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Abstract

The estimation of travelling source parameters takes a considerable importance for many
areas of sensor space-array processing, e.g., radar, underwater acoustic, non-invasive
electro-medicine.

State-space models are a well suited framework for solving that dynamic estimation
problem and they are in the core of our studies.

The parameter estimation problem is solved by analyzing spatio-temporal data, in ap-
plications where a relative large amount of noisy data is available.

Part of our project is to analyze the conjunction of state-space models and spatio-
temporal data techniques for the estimation of the parameters of a travelling source. The
technique will be used for the estimation of travelling brain sources from EEG/MEG
measures.

State-Space Models for a Travelling Source

State-space models are two related equation for modeling two related process. One equation is
a recursion describing the state transitions or travelling process. The other equation despicts
the functional relation between the measurement process or observations and the states.

State-space models are easy to analyze when the two equations are linear because they lead,
under certain noise assumptions, to the well known Kalman filter. When nonlinearities arise
and can not be avoided, still the Kalman approach can be used with some modifications.

Models for Propagation

A travelling source is a source with variant spatial characteristics. We postulate that the
motion of the travelling source is governed by a linear dynamic multidimensional system
driving by non-correlated zero-mean Gaussian noise.
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T = Fp T+ wy (1)

where @x; is the unknown vector parameter of the source at time t, F; is a known matrix
describing the dynamics of the propagation, and w; is characterized by a known symmetric
covariance matrix Xqp,. Equation 1 defines a linear propagation model.

Now, suppose that F; depends upon an unknown vector of parameter or weights s;. We
can compose a unique vector of unknown parameters ¥, = [x; s;], and after grouping and
extending with zeros, we obtain, in general, the following nonlinear propagation model.

'l9t+1 - (I)('ﬁt>+ ’&Jt (2)

Above, to solve the problem of an unknown dynamics, the state vector is augmented by
addition of the unknown parameters. This leads, in general, to the nonlinear dynamics
equation (2) due to the occurrence of products between parameters and states [4]. But if
we assume polynomial dynamics we can avoid the nonlinearity.

A particular case of the nonlinear propagation model is when s; is modelled using a parametric
recursion. In such a case we have the following digression

i1 = F(s) ¢ + wy (3)
St+1 = Bst + vy (4)
with symmetric covariance matrix ¢, for noise v;. Another particular case is when s; is a
constant, i.e., 8411 = 8; = 8.
Models for Observations

We have just indirect access to the source parameters x; and the travelling parameters 9,
through measures coming from a postulated observation process.

In most cases, the following nonlinear equation results for the observations,

zi=m(xy) + (5)

where x; are the parameters of the source observed at time ¢, m(-) is the nonlinear relation
between those parameters and the array observations z;, and 2, represent the observation
and modelling noise which is assumed Gaussian, non-correlated and zero-mean. Note that
equation (5) defines the so called nonlinear observation model.

From observation model equation (5) we can obtain an a priori estimate of y, by applying
any inverse technique for a single snapshot, e.g., single dipole analysis.
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In the following, y, is any estimate of x; when only the information available at time ¢ has
been used in the estimation. Then a linear observation model is given by,

Y = Tyt e (6)

with symmetric covariance matrix Xe, for the estimation error e;.

State-Space Models

Our goal is either the estimation of the source position parameters x;, or the join estimation
of both, the source parameters and the travelling model parameters, 9; = [x; s;]. In general !,
that distinction is reflected in the nonlinearity or linearity of the propagation model.

We can estimate directly from the multiple snapshot process or we can re-estimate from the
a priori computed single snapshot estimates. That distinction is reflected in the linearity or
nonlinearity in the observation model.

Now we can combine any observation model with any dynamic model to build four state-space
models with different complexity. For any one of them we can apply several Kalman-like
techniques to solve the tracking/identification problems that arise [1], [2] [3], [4], [5], [6], [7]-

Sumarizing, the state-space models we are analyzing are:

model I Tyt = Fraogtw
Yy = Tyt e

model 11 Tepl = Fo @ w

2 = m(x) +

model 1T Oy = (W)t w,
Y = Tt e

model TV V1 = O(Fy)+ wy

2y = m(xy) +u

'Recall that polynomial dynamics is an exception.

Pagi na 492



Wor kshop de Investigadores en Ciencias de | a Conputaci én W CC 2002

Estimation from Spatio-Temporal Data

Classical array processing rely upon short time analysis. Whatever the considered processing, they
try to optimize a a spatial contrast at a given instant [9]. The integration time for the estimation of
fixed parameters is limited by the basic non-stationarity of the received signal due primarily to the
travelling of the source.

When the temporal resolution is relatively large compared to the travelling characteristics of the
source, then it is possible to consider relatively large integration times for detecting weak signals.
The integration time defines the interval of the spatio-temporal data during which some parameters
are consider fixed. That interval corresponds to a single snapshot in the state-space models. A
spatio-temporal model describe those parameters of the source model that remain fixed and those
which are unconstrained along the integration time.

Well known algorithms for the analysis of spatio-temporal data are the MUSIC-like scanning func-
tion [8]. Reconsider equation 5 dropping the temporal dependency. Assume that m(-) is unknown
since we do not yet know x. A data record in a single trial is composed of N time samples

Z =|z1, -+, zN]. Define:
3 K
Z=>Y Zy/K (7)
k=1
K
R=>"WYl/NK (8)
k=1

and let V,,, be a matrix whose columns are the (normalized) eigenvectors corresponding to the largest
nr eigenvalues of (R~'/2Y YTR™'/2)/N. It can be shown that I,,, — Vy,,vL is the projection matrix
onto the space orthogonal to the column space of R Y 21, where 11 is a ML estimate of m. Then a
scaning function can be easily constructed as

1) = !

= — — — 9)
M (m(@)T R (L = Vo VEIRT2, m(@)T R m())

where Ayrn (-, -) denotes the smallest generalized eigenvalues of the matrices in the parenthesis and
m(x) is a single source array response matrix.

When the signal is weak whereas the temporal resolution is relatively large it is on certain occasions
likely to use MUSIC for single snapshot parameter pre-estimation by integrating over a sliding
temporal window.

After pre-estimation it is feasible to smooth the estimation using Kalman filtering or smoothing
techniques by incorporating dynamic information and/or constraints. Observe that the state-space
model that applies is model I or model III.
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