Pt o duk Geeas i = 0 G W L BV DI W AR 220 b v v e

v

et ot ot 1 0P W AR G IR L@ R O DR I) NS e

Inside-polygon() algorithm for curvilinear contours.
Design and Implementation

Fernando Luis Cacciola Carballal
May. 1999
cacciola@sminter.com.ar

Abstract

This paper describes an algorithm to determine whether a point is inside or outside a curvilinear polygon, based on the well known
algorithm consisting of counting the intersections of an horizontal ray with the polygon.

Curvilinear polygons, as analytic resources. are not common in computer graphics, but they do arise on some domains. Normally,
parametric curves, such as cubic splines or beziers, are used to model curves in graphic applications. But parametric curves cannot be
easily manipulated in analytic computations. For example, obtaining a curve parallel to another is not a simple task, and is not even

_possible under all circumstances.

For this reason, some computational geometry applications use non-parametric polyline curves, formed by straight-line segments and

circular arcs. The straightforward geometry of lines and circumferences makes it easy to develop complex algorithms to work with non-
parametric curves. ’

But despite the fact that this curves are easy to treat analytically, they lack the parametric benefits of classical curves; and for this reason, it
is very hard to find in the literature any work about them.

If we are to represent curvilinear polygons using patches of straight-line segments and circular arcs, named polyline curvilinear polygons,
one of the fundamental operations that we need to implement is the point-in-polygon test.

Haven’t been able to find any such algorithm, the author adapted the classical method used with straight-line polygons, and extended it for
use with polyline curves.

Part 1. Design.
General Method:

Let C be a polyline curvilinear polygon, made up of an ordered and oriented sequence of straight-line segments and circular arcs.
Let p be a 2D point.

The following method can be used to determine whether p is inside or outside C.

1.Let L be a straight-line segment starting at p, and ending at g=(MaxX,p.y)
L is a ray originating at p and extending to the right, beyond the rightest coordinate of C.

2.Count the number of switching intersections between L and C.
3.If the number of switching intersections is odd, p is inside; otherwise, p is outside C.

Switching intersections:

Definition 1: A switching intersection is an intersection between L and C, s.t. L passes from the interior of C to its exterior, or vice versa.
Definition 2: A non-switching intersection is an intersection between L and C, s.t. L remains in the interior, or exterior of C.

A switching intersection implies that L crosses C.
A non-switching intersection implies that L only-touches C, without crossing it.
We found non-switching intersections at some vertices. and at second-order intersections on circular arcs.

If two intersections occur at the same point, they represent a single second-order intersection.
Circular edges report second-order intersection when the crossing line is tangent to the circumference of the arc.
Straight-edges report only first order intersections.

It should not consider the starting point of the edges.

It should be able to report up to 2 intersections in the case of a circular edge.

Each intersection must have an 'order’ associated with it. If 2 intersections with the same edge occur at the same point, only | intersection,
with|order 2, should be reported.

1t should not report continuous intersections. For example, two collinear straight-line segments do not intersect.

1t does not have to report the coordinates of the intersection; only its existence and information indicating if they occur at the ending point
of the edge.

Intersections at the vertices.

Stat¢gment |: A first-order intersection not at the ending point of an edge is a switching intersection.
Statement 2: A second-order intersection not at the ending point of an edge is a non-switching intersection.

A prpblem arises at the vertices, because there is a parametric discontinuity at those points.
Whenever an intersection occurs at the ending point of an edge (a vertex), we need to determine if L is crossing C, or just touching it:

Analvsis of straight-only edges:

Congsider a polygon made up of straight edges.

Congider a ray, L, intersecting an edge at its ending point. The ending point of an edge is a vertex of the polygon.
Let Curr be the intersected edge, and let v be its ending point (a vertex).

Assyme Curr is not collinear with L; if L intersects Curr at v then Curr is above or below L.

Now consider the next edge, Next, and assume it's not collinear with L. Then Next is-also above or below L.

be seen that if both Curr and Next lie on the same side of L (above or below), then L is not crossing the polygon, but touching it at
v. Otherwise, if Curr and Next lie on opposite sides of L, then L crosses C.

Stat¢ment | :A straight edge cannot cross L more than once.
Stat¢ment 2: Being v the intersection of L and a straight edge E, if v is an extreme (starting/ending point) of the edge, E is entirely 4bove,
Belgw or Over L.

Definition 2: S’(E) is an open segment of L which is under the cone of influence of an edge. That is, the locus of points closer to that edge
than|to any other.

