimality condition [7] on the equivalent problem mzn{∣∣j∕ - ~rfc∣∣2 : Ati(y - xk) = bi - Atixk},there exists a vector vk ∈ 3Rrn, such that dkz — yk — xk = Aiυk satisfying .41t.4lv* = bl-Atzxk. Therefore υk = (AtiAi)^l(bi - Atixk), and dk = 
Ai(AttAi)~l(bi — Atzxk).Since b, = Atix*, it follows that dk = .4,( .4(.4, )~1.4ii(x* — xk).To see (ii) we consider the subsystem Atl(y - xk) — bl — Atzxk. whose least norm solution is dk = yk - xk — Aivk. Left multiplying by υk we obtain 
(vk)tAtiAiυk = (υk)t(bi-AtixkY Therefore. ∣∣⅛∣∣2 - (υk)t(bi-Atixk). Moreover considering that x* satisfies Atzx* = bl , we obtainll⅛l∣2 = (υk)tAti(x* - xk) = (dk)t(x* - xk).To see (iii), since dk = ∑q-l wkdk1 it follows from (ii).□In the PAM methods the iterative step is defined by means of the pro­jection of the current iterate xk onto a new hyperplane added to the system arising from a linear combination of the original hyperplanes [9].U. M. Garcia-Palomares in [10] described variations of PAMs for solving structured convex systems, and introduced novel methods (PPAMs) that allow a high degree of parallelism for nonstructured convex systems. The large system is splitted into smaller subsystems, not necessarily disjoint.The parallel algorithms presented in [10], can be described for the particu­lar case of systems of linear equations using our notation and hypotheses, in the following way.Given an iterate xk, compute for each block a weighted direction wkλkdk aimed at finding a closer point yk to Li, considering dk = Alvtfc, under the general scheme for PAMs for solving Atix = bi, and λk is defined as

λk = argmιτiχ∖∖xk ÷ λdk — ∙r*∣∣2To ensure convergence to a solution of the system define the new iterate 
xk+l, using a combination of directions dk, dk = ∑q-iwkλkdk, and compute xfc+1 = χk + λkdk, where

λk — argmιnχ∖∖xk ÷ λdk — x*∣∣2 (2.1)The parallel version for linear systems considering yk = Pl(xk) for each block i = 1,... ,g, and a certain choice of {wk}qz-l, η < wk < 2 — ηt η > 0. is 5



described by the iterative step.
Iterative Step : Given xk

Do for i = 1,..., ρ in parallel
Compute yk = Pi(xk)
Define dki — yk — xk.
Define wk, η < wk < 2 - η.
End do.
Define dk = ∑q-1 wkdk ,xfc+1 = χk + λkdk, λfc = argmi∏χ∖∖xk + λdk - τ*∣∣2.

Remark 1. As a consequence that each dk = Pl(xk) - xk, it turns out that λk is 1. Furthermore, from (i) of Lemma 2.1 dk = Aivk, vk ∈ 3⅞rn,. for all i = 1,..., q, it follows that a vector vk ∈ 3⅞m exists such that dk = Avk. This property is typical of the PAM methods.
Lemma 2.2 If dk = ∑⅛=ι wkdk, where dk = Pi(xk) — xk for all i = 1,. . ..q. 
and A⅛ = argmi∏χ∖∖xk + λdk — x*∣∣2, then⅛ = (d4)1(1∙ - 1k)∕∣∣dt∣∣2 = ⅛ wf ∣∣<∣∣2)∕∣∣<∕k∣∣2 (2.2)

ι=l

If xk+l = xk + λ∣cdk, then the sequence {xfc} generated by this procedure 
satisfies ∣∣xfc+1 — x*∣∣2 = ∣∣τ* — x*∣∣2 — αfc , where

= λll∣di∣∣2 = (∑X∣I⅛12)W∣I2. (2.3)
i=l

Proof. Considering the convex quadratic function<∕>(λ) = ∣∣xfc + λdk — x* ∣∣2 = ∣∣τ* — x* ∣∣2 + 2λ(dk)t(xk — x*) + A2∣∣dfc∣∣2 from its derivative equal to zero we get At = (dfc)i(x* — x*)∕∣∣dfc∣∣2.Since dk = ∑qi=lwkdk, and (dk)t(x* — xk) = ∣∣d*∣∣2 by Lemma 2.1 (ii). (2.2) follows.Considering ∣∣2λ+1 — x*∣∣2 = ∣∣xfc - rr*∣∣2 — 2λk(dk)t(x* - xk) + λ'⅛∣∣dfc∣∣2. and the expression for λk given by (2.2), we get (2.3).□The convergence of the sequence {zfc} generated by this procedure is assured by Lemma 2.1 in [10].
6



The iterate xk+l is the projection of xk onto the aggregate hyperplane
Hk = {zeWl -. (dk)t(x - = (dk)t(x* - √)} (2.4)where (dfc)i(τ*-τfc) = £’=1 wk∣∣d*∣∣2, which is a combination of the hyperpla­nes Hk = {x ∈ ⅛n : (dkY(x - xk') = (dk)t(x* - xk}} for i = 1,...,q, considering their equivalent expression

Hk = {z ∈ 3⅞n : (υlfc)iΛ∙(τ - xk) = (vk)tAti(x* — τfc)},obtained by combining the equalities Att(x - xk) = bi — Atlxk, and using 
bl — Atlx*.Our first proposal is to choose {w*}‰1 in such a way that an optimal combination of the directions {dk },=1 is obtained in the sense that minωeκ<1∣∣x* ÷ ∑Xι wιdk - x*∣∣.This idea leads to the iterative step, xk+l = xk + ∑‰1 wkdk, where 
n'k ∈ ⅛Rw is the solution of the convex quadratic problem

minu^ ∣∣τfc - τ*∣∣2 + t2ut(DkY{xk - x,) + utfDk)tDku, (2.5) where Dk = [dj,..., dk∖.

Lemma 2.3 The matrix Dk of directions has rank qk, 0 < qk < q, if xk is 
diff erent from x*.

