Materiales para impresión 3D: Análisis de resistencia mecánica y comportamiento bajo carga frente a estados de solicitación simple.

M. Orué, R. Leurino, M.Bär, I. Carbonel Medina.

Universidad Tecnológica Nacional Facultad Regional Santa Fe GIEDI (Grupo de Investigación para la Enseñanza de Ingeniería) Tópicos: Ensayos, Enseñanza.

Objetivos

- Encontrar tensiones admisibles máximas de tracción de materiales impresos.
- Identificar tipología de esfuerzos actuantes.
- Determinar factores que permitan correlacionar dicha tensión admisible con la del material base (propuesta en los catálogos comerciales).

Metodología

Para la producción de las probetas se utilizó tecnología de impresión 3D FDM, el cual en principio responde a un proceso estándar de impresión 3D.

Los materiales ensayados en el trabajo fueron ABS y PETg por su utilidad en el ámbito ingenieril.

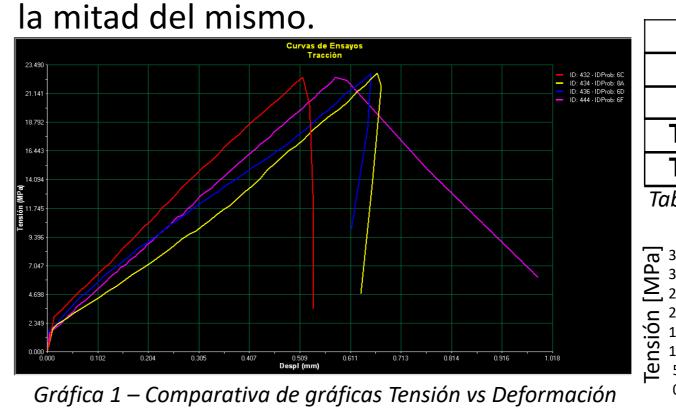
Para la obtención de la tensión admisible se seleccionó una probeta Type 1 según ASTM D638-14, normalizada para materiales ortotrópicos.

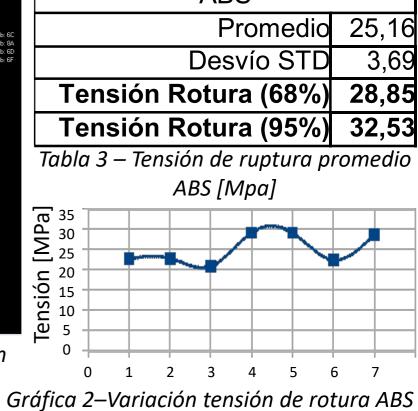
Se establecieron parámetros de impresión que se mantuvieron fijos y el parámetro de comparación que se varía es la temperatura de la boquilla.

Capa (Linea)		Superficies			Relleno			Velocidad
Altura	Ancho	Perímetro	Superior	Inferior	%	Patrón	Superpo sición	
0,2 mm	0,4 mm	3	4	4	98	Lineas longitudi- nales	30%	50 mm/s

Tabla 1 – Parámetros de impresión definidos

Codificación	Tempera	Material		
Countracion	Boquilla	Base	Maleriai	
6 A/B/C/D/E/F	235	90	ABS	
6 G/H/I	240	90	ABS	
7 A/B	235	60	PETg	
7 C/D	240	60	PETg	
8 A/B/C	245	90	PETg	
8 D/E	245	60	PETg	
9 A/B/C	235	60	PETg	


Tabla 2 – Parámetros de temperatura de probetas

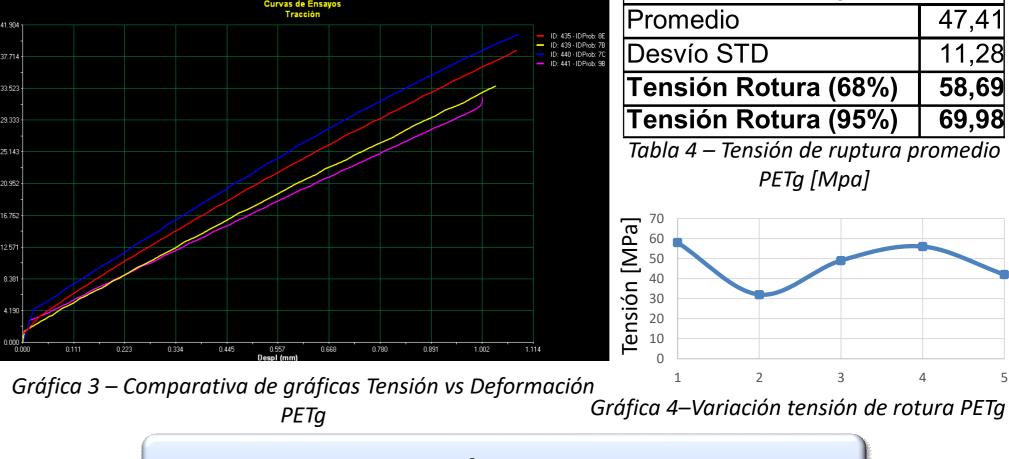

Fig. 1 – Probetas antes del ensayo a tracción

Obtenidas las probetas, se empleó una Máquina Universal de Ensayo, para llevar a cabo un ensayo de tracción simple. En dicho ensayo, se obtuvo la resistencia de ruptura por tracción normal simple.

Resultados

ABS: Las fallas se presentaron muy por debajo del valor de tensión admisible obtenido de la hoja de datos, llegando a ser inferiores a

PETg


47,41

11,28

58,69

69,98

PETg: Presento valores de tensiones admisibles menores a los que obtenemos de los materiales base, aunque las muestras obtenidas no permitieron obtener con claridad un valor específico.

Conclusiones

- ABS presenta un comportamiento frágil con presencia de corte (cizalladura) en la zona de la rotura.
- En **PETg la rotura se presenta con mayor ductilidad** y sin rasgos de corte significativo.
- Probetas impresas en series de 3 en una misma impresión presentaron valores de tensión admisibles comparadas con una probeta impresa de forma única por lote.

Obtención del factor de corrección

$$\sigma_{Rimp3D} = \text{Kp}_{ABS} * \sigma_{R ISO638}$$

$$\text{Kp}_{ABS} = \frac{\sigma_{Rimp3D}}{\sigma_{R ISO638}} = \frac{25,16 \text{ [Mpa]}}{47,56 \text{ [Mpa]}} \approx \mathbf{0,529}$$

$$\sigma_{Rimp3D} = \text{Kp}_{PETg} * \sigma_{R ISO527}$$

$$\text{Kp}_{PETg} = \frac{\sigma_{Rimp3D}}{\sigma_{R ISO527}} = \frac{47,41 \text{ [Mpa]}}{53 \text{ [Mpa]}} \approx \mathbf{0,894}$$