Statement 3: For a straight edge E, S’(E) is entirely Inside, Qutside or Over C.

Definition 3: PosL’(E), is the position of a straight edge E w.r.t L.
be Above, Over or Below.

de or over).

Statement 4: If PosS’(Curr) is opposite to PosS’(Next), the vertex intersection is a switching intersection.
If PosS’(Curr) is equal to PosS’(Next), the vertex intersection is a non-switching intersection.

Clearly, if PosS’(Curr) is opposite to PosS’(Next), then the open segment of L under, or above Curr is in opposite position w.r.t the open
segrment above, or under Next. Thus, L crosses C at the intersection.

Simjlarly, if PosS’(Curr) is equal to PosS’(Next) , both open segments of L are in the interior or the exterior of C, and L touches C, but
doesn't crosses it.

If PosS’(Next) is Over, the situation is undefined. We cannot determine how L relates to C at this point. We need to look forward for the
first edge whose PosS’(edge) is not Over.
In the following, Next is the first edge not over L.

Analysis of circular edges.

Statement 4 is based on statement 1; with circular arcs, we need other statements to extend the concept behind statement 4.

Statement 5: A circular arc may cross L at most twice.

Suppose that Curr is an arc. Since L intersects the vertex v, and the ending point of Curr is v, one of the possible intersections is at v.
According to statement 5, only one more intersection might be found for this edge.

This intersection cannot occur at the starting point of Curr, because we don't consider intersections at the starting point of edges.
Therefore, the following is true:

Statement 6: If there is only 1 intersection between L and an edge, that edge is entirely Above, Below o0 Over L.
Statement 7: If there are 2 intersections between L and an edge, that edge can be conceptually splited in two portions, each of one is
entirely located at opposite sides of L.

This definition is based on the constraint imposed on the intersection routine: second order intersections are reported as 1 single
intersection.

We denote a general edge portion as edge*.

The first portion, noted edge>, is the sub arc going from the starting point to the first intersection.
The last portion, noted <edge, is the sub arc going from the first intersection to the ending point.
(The notation edge* is used when there is no need to specify first or last portion).

If there is only 1 intersection, being E a straight or circular edge, E*, E> and <E denote the entire edge. (E=E*,<E,E>)
Statements 6 and 7 are a generalization of Statement 1 for straight or circular edges.

Definition 5: S(E*) is the open segment of L which is under the cone of influence of an edge portion. That is, the locus of points closer to
that edge portion than to any other edge. This definition does not compare different portions of the same edge.

Definition 6: PosL(E*), is the position of an edge portion E* w.r.t L.
It can be Above, Over or Below.

Above and Below are opposite positions.

Over is not opposite to any other position.

Definition 7: PosS(E), is the position of S(E) w.r.t C.
It can be Inside, Over or Outside.

Inside and Outside are opposite positions.

Over is not opposite to any other position.

Like PosS’(E), PosS(E*) is directly defined by PosL(E*).
The trick here is that E* is not the same as E; it is a portion of E which is entirely at one side of L.

Statement 8: If PosS(Curr>) is opposite to PosS(<Next), the vertex intersection is a switching intersection.
If PosS(Curr>) is equal to PosS(<Next), the vertex intersection is a non-switching intersection.

The treatment of the possible values for PosS(Curr>) and PosS(<Next) remains as stated in the first analysis.

Algorithm.

In order to turn these definitions into an algorithm, we need to devise a way to uniquely obtain PosS(Curr>) and PosS(<Next) for an
arbitrary edge.

statement 9: Given the edge E which has exactly | intersection with L at v, where v is the ending point of Curr, PosS(E*) is given by

\p’y

1 L.y); where p is the starting point of E when E is Curr, and its ending point for E being Next.

statement 10: Given the edge E which has exactly 2 first-order intersections with L, being one at v, where v is the ending point of Curr,
PosS{E*) is given by (L.y-p.y), where p is the starting point of E when E is Curr, and its ending point for E being Next.

Whe!

ever Curr has intersections with L, we need to determine if any one of them is at its ending point.

If Cuprr intersects L at v, where v is the ending point of Curr, we are in a Vertex Situation.
If Cupr intersects L, but not at v. we are in a non Vertex Situation.

Vertel situations:

As explained in the preceding paragraphs, we need to classify the vertex intersection. If we regard it as a switching intersection, we count

it; ot

herwise we don't.