Proof. If xk is different from x* there exists at least yk ψ xk, such that 
dk = .4it>1k, with υk ∈ 5Rm,, vk ≠ 0 by (i) of Lemma 2.1 , then we have that 
rank(Dk) — qk with 0 < qk ≤ Q.□

Remark 2 . Taking into account our general hypotheses, a direction dk may exist such that is a linear combination of the other directions. Hence, the matrix Dk of problem (2.5) is defined using only linearly independent directions which means that rank(Dk) = qk with qk < q. Therefore, the optimal solution of problem (2.5), by the optimality criteria, satisfies 
wk = ((DkyDkY~l∖Dk)t(x* — xk). We can get the explicit expression of wk. considering (dk)t(x* — xk) = ∣∣⅛∣∣2 by (ii) of Lemma 2.1. Thus, the optimal solution of (2.5) is wk = ((Z∕)iDλ)i^lj(∣∣c⅛ ∣∣2, ∣∣⅛∣2,..., ∣∣⅛∣∣2)i.
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Algorithm 1 (ALG1).
Step 0. Split the matrix into blocks by rows using the method described in Section 3, obtaining A = [Ai, A2,..., Aρ], and the corresponding partition of b, = (btl .bt2,..., btg). Compute for each block ι = 1,... ,q , with mt rows, the matrix (A*Ai)^1 = (LtmtDmiLmι)~1.

Main step. Given the starting point x0 ∈ 3⅞n, 0 ≤ f < 1. k=0
While ( ∣∣Arfc - 6∣∣ > e) doFor each i = 1,... ,q ,

dkl = Ai(A∙At)-1(-r*), where rk = Atlxk - bl Define xk+1 = xk + dk, where dk = Dkwku∙t = ((Dt)'D*)(->)(∣∣<lf∣∣2, ∣∣⅛∣2,..., ∣∣⅛]j≈)∙ D* = (d>,⅛...,⅛] .fc = ⅛ + 1
End while;

End procedure.In order to derive some theoretical results we need the following:
Lemma 2.4 In each iteration k the optimal direction dk — Dkwk of the 
mam step of Algorithm 1, satisfies

i) (Dk)tDkwk =- (Dkfi(x* — xk), where(Pfc)1(x'-xfc) = (∣∣d,∣∣2,∣∣d∣∣∣2,...,∣∣djt∣∣2)l.
ii) ∣∣dfc∣∣2 = (dk)t(x* - xk) = ∑Ji1 w*r∣∣cZ*∣∣2
Hi) (dk)tdk — ∣∣d*∣∣2, for all i = 1,... ,q, and∣∣dfc∣∣ ≥ ∣∣⅛∣∣, for all ι = 1,..., q
iυ) The new iterate xfc+1, is such that (dk)t(xk+i — τ*) = 0.

Proof. From the definition of dk = Dkwk, by the optimality criteria of the quadratic problem (2.5) which defines wk, and considering (dk)t(x*-xk) = ∣∣d*∣∣2 by (ii) of Lemma 2.1, we get (i).(ii) arises from left multiplying (i) by wk ∈ 3⅛9*, obtaining∣∣dfe∣∣2 = (wfc)i(Dfc)t(x* - xk) = (dfc)t(x* - τfc).= ∑⅛ι wlfe∣∣d*∣∣2.To see (iii), from (i) we get (dk)tdk = ∣∣d*∣∣2, for i = 1,.. .,q∣i. Thus, we obtain ∣∣dfc∣∣ ≥ ∣∣⅛∣∣, for all i = 1,.. .,qk.If there exists &jth block such that its dk = 0, it follows that ∣∣dfc∣∣ ≥ ∣∣di∙∣∣. If there exists a direction dk ≠ 0 such that it is a combination of columns of Dk, then dk = DkUj, where Uj ∈ J?9*. Since dk satisfies (Dk)tdk = 
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(Dkfi(x* — τfc), multiplying by uj ∈ 3⅞4fc we get (dk)tdk = (djfc)1(T — xk). By (ii) of Lemma 2.1, (dk)tdk = ∣∣d*∣∣2, then follows ∣∣d*∣∣ ≥ ∣∣d*∣∣. It follows(iii). (iv) is a consequence of the definition of rr*+1 = χk + dk. and (ii) which allows us to write ∣∣dfc∣∣2 = (dfc)t(x* — xk), then
(dk)t(x* - xfc+1) = (dk)t(x' - xk) - ∣∣d*∣∣2 = 0.□

Lemma 2.5 The sequence {zfc} generated by Algorithm 1 satisfies ∣∣xfc+1 — x*∣∣2 = ∣∣xfc — x*∣∣2 — ak, where

Qk⅛ = Σ ∞M∣2 = ll<ħ∣2 (2.6)
i=l

Proof. Taking into account that xk+1 = xk + dk, where the optimal combination dk satisfies (ii) in Lemma 2.4, and considering the expression given in (2.3) for the PAM methods, the result follows.□
Remark 3. From the optimality of the linear combination of {d*},=1 used in Algorithm 1, it is obvious that a*k > c⅛ where ak is the one defined in (2.3).

2.1 An accelerated block projection algorithm.Due to the fact that xk is obtained as the projection of xk~x onto the hyper­plane Hk~x = {x ∈ 3ιn : (dfc-1)i(x — x*) = 0}, and according to (2.4), it turns out that the optimal seeked increment x* — xk belongs to it.This leads to consider the possibility of performing from xk the next iterative step on such hyperplane, which was optimally chosen in the sense described previously. One possibility is to project the optimal direction 
dk, computed by the main step of Algorithm 1, onto the hyperplane {rr ∈ 3?" : (dfe^^1)t(x — xk) = 0}. Such a direction, denoted by dk, is d* = wkPv±(dk), where v = xk - xk~l.The new iterate ⅛fc+1 could be defined as the point xk + λdk corresponding to the solution of the problemmi∏λ∣∣τ* + Adλ — τ*∣∣2 (2.7)In this case we obtain 9



Lemma 2.6 If xk+1 = xk + λdk, where dk = Pv±(dk), υ = xk - χk~1, and λ 
is defined by (2.7), then ∣∣⅛*+1 - x*∣∣2 = ∣∣τfc - χ* ∣∣2 - ak, where⅛ = (∣∣d*∣∣2∕∣∣d*∣∣2)<⅛, (2.8)
with ak given in (2.6), is defined by the iterative step of Algorithm 1.

Proof. We consider the optimal A of problem (2.7),A = (dfc)t(x* — xfc)∕∣∣dfc∣∣2. On the other hand, from the definition of 
dk = Pυ±(dk), and using the results (ii) and (iv) of Lemma 2.4, we get 
(dkY(x* - xk) - (dk)tPv±(x* - xk) = (dkY(x* - xk) = ∣∣<Λ∣∣2. Hence.A = ∣∣dfc∣∣2∕∣∣dfc∣∣2.To compute d⅛, we consider (dfc)t(z* - xk) — ∣∣dfc∣∣2, and the expression in (2.3) ∣∣±fc+1 - x*∣∣2 = ∣∣τfc - x*∣∣2 — A2∣∣dfc∣∣2, and considering A, it follows that ak = (∣∣d*∣∣2∕∣∣dλ∣∣2)∣∣dfc∣∣2. Then, from the definition of a*k in ( 2.6) we obtain (2.8).□The following results will be used for explaining the accelerated convergen­ce features of a procedure which at the kth iterate, k > 1, uses the direction 
dk = Fυ±(dfc), where dk is the optimal combination defined in the main step of Algorithm 1, and v is the previous step xk — xk~l, which satisfies the conditions:

(Cl) vt(x* -xk) =0.('<7^(⅛-1)⅛=∣∣⅛-1∣∣2,fori = l,...,g.In particular, note that the iterative step v = dk~1, defined in xk~i by Algorithm 1, satisfies both conditions due to (iii) and (iv) of Lemma 2.4.
Lemma 2.7 Given xk, k > 1, and xk~1 the previous iterate, let us consider 
the directions dk and dk~l, respectively computed at the two iterates, for each 
i = 1..........q, then

(i) dk = dk~i — Pa,(v), being v — xk — xk~l. 
Furthermore, if v = xk — xk~x satisfies (C2), then

(ii) If dk ψ 0 and dk~l ≠ 0 then dk is orthogonal to dk~x. 
(Hi) If dk ≠ 0 then ∣∣d*∣∣2 = -(dk∖tv,

Moreover, if v = xk — xk~x satisfies (Cl), then 
(iv) If dk ≠ 0 then Pv±(dk) ≠ 0.

Proof. From the definition of dk, and using (i) from Lemma 2.1. 
dk — At(A∙A,)-1.4∙(x* - xk) = Aj(A*Ai)-1A-(x* - xk~l + xk~i — xk). Hence, since Ai(AtiAt)^^1A* = F%, is the projection matrix onto R(A1), (i). follows.10



To see (ii), multiplying the current (i) by o!lfc 1 ≠ 0 and considering the properties of υ, we get (d*)id*^1 = 0.(iii) follows by multiplying (i) by dtfc and using (ii).To see (iv), since (Cl) holds, and considering (ii) of Lemma 2.1, ∣∣⅛∣∣2 = (dlfc)t(z* - xkfi we obtain (⅛)tPυ±(x* - xk) = ∣∣d*∣∣2. Thus, Pυ±(dki} ≠ 0.□
Lemma 2.8 If at xk, k > 1, xk / x*, we consider the optimal direction 
dk = Dkwk defined by the main step of Algorithm 1, and the previous step 
v = xk — xk~i satisfying the conditions (Cl) and (C2), then

(I) ∣∣jfV(dfc)∣∣ > 0.
(ιι) ∣∣Pv±(dfc)ll < II4I∣.

Proof. Taking into account the hypotheses on the iterative step we have that vt(x* - xk) = 0. Hence Pυ±(x* - xk) = (ι, - xk). Pυ± being the projection operator onto the orthogonal subspace to R(v). From (ii) of Lemma 2.4. ∣∣dλ∣∣2 — (dk)t(x* — xk), then using the properties of Pυ±, we obtain ∣∣d*∣∣2 = (dfc)i Pυ±(x* - xk) = (Pυ±(dk'))t(x* - xk). Hence, using the Cauchy-Schwarz inequality we get, ∣∣dfc∣∣2 ≤ ∣∣Pu±(dfc)∣∣∣∣x* - xfc∣∣. Thus, since ∣∣x* — xfc∣∣ > 0 and ∣∣dfe∣∣ ≥ max{∣∣d*∣∣}-L1 by (iii) of Lemma 2.4.∣∣Pu±(dfc)∣∣ ≥ (∣∣dfc∣∣2∕∣∣τ* — τfc∣∣) > 0, and the result (i) follows.To derive (ii) let us consider the norm of the projection of dk onto the subspace spanned by the vector υ, ∣∣Pυ(dfc)∣∣ = ∣(dfc)tu∣∕∣∣υ∣∣.From (iii) of Lemma 2.7 ∣∣⅛∣∣2 = -(c^)iv, for z = 1,...,(/, and considering 
dk = ∑ι=ι Wtfcd'c, it follows that ∣(dfc)tu∣ = ΣjL1 wtλj∣d*∣∣2 = ∣∣dfc∣∣2. by (ii) of Lemma 2.4. Therefore, ∣∣Pυ(dfc)∣∣ > 0 and the result (ii) follows. □
Theorem 2.1 Ifxk+l = xk + λdk, is defined as in (2.7) at kth iterate, k ≥ 1, 
where dk = Pvi(dk), and v = xk — xk~1 satisfies (Cl) and (C2), then∣∣ifc+1 — τ*∣∣2 = ∣∣xfc — rr*∣∣2 — α⅛, with ak>a,k.