If we have found 2 intersections for Curr (they can only be first order), then 1 is directly regarded as switching and counted. This is
corredt since Statement 7 says that the two portions of the arc are at opposite positions w.r.t L, and therefore C is at opposite positions

w.I.t

Usin
(The

L on each arc portion, so L crosses C and that extra intersection is switching,.

g|statement 9 and 10, we can setup the procedure position() which calculates the position of the ray w.r.t the polygon on each edge.
+rocedure is shown in the code)

The algorithm looks as follow:

Scan| each edge in turn.

If the Curr edge has any intersection with L.

If at least 1 intersection is at a vertex
Take the Next non-aligned nor over edge.
Compute position(Curr) and position (Next).
Compare positions.

If they are not equal
Count the intersection.

If no intersection is at a vertex

Count only first-order intersections.

In orde¢r to compute position(Next), we need to find the intersections of Next with L, because the procedure needs information about how
many intersections there are.

An optimization can be introduced testing whether Next is a straight line or circular arc. If it is a straight line, position(Next) can be
computed directly from its ending point; if it is a circular arc, we need to test for its intersection with L, and apply the position() procedure.

If Pos$(<Next) is Over, we have to search for the first edge not Over. This is true because:
If the ddge is a straight edge, PosS(<Next)==Over means the edge is geometrically over L, so it is aligned with it.

If the gdge is a circular edge, PosS(<Next)==Over means that L switches sides twice, in this case, the situation with L w.r.t C is undefined
just as [if Next were aligned with L.

Part II. Implementation.

Representations:

ately, since we need to represent polyline polygons formed with circular arcs, we need to use floating point coordinates.

An arc edge is defined by its center, radius, endpoints. endangles and a flag indicating if the angles are measured counter-clockwise or

clockwise. Some applications force ccw orientation; I wanted to show how this is not a constraint of the algorithm so I provided support
for arbitrary orientations.

The intersection routines:

Because the ray is an horizontal line, we can optimize the intersection routines.
Intersections at the ending points of the edges are central because they indicate a vertex situation. Therefore, the intersection routines test
for this case specifically.

For straight edges, horizontal edges or edges lying completely at one side of the ray have no intersections, and this can be detected easily
by comparing coordinates. :

For arc edges, if the ray is tangent to the circumference, we have a second order intersection. According to the definitions and statements
shown in the algorithm design, second order intersections should be counted only in vertex situations; indeed, only tangent intersections
that occur at the ending point of the arc are reported. In this way. second order intersections are simply never reported, and the code is
simplified because it doesn't need to account for 2 types of intersections. The arc intersection routine uses a trigonometric approach; there
are others, but | choose this one because | believe it is numerically stable.

Because the ending point of an edge is the starting point of the next edge, we cannot report intersections that occur at the starting point.
Null edges, that is, edges in which the starting point and ending point are equal, or zero-radius arcs, are assumed not to appear. There are
no special considerations for this in the code, but if they might arise in practice. additional tests should be added.

Endpoint intersections:

Because a vertex is a point shared by two adjacent edges, if an intersection at the ending point of one edge has been reported, the
intersections at the starting point of the next edge should be discarded.

Because of the limitations of floating point calculations, we use a bounded evaluation to determine if the intersection is at the ending point
of the edge. This evaluation defines that 2 points are equal if their Euclidean distance is lower than some number R.

This can be seen as using a disk of radius R centered at the endpoint of the edge, if the ray enters the disk it intersects the edge.

Similarly, for the next edge, we put the disk at its starting point, and if the ray enters the disk, it doesn't intersect the edge.

In the code, because there are specific comparisons arranged so that fewer calculations are actually performed, this disk is conceptually
applied in each stage.

What needs to be assured is that if an intersection is reported at the endpoint of an edge, it is not reported again at the starting point of the
next edge. To assure this, the code is designed so that starting and ending point tests are mutually exclusive.

The code:

The following code is C++ code. It does not use the language extensively in order to keep it generic. For this reason, the edge structure is a

super structure with all the information for both straight and arc edges; this is not the way you would do this in C++, but it fits the purpose
of this paper.

The code is self-contained, so general functions and definitions have been included.
I've chosen to improve in clarity rather than in efficiency, so the code is dissected in a lot of functions, including C++ inline functions for
small calculations. The C++ inline facility let this code be fast even if it appears to have too many function calls.