Proof. From Lemma 2.8 it follows that ∣∣dfe∣∣∕∣∣dfc∣∣ > 1. Hence, from the definition of d⅛ in (2.8). we get ak > a*k. □With the aim of arriving at the new accelerated procedure, we take into account Theorem 2.1, where the used direction belongs to the subspace de­fined by [Pvx(dι), Pυ±(dkfi ■ . . ,Pυr(dk)]. Then, it is natural to choose dk at 
xk, as the best combination of {Pυ±(d(c)}L1 such that the distance between 
χfc+ι = %k + dk a∏d χ* is minimized. This idea leads to define the iterative step, in the following way. 11



Given τfc, k > 1. xk ≠ x*, the next iterate xk+i = xk + Dkwk. where w⅛ ∈ sft<⅛ is the solution of the quadratic problem
τmnuewk ∣∣^fc + Dku - x* ∣∣2, (2.9)where v = xk - xk~l, Dk = [Pυr(dk), Pυ^(dk2f ..., Pυ^(dkk)], and qk is the number of linearly independent directions in {Pv-i-(dk)}ql=l.At x0, define τ1 = r0 + d0, where d0 is defined as in the main step of Algorithm 1.Now we will describe the iterative step which will be used for defining the Accelerated Block Algorithm (Algorithm 2).We shall use the notation Qo = In, Qk = Pv±, v — xk - xk~λ for k > 1. and qk = rank(Dk) for all k > 0.

Iterative Step : Given χk, Qk
Do for i = 1,..., q in parallel
Compute yk = Pfixk)
Define dk = yk — xk.
Define dki = Qk{dk).
End do.
Define τfc+1 = xk + dk, where dk = Dkwk

wk = argminu^k ∣∣xfc + Dku - x* ∣∣2,Dl = ⅛⅝..∙.¾∙
Set v = dk 
k = k + 1Now. it is necessary to prove the iterative step of Algorithm 2 is well defined and that the sequence generated satisfies the conditions (Cl) and 

(C2) needed for proving Theorem 2.1.
Lemma 2.9 Let xk, k > 0, xk ≠ x*, then the next iterate xk~C is well defined 
by Algorithm 2, and the step zfc+1 — xk satisfies the conditions (Cl) and (C2).

Proof. For k = 0, the result holds as a consequence of x0 ≠ x*, and that by the definition of x1, the results of Lemmas 2.3 and 2.4 are valid. 
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corresponding to the iterates defined by Algorithm 1. Hence, τ1 is well defined by ( 2.5), and xl — x0 satisfies the conditions (Cl) and (C2). as proved in (iii) and (iv) of Lemma 2.4.In order to prove the result for any k > 1, we will do it by induction assuming that it holds for k — 1.Since k > 1, and xk ≠ x*, and by the inductive hypothesis the previous step v = xk — xk~γ satisfies (Cl) and (C2), then (iv) of Lemma 2.7 holds for all dk ≠ 0, computed in xk. Thus, there exists at least a direction 
Pv±(dk) ≠ 0. as a consequence that xk ≠ τ*, then we have that rank(Dk) = 
qk. with 0 < qk < q. Hence, the problem (2.9) is well defined and so is 
τ⅛+ι _ χk + bkwk,where wk is the solution of problem (2.9).The new step xfc+1 — xk, by its definition is Dkwk, which, due to the optimality condition of problem (2.9 ), satisfies (Dkγbkwk = (Dk)t(x* -xk).Hence, dk = Dkwk, satisfies for all i = 1,... ,qk, (dk)tdk — (dkY(x* ~ χkY Since dk = Pυ±(dk), υ — xk-xk~i, and vt(x* — τfc) = 0 by condition (Cl) , is easy to see using the properties of the projector Pv± that (dk)tdk = (dk)tdk∙ and (d(c)t(rr* - xk) = (dkY(χ* — xk∖ Thus, for all i = 1,...,qk, (dk)tdk — 
(dkY(x* — xk) = ∣∣⅛∣∣2, using result (ii) of Lemma 2.1.In order to complete the proof we will see that the result is also valid for the remaining directions dk which do not belong to Dk.If there exists a direction dk such that it is a combination of columns of 
Dk. then dk = bkuj, where Uj ∈ Jfρfc. Since dk satisfies (DkY dk = 
(DkY(x* -xk), multiplying by ¾∈sR,t we get (dk)tdk = (dkY(x* -xk). By the properties of the projections, considering (dkY(x* — xk) — (dkjY(x* ~ χk)- then by (ii) of Lemma 2.1. (dk)tdk = ∣∣dj∣∣2. Hence, the new step j∙fc+1 - xk = 
Dkwk — dk. satisfies for all ι — I,...,ρ, (dk∖dk — ∣∣djj∣2, which is the condition (C2).The step τfc+1 — xk = Dkwk, satisfies by its definition

(bkγbkwk = (bkγ(x* -xk)Hence, (DkY(xk + Dkwk — x*) = 0, then left multiplying by wk, we obtain that (dkY(xk+l — x*) = 0. Therefore the new step also satisfies (Cl). □
Theorem 2.2 The sequence {zfc} generated by Algorithm 2, satisfies∣∣τfc+1 — x*∣∣2 = ∣∣τfc — x*∣∣2 - a*k, with 6Tk > oTk. (2-10)
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Proof. Since for all xfc, k > 1, the previous step xk — xk~l, satisfies the conditions (Cl) and (C2), the point defined by the problem (2.7), ifc+1 = 
xk + λPυ±(dfc), where υ = xk — xk~1, satisfies the result of Theorem 2.1.Since the new iterate xk+l = xk + Dkwk, defined by Algorithm 2. satisfies ∣∣τ⅛+1 _ ∙r*∣∣2 < ∣∣xλ÷1 — τ*∣∣2, by the optimality condition of the direction 
Dkwk computed by the solution of problem (2.9), we getI∣χfc+1 _ x*∣∣2 _ ∣∣χfc _ 2,.∣∣2 _ θ,*, wit∣1 ≥ a⅛ > ak. □Now we will describe the Accelerated Block Algorithm.

Algorithm 2 (ALG2).
Step 0. Split the matrix into blocks by rows using the method described in Section 3. A = [.41, A2,..., Aq], and the corresponding partition of bt = 

(b∖.......... blq), obtaining for each block i = 1,..., q, with ml rows, the matrix(-4,-4,)-1 = (⅛,‰,Lm,)-'
Main Step. Given the starting point r0 ∈ Kn. e > 0.k=0

While ( ∣∣ Axk - b∖∖ > e) doFor each i = 1,..., q,
dk = Ai(AtiAi)-1(-rk), where rk = Atixk - bi Define dk - Qk[dk').Set xk+1 = xk + dk, where dk^= DkwkWfe = ((WW~υ(∣μill2, ll^ll2, ∙ ∙ ∙ ∙ ll⅛ll2)' 

bk = [dk,dk2,...,dkk].Set υ = dk
k = k + 1

End while;
End procedure.

2.2 Convergence.For studying the convergence of our methods we use a theory developed by Gubin et al., [11].We shall use the notation P — {1,... ,q}, L = ∩iep Ll whereLt = {ι∈r : Atlx = bi,bl(Ξ⅛m'}.14



Denote by d(x. Li) the Euclidean distance between a point x ∈ 3⅞n and a set Ll. and define Φ(τ) = maxie-p{d(x, Li)}.
Definition. A sequence {xfc}∞ is called Fejer-monotone with respect to the set L. if for x* ∈ L, and for all k > 0. ∣∣xfc+1 — x*∣∣ < ∣∣τfc — x*∣∣.It is easy to check that every Fejer-monotone sequence is bounded.The fundamental theorem of Gubin et al.[11], is:

Theorem 2.3 Let Li C 3⅞n, be a closed convex set for each ιζP. 
L = (‰pLi, L ≠ 0. If the sequence {xfc}∞ satisfies the properties :

i) {χfc}o° 'zs Fejer-monotone with regard to L. and 
ιi) limk→00Φ(xk) = 0,

then {,r*}gc converges to x*, x* ∈ L.

Proof. It follows from Lemma 5 and Lemma 6 of Gubin et al.[ll].□
Lemma 2.10 Any sequence {τfc}∞ generated by Algorithm 1 or Algorithm 
2 satisfies (i) and (ii) of Theorem 2.3, provided xk 0 L, for all k ≥ 0.

Proof. The proof of (i) follows immediately from Lemma 2.5 and Theo­rem 2.2. Moreover, it satisfies (ii), taking into account that ak of Algorithm 1, and oTk of Algorithm 2 tend to 0 when k → ∞, because the sequence {∣∣rr* — x*∣∣} converges since it is bounded and monotonically decreasing. Then, considering the results of Theorem 2.2, Lemma 2.5 and (iii) of Lemma 2.4. we have ak >a,k> mG¾-p∣∣dlfc∣∣2. Thus, we get limk→ocΦ(xk) = 0.□
Theorem 2.4 The sequence {zfc} generated by Algorithm 1 or Algorithm 2. 
converges to a solution x* of Aix = b.

Proof.lt follows from the assumption that the system Atx = b has a solution. Lemma 2.10 and Theorem 2.3.□
3 Partition into blocks using estimations of 

the condition numbers.In this section we will present a partitioning strategy for obtaining blocks with at most μ rows and such that the condition numbers of the matrices 
15
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(A∙.4J 1 necessary for computing the projectors remain bounded by a given tolerance κ.We shall assume the rows of the matrix of the original system Atx = b had been normalized, that is ∣∣αi∣∣ = 1J = 1,..., m. We shall denote by e3 the jth canonical vector and by d33 the jth element of a diagonal matrix D.Suppose we are generating a block Atlx = bi which already has j rows of Atx = b . j < μ, and we know the Cholesky decomposition of B3 = (A*Al)^1 = (LjDjL*j)~1([2]). Let τ = max{dhh}3h=1 and δ = mιn{dflh}3fl=l.The estimation ∕3t of the cond(AtiAl) is defined as βi = τ∕δ.We shall prove that d1ι = 1 and dhh < 1, for each h = 2......... j. andtherefore ∕⅜ = 1/0.We shall accept to add a new row of Atx = & to the ith block if and only if it has not been yet assigned to another block and the estimation of the condition number of the augmented block does not exceed n.In order to decide the acceptance of a new row atl into the ith block, we define .4, = [Ai, α1] and from the knowledge of the Cholesky decomposition of 
Bj. we proceed to update the factorization of B3+↑ = (√4l A,)-1 in a recursive way. recomputing the estimation of the condition number of the expanded block. If such estimation is still less than κ, the row atl is added.Initiallv, for j — 1, Ati has only one row, hence AtiAi = 1, and Z,1~1 = 1. Df1 = l√If a block Atix = bt is composed by j rows of Atx = b, with j < μ, in order to analyze the possibility of adding a row atl, we compute the decomposition of B,+ 'l = (.⅝Λ)-1 = ⅛D⅛¾.

Taking into account that

Therefore, we choose lj+λ and <5j+ι such that
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Then, if l∕∂'j+ι ≤ κ the row atl is accepted, and the ιth block is now composed by the rows of Al . If the expanded block still has less than μ rows, the procedure is repeated for analyzing the inclusion of another row.The following Lemmas show that the matrix Dj+1 has all its elements 
dhh ≤ 1 and that βi provides an underestimation of cond(AtiAβ.
Lemma 3.1 Let atl be the row being analyzed for appending it to the ιth 
block. If ∣∣α∕∣∣ = 1 and θ is the angle between aι and RfAl), subspace spanned 
by the j rows of Ati, then ∂'j+1 = sin20.

Proof. From the previous formulas and ∣∣α∙f∣∣ = 1 we obtain ∂'j+ι = 1 - ∣∣∕,A1M∣∣2 = ∣∣αi∣∣2 - ∣∣∕%(α∕)∣∣2 = ∣∣P4±(αi)∣∣2 with 0 ≤ ⅛+1 ≤ 1.Moreover, if θ is the angle between aι and R(Aβ, ∣ sin0∣ = ||Ρ4±(α/)||/||α/||, from which it follows that ∂7+ι = sin20.□
Lemma 3.2 If (AtiAβ~l = (L-jDjLtj)~i, δ = min{dtlh}3h^l and βl = 1/0. 
then ej > 0 exists such that CjCond{AtiAi) < βi < cond(AtiAt).