LITITP001T70 0070070700707 70777777707770077077701777071707777707777777771777707170770777777771777777
// Algorithm polygon_into() for curvilinear polyline polygons.
// 1999, Fernando Luis Cacciola Carballal.
//
// B R -
// Representations. :
//
// point: 2D floating-point coordinates.
// edge: straight and arc edge.
struct point { point (double x =0 , double 'y =0) : x (_x) , vy (_y) {}
double x , y

)
const int cStraight = 0
const int cArc =1
struct edge
{

;
7

edge (void) { ZeroMemory (this , sizeof (edge)) ; }
int mType ;

point mSP , mEP , mC ;

double mR , mSA , mEA ;

bool mCCW ;

edge * mNext ;

*/ Aukiliary functions.

.nling boci equal (double a , double b , double epsilon)

retphrn { a >b ? (a - b) < epsilon : (b - a) < epsilon) ; }
:nling bool fitClosedInterval (double 1 , double n , double h)}
return (1 <=n) & (n <= h) ; }

inlin¢ bool fitOpenlnterval (double 1
return (1 <n) && (n<h) ;}

inlin¢ double abs (double n)
retyrn n >= 0 ? n : - n ; }

1nling double pow2 (double n)

{ retyurnn * n ; }

:nling¢ double distance (const point & a , const point & b)

¢ retyrn sqgrt (powZ (b.x - a.x) + pow2 (b.y - a.y)) ; }

inline bool equal (const point & a , const point & b , double epsiléon)

{ retyrn distance (a , b) < epsilon ; }

e B e ettt ettt ettt

, double n , double h)

F A B R e e
// furlction position:

7/
// Retjurns the position of the edge with respect to the ray at 'y'.
// 1t |could be Below(-1), Over(0) or Above(l).

//
// 'abEdge': the edge to be considered.

// ‘'y'ls y-coordinate of ray.

// ‘'aEptralsecs': Needed if the edge is an arc. See algorithm description.
// 'aCphrrOrNext': Indicates if the edge is the curr or next edge.

// ‘'aEpsilon': Aithmetic epsilon. (le-5 is usually a good value)

//

const }int cCurrent

// indicates current edge.
const }nt cNext

// indicates next edge.

const fint cBelow = -1 ; // return value from position()
const fnt cOver =0 ; // return value from position()
const int cAbove =+ 1 ; // return value from position{()
=0 ;
=1 ;

inline|int position (const edge & aEdge , double y , int aExtralsecs , int aCurrOrNext , double aEpsilon)
{

double ey = (aCurrOrNext == cCurrent ? aEdge.mSP.y : aEdge.mEP.y)
double d = (aExtralsecs ? y - ey : ey -y)
retyrn equal (d , 0.0 , aEpsilon) ? cOver : d > 0 ? cAbove : cBelow ;
) :
/= m e e e e e e

IIT1TIALITT077 7700777770 0777070777777777777777777770777777777777777777077777770777777777707777717777
// fundtion IntersectStraightEdge

’/
// Tesy is the straight edge intersects the horizontal ray to the right of 'aP’
'/
7/ 1f dge is incident upon the ray, report 1 vertex intersection.

// Othelrwise, check if aEdge straddles the ray. If does, compute and test intersection.
"/
static [int IntersectStraightEdge (const edge & aEdge
const point & aP ,
double aDiskR ,
bool & rVertex

int flIsecs = 0 ;
rVertex = false ;

bool|lHorizontal = equal (aEdge.mSP.y , aEdge.mEP.y', aDiskR) ;

// 1f the edge is horizontal we skip it, because it dosen’t intersect the
// ray (is parallel or coincident with it).

if (|! lHorizontal)

double 1Lx = aP.x - aDiskR ;
bool 1ToRay = equal (aEdge.mEP.y , aP.y , aDiskR) ;

// If the edge is incidient upon the ray, this is a vertex intersection.
if (lToRay && aEdge.mEP.x > 1lLx)

{
risecs =1 H
rVertex = true ;
}
else

// See if the edge's ending points are on oposite sides of the ray.
bool 1lFAbove = aEdge.mSP.y > aP.y ;

}
//
//

//
/7
//
/7
//
//

bool 1TAbove aEdge.mEP.y > aP.y ;

if (lFAbove != 1TAbove)
{
// 1f the edge straddles the ray, check actual intersection.
double dx = aEdge.mEP.x - aEdge.mSP.x ;
double dy = akEdge.mEF.y - aEdge.mSFP.y ;
double d = (aEdge.mEP.y - aP.y } * dx / dy :
double 1Ix = aEdge.mEP.» - d ;
if (1Ix > 1Lx)
{
point 1I (1Ix , aP.y) ;
if (! equal (1I , aEdge.mSP , aDiskR))
{
rIsecs =1 ;
rVertex = false ;