Proof. Let λτn and λΜ be the lowest and greatest eigenvalues of A∙.4l from which it follows that cond(AtiAi) = XM∕λm. I∏ the following, we shall use the inequality Aτπ ≤ (ztAtiAiz)∕∖∣z∣∣2 < Xm for all z ∈ 5R∙j.Considering that ∣∣α∕l∣∣2 = 1 then ethAtlAiefl = 1, h = 1.......... j. Thus.Λλz ≥ 1∙ If ⅞ = Lfteh for h = 1,..., j then ethzh = (L~l)hh = 1 and ∣∣∙⅛l∣2 ≥ 1 for h = 1,...,j. Moreover, zthAtiAizh = ethDjeh = dhh hence, λ,,l ≤ (4-4,i.4izh)∕∣∣zh∣∣2 = dhh∕∖∖zh∖∖2 < dhh, for h = 1,..., j. Thus , Xm < ∂ and therefore, recalling that Λm ≥ 1, we get βi ≤ cond(AtiAi).If c,ll is an eigenvector of AtiAi corresponding to Xm and vm is an eigen­vector of AiiAi corresponding to Xm with ∣∣t>m∣∣ = ∣∣i>m∣∣ = 1 then Λm = 
v^LjDjL^VM = WD^L^vmW2. Since from Lemma 3.1 is dhh ≤ 1 for all 
h = 1,..., j then Xm < ∣∣L*uλ∕∣∣2∙ Analogously, since Xm = ∣∣Z)jιz2Ltjυm∖∖2 and dhh ≥ δ for all h — 1,..., j, it follows that Xm > <5∣∣Z∣vrn∣∣2. Therefore. 
βl = l∕δ > ∣∣Ltjvm∖∖2∕Xm > (∣∣L⅛rn∣∣2∕∣∣L^M∣∣2)(λM∕λτn). In this way we see that for ∈7 = ||£‘vm||2/||L‘w|r is ejcond(AtiAi) < βl < cond(AtlAl).DThere is much empirical evidence to suggest that is very rare for βl to considerably differ from cond(AtiAi) ([2], p.114).In what follows we will describe the block partition algorithm. We shall denote / = {1,..., m}, Ia = {h : ath row of At assigned to some block }.
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Algorithm.
Initialization. Set i = 1, Ia = 0
While Ia ≠ I doSet R = I - Ia , j■ = 1, Ii = 0.Choose I ∈ R .Set Al = [αi], Dl = [1], Lf1 = [1] , 

R = R — {l}, Ia = Ia∖J{l}, Ii = Ii∖J{l} 
While ( j < μ and R ≠ 0) doChoose I e R Compute lj+l — D^lL~1Atial, ⅛+ι = 1 - 0+ι¾+ι

If l∕⅛+1 < κ then Update Ai = [ Ai <z√ ] £_i _ Lj 0 „ _ Dj 0,+l ι -i'+ιi71 1J ,+' ^ [ θ ⅛÷1 Λ = Λ-{(}, ∕α = ∕.∪(∕}, 1, = ∕,∪{(} 
J = j + 1

else
R = R- {l}

end;
end;z = z + 1

end;
End procedure.

4 Numerical experiments.In this section we present some preliminary numerical results obtained with the new algorithms. The first purpose of our experiments was to compare the behavior of the ΛLG1 and 4LG2 introduced in this paper with two versions of the parallel block method described in [10]. In order to carry out the comparisons we wrote an experimental code for each algorithm.The second purpose was to compare A LG2 with the methods; BCG. 
CGNR. TQMR, GMRES(k) from the SPARSKIT2 Library
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(http://www.cs.umn.edu/Research/darpa/SPARSKIT), and also with the programs DSDCGN and DGMRES(k) from the SLATEC Library implement­ing respectively Conjugate Gradients with diagonal scaling and GMRES.All numerical experiences were made with A ∈ sRnxn and run on a PC Pentium III, 408MHz, with 256 Mb Ram and 128 Mb Swap using FORTRAN 77 for Linux and also with a CRAY J90 PVP using sequential, vectorized and parallelized versions of ALG2. The idea was to test the numerical behaviour using very different computers.In what follows we will present a brief description of the implemented parallel block algorithms. In all of them the intermediate directions are defined by the projection of xk onto each one of the blocks. They differ in the ways in which weights are chosen.If dk is the direction given by the projection of xk onto
Ll = {x ∈ 3⅞n : Atix = bi,bi ∈ SRm*} in the kth iteration, the different algorithms compared in the following experiences can be described as follows:
PACI1 (Projected Aggregate Cimmino with equal weights): From an iterate xfe, we define the direction dk = £’=1 wkdk where wk = ∖∕q. The new iterate is xk+γ = xk + λ⅛dfc, where λ⅛ is defined in (2.2).
PACI2 (Projected Aggregate Cimmino with weights defined by 

the residuals): From an iterate xk, we define the direction dk — ∑‰1 wkdk where wk = ∣∣Aiixfe — bi∖∖∕ ∑J=1 ∣∣A∕zfc — bj∖∖. The new iterate is xfc+1 = 
xk ÷ λkdk, where Λ⅛ is defined in (2.2).

ALG1: From an iterate xk, we define the direction dk = ∑Lι dk where u.⅛ _ (uΛ _ wkj js t-he soiution of the quadratic problem (2.5):wfc = ((Z)W)-1(Hll2,∙∙∙,l⅛ll2)twhere Dk = [df...., dkk]. The new iterate is xk+1 = xk + dk.
ALG2 : Define the direction dk = ∑‰1 w∙c⅛ where dk = Pυ^{dk) with 

v — dk~1, and (w½ = ((W^-1(∣∣d^ι2,∙∙∙vιι⅞ιι2ris the solution of the quadratic problem (2.9), and Dk =∙ [dk.dk..........dkk].and q∣t is the number of linearly independent directions. The new iterate is j.⅛-ri _ χk jkThe new splitting method described in Section 3 is used for partitioning the matrix A into blocks and for obtaining the Cholesky decomposition of 19
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the matrices (.4/.4,) 1 used for computing projections. The intermediate directions used in all algorithms are calculated by means of the projectors obtained from the preprocessing.For the block splitting procedure specified in Step 0 of ALG1 and ALG2 we used κ = 105. The maximum number of rows μ allowed for each block has been chosen as a function of the problem dimension. The stopping conditions are either the residual ∣∣Atrzjc - b∣∣2 is less than 10-9 or when more than ITMAX iterations have been performed.In ALG1 and ALG2, the quadratic problems (2.5) and (2.9) are solved by means of the Cholesky decomposition of the involved matrices. In order to guarantee the numerical stability of √4LG1 and ALG2, the Cholesky de­composition is computed recursively adding up only intermediate directions such that the estimates of the condition numbers of (Dk)iDk and (Dk)tDk do not exceed the upper bound κ = 10lo.
Test problems. The first set of problems consisted of solving linear systems Atx = b with 500 equalities and 500 unknowns, where A in each case is a matrix whose entries were randomly generated between [-5,5] and 

b = Ate with e = (1,...,1) to ensure the consistency of Atx = b. The starting point was a random vector with all of its components belonging to [-1,1]. The maximum number of rows μ allowed for each block was 50.The time required by the block splitting algorithm was 2.6 seconds. In all cases matrices were splitted into 10 blocks; in other words at most 10 directions had been combined in each iteration.Figure 1 shows the total average time (preprocessing included), in minutes and seconds required to achieve convergence in 10 test problems.

Figure 1. Average time in minutes and seconds for solving 10 random problems 
with each algorithm.
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Figure 2. Average number of iterations used by each algorithm for the test 
problems.Figure 2 shows the average number of iterations each method used for achieving convergence in all test problems.The same problems were run using DGMRES(k)(GMRES), with k=10 and k=20. and DSDCGN(CG) from the SLATEC Library. GMRES failed in all problems due to "stagnated residual” and CG used an average of 194 iterations with an average time of 1 minute.In all tests, the norms of the final residuals were of the same order for all methods. The CPU time required by ALG2 was the least for reaching convergence although it was similar to the one of DSDCGN(CG).Therefore, all remaining experiences were carried out with ALG2.In order to test the convenience of using the block splitting algorithm, we run ALG2 with the problem Atz = b where A ∈ ⅛Rnxn is the Hilbert matrix defined by alj = l∕(i + j — 1), i,j = 1,..., n, whose condition number is of the order exp(3.5n). Consistency was guaranteed by defining b = At with e = (1,...,1). The starting point was x0 = (0,..., 0). When using a dimension of 100. μ = 20, and κ = 105, the block splitting algorithm partitioned the system into 31 blocks of different sizes, with an average of 3.2 rows each.Figure 3 shows the number of rows of the different blocks and the fre­quency with which those numbers appear in the resulting splitting.

Figure 3 Number of rows per block and their frequencies

m=100 n. of rows 8 6 5 4 3 2 .1μ = 20 n. of blocks 1 1 3 5 11 8 2
Convergence was achieved in 1 iteration with a final residual of ∣∣Atτ — δ∣∣ = 10-7 and an error ∣∣x — x*∣∣ = 10-4.21



When for the same problem, the partition is made using blocks of 4 rows sequentially assigned, the condition number of the matrices involved in the projections turned out to be greater than 101° for some blocks, and the resulting numerical errors affected convergence.This shows that the block splitting algorithm is a very useful tool for dealing with numerically unstable problems.In order to test ½LG2 on dense and ill conditioned problems, we generated a family of systems where At was a non-symmetric matrix with m — n = 1200. defined by aij — 1 if i > j and aij = t if i < j and b = .4'r with c = (cl). ct randomly chosen in [-1,1], to ensure the consistency of 
A'.r = b. The starting point was τ0 = (0...., 0) and for the block sizes we used μ = 100.Comparisons with DGMRES(10) and DSDCGN(CG) were made for t = 10 (Figure 4), t — 0.1(Figure 5) and t = .0001(Figure 6). The average preprocessing time in ALG2 was 22 seconds.