}
}
return rlsecs ;

J1111T177770700777077707777777777777777777777777777770777717777777777777777777771777777777777777

LL111T170777777777070777777077777777707777777707777777707777777777777777777777777717771771717777777
function IntersectArcEdge

Test if the arc edge intersects the horizontal ray to the right of 'aP'
The following cases are specially tested and considered:
The ray is tangent to the circunference:

// A vertex intersection is reported if the ray starts from the left of the center,
// and the arc ends at 90 or 270 deg. (that is, the arc is incident upon the ray).
// The ray is inside the circunference: 2 intersections might exist.
// If the arc is incident upon the ray, report 1 vertex intersection.
// Otherwise, report intersections if they are inside the arc (testing angles), and
// the ray starts from the left of the intersection x coordinate.
/) == e e e e e e
// function fitAnglelnterval
//
// Test is 'aAngle' is in the interval ['aStartA',K 'aEndA'].
// Angles are asummed to be normalized: inside [C,2PI).
// ‘'aCCW' indicates if the angles are measured counter-clockwise or clockwise.
//
inline bool fitAnglelInterval (double aStarthA , double aAngle , double aEndA , bool aCCWw)
{

bool rlIs = false ;

if (aCCw)

{
if (aEndAR > aStarthA)

if

(fitClosedInterval (aStartdA , aAngle , aEndA)) rIs = true ;
}
else
{
if (! fitOpenInterval (aEndA , aAngle , aStartA)) rIs = true ;
}
}
else
{
if (aEndA > aStarthA)
{
if (! fitOpenInterval (aStartA , aAngle , akBndA)) rIs = true ;
}
else
{
if (fitClosedInterval (aEndA , aAngle , aStartA)) rls = true :

return rIs ;

const double
const double
const double
const double

cPi

cHalfPi
cThreeHalfPi
cTwoPi

3.14159265358979323846 ;
cPi / 2.0 ;

3.0 * cPi / 2.0 ;

2.0 * cPi ;

1c 1nt IntersectArcEdge (

0
false

int rIsecs
rVertex

double 1Dy
double 1DyAbs
bool 1Tangent
bool lstraddl

Note:
be true;

const edge & aArc
const point & aP
double aDiskR
bool & rvertex
)

= aP.y - aArc.mC.y ;

= abs (1Dy) 7

= equal (1DyAbs , aArc.mR ,

e = 1DyAbs < aArc.mR ;

1Tangent might be true in near-tangent conditions,

indeed,

’

’

’

aDiskR)

but 1lStraddle could also

1Tangent should be tested first.

double 1lLx = aP.x - aDiskR ;
// The ray is tangent to the circunferece.
if (lTangent && lLx < aArc.mC.x)
{
bool 1lEndV = equal (aArc.mEP.x , aArc.mC.x , aDiskR) ;
bool 1EndAt90 = aArc.mEP.y > aArc.mC.y && lEndv ;
bool 1EndAt270 = aArc.mEP.y < aArc.mC.y && lEndv ;
// I1If the ray is above the center and the arc ends at 90 deg,
// or the ray is below and the arc ends at 270 deg,
// there is 1 vertex isec, otherwise, tangent intersections are not counted.
if ((1Dy > 0 && 1lEndAt90) || (1Dy < O && 1EndAt270)
{
risecs ++ ;
rVertex = true ;
)
}
dlse if (1lStraddle)
{ .
// Get intersection angles (symmetry around the Y center line).
double lAlfa = asin (1lDyAbs / aArc.mR) ; // O-radius arcs are not supported!
double 1Beta = 1lAlfa + cPi ;
// Get angles in 3rd and 4th guadrants if the ray is below the center.
if (1Dy < 0)
{
1Alfa = cTwoPi - 1lAlfa ;
lBeta = cTwoPi - 1lBeta ;
}
// Compute the x coordinates of the intersections.
double 1X0 = aArc.mC.x + cos (lAlfa) * aArc.mR ;
double 1X1 = aArc.mC.x + cos (lBeta) * aArc.mR ;
point 1I0 (1X0 , aP.y) , 1I1 (1X1 , aP.y) :
// Test for a vertex situation.
if ((equal (aArc.mEP , 1I0 , aDiskR) && 1X0 > 1lLx)
|l (equal (aArc.mEP , 1I1 , aDiskR) && 1X1 > 1Lx)
)
{
risecs =1 ;
rVertex = true