Figure Ji. Total CPU time in minutes and seconds with t = 10

Figure 5. Total CPU time in minutes and seconds with t — 0.1
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Figure 6. Total CPU time in minutes and seconds with t = 0.0001Our code was very competitive in speed for these dense problems.The previous figures show that when t decreases the total CPU time of ALG2 also goes down in spite of the condition number increases. This shows that ALG2 has a very good performance for dense ill-conditioned problems.For testing the robustness of algorithm ALG2, the problems Pl - P6 proposed in [3]. were run. Those problems arise from the discretization, using central differences, of elliptic partial differential equations of the form 
auxx ÷ buyy + cuzz + dux + euy + f uz + gu = F, where a — g are functions of (x, y. z) and the domain is the unit cube {0,1] × [0,1] × [0,1].The Dirichlet boundary conditions were imposed in order to have a known solution against which errors can be calculated. When the discretization is performed using nl points in each direction, the resulting non-symmetric system is of order n = n3, and therefore the dimension grows rapidly with ∕z1 when the grid is refined. If a grid of size ni = 24 is used, it leads to a problem of dimension n = m = 13824.As mentioned in [3], CG without preconditioning and GMRES(k) with different values of k, 10 ≤ k < 40, fail for problem P3. ALG2 was able to solve all test problems proposed in [3] for n = 13824: Pl : ∆u + 1000u1 = F with solution u(x, y, z) — xyz(l — x)(l — y)(l - z). 
P2 : Au + 103e'rj'2(u1 + uy — uz) = F with solution u(x, y,z)=x + y + z. 
P3 : Au + 100xrtx — yuy ÷ zuz + 100(x + y + z)(u∕rryz) = F with solution u(z∙, y, z) = e£yz sin(πx) sin(πy) sin(7rz).
P4 : Au - 105τ2(u1 + uy + uz) = F with solution idem P3.
P5 : Au — 103(l + τ2)u1 + 100(n3z + uz) = F with solution idem P3.
P6 : Au — 103((l — 2x)u1 + (1- 2y)tιj, + (1- 2z)uz) = F with solution idem P3.We ran the problems with all available algorithms in SPARSKIT2, and GMRES was used with all available preconditioners.
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We present in the following Table 1 the obtained results for Problems Pl-P6 with ∏ι = 24, n = 13824 , μ = mi = n1*n1. The starting point was -r0(z) = 0 for i = 1,.., n, using the following notation:
Iter: number of iterations
Rsn: ∣∣.4ixs — δ∣∣2
Error: ∣∣xs — rr*∣∣2
CPU: time measured in secondsIn the second row corresponding to each problem we indicate the method from SPARSKIT2 which obtained the best results and the sort of precondi­tioner (if one has been used).In the third row corresponding to each problem we indicate the result of Kaczmarz method(KACZ), which was used due to its popularity in image reconstruction problems like computed tomography due to its robustness.The CPU time required by ALG2 for block splitting and calculate (LτDlLtl)~l. was 445 sec. for each problem. We include in the CPU column the execution time for ALG2 once the block partition has been performed.Meth Iter Error Rsn CPUALG2 9 3.4d-6 1.4d-5 34.Pl GMRES(P) 13 2.7d-8 3.5d-7 1.KACZ 617*n 2.4d-5 5.2d-5 1003.ALG2 128 6.4d-6 2.8d-5 479.P2 GMRES 826 1.4d-7 9.9d-7 61.KACZ 1001*n 9.1d-2 2.3d-2 2500.ALG2 616 6.5d-5 3.1d-5 2287.P3 CGNR 10000 5.9d-3 7.1d-5 57.KACZ 1001*n 9.2d-4 4.0d-5 3287.ALG2 442 9.0d-6 3.1d-5 1515.P4 GMRES(P) 594 1.7d-6 3.1d-5 54.KACZ 1001*n 3.4d-l 9.9d-2 2500.ALG2 12 7.9d-6 2.6d-5 51.P5 BCGSTAB(P) 19 7.4d-8 4.6d-7 4.KACZ 1001*n 2.1d-5 4.8d-5 1560.ALG2 32 2.8d-6 2.5d-5 . 110.P6 BCGSTAB(P) 35 4.3d-8 6.1d-7 5.KACZ 170*n 1.3d-5 3.2d-5 325.TableMeth(P): with preconditioner 24



In Table 2 we describe, for each method in SPARSKIT2, the ratio between the number of problems Pl-P6 successfully solved and the total (with or without preconditioning),using the notation 
NPREC: = without preconditioning 
WPREC:= with preconditioning 
RSP := ratio of solved problems

Table 2.

Method NPREC WPREC RSPBCG 4/6 4/6 4/6DBCG 4/6 4/6 4/6CGNR 5/6 4/6 5/6BCGSTAB 3/6 3/6 3/6TFQMR 3/6 4/6 4/6FOM 4/6 3/6 4/6GMRES(*) 4/6 4/6 5/6FGMRES 4/6 3/6 4/6DQGMRES 4/6 3/6 4/6
(*): with all different preconditionersJust for illustrative purposes we report in the following some numerical results obtained with a parallel implementation of ALG2 run on a CRAY J90 PVP( Parallel Vector Processing) with the support and technical assistance of the Federal University of Rio de Janeiro, Brazil. The following results compare a simulated sequential version using only one processor and inhibit­ing vectorization, another version using exclusively vectorization, and lastly a parallel implementation exploiting the fully simultaneous features of ALG2 and the corresponding synchronization of processes.In the next table the CPU time in seconds obtained with the three versions for problems Pl-P6, now run with n↑ = (j, n = 216. are given. Those figures were restricted by the computational resources available, but show the differences between the sequential version and the other two. Since the problem sizes are small, the overhead arising from the parallelization affects the total CPU time when the number of iterations is low and therefore in those cases, the vectorized version seems to be better.
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When increasing the dimension the gap between the vectorized and par­allel versions decreases. For instance, for n1 = 9, n = 729, in the problems Pl and P3 , the parallelized version is the best. We show those results in the Table 3 and 4, considering the following notation:AE1: sequential sparseAE2: vectorized sparseAE3: parallel sparseMaximum number of rows per block( μ): n2Tolerance for row acceptance: 104Stopping criteria: Rsn2 < 10~9 for odd-numbered problems, and
Rsri2 < n * 10~9 for even-numbered problems.

Table 3. Results using a Cray J90 PVP.

n=216 Version Preprocessingtime Processing time Rsn IterAE1 0.226 0.008 3.653d-6 2Pl AE2 0.007 0.003 3.651d-6 2AE3 0.111 0.003 3.651d-6 2AE1 0.225 20.336 6.623d-3 469P2 AE2 0.007 6.359 6.623d-3 469AE3 0.009 4.472 6.623d-3 469AE1 0.227 0.254 2.964d-5 6P3 AE2 0.007 0.008 2.964d-5 6AE3 0.009 0.009 2.964d-5 6AE1 0.227 11.946 6.294d-3 275P4 AE2 0.007 3.750 6.300d-3 275AE3 0.009 2.442 6.808d-3 275AE1 0.225 0.169 1.103d-7 4P5 AE2 0.007 0.005 1.103d-7 4AE3 0.009 0.004 1.103d-7 4AE1 0.228 4.517 6.610d-3 104P6 AE2 0.007 1.398 6.610d-3 104AE3 0.009 0.987 6.610d-3 104
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Table 4. Results using a Cray J90 PVP.

n=729 Version Preprocessingtime Processing time Rsn IterAE1 3.233 1.292 5.323d-4 5Pl AE2 0.742 θ-.380 5.323d-4 5AE3 0.918 0.367 3.062d-5 5AE1 3.276 46.909 3.138d-5 177P3 AE2 0.742 13.458 3.138d-5 177AE3 0.912 6.492 3.138d-5 177
Conclusion: None of the methods in SPARSKIT2 is able to solve all problems, and in order to get the solution it is necessary to try different algorithms with different preconditioners. On the other hand the new algo­rithm solved all problems, and its efficiency can be highly increased using a parallel implementation due to its fully simultaneous properties. There­fore. how to combine the speed of the Krylov subspace algorithms with the robustness of the projected aggregation methods seems to be an interesting field of research.
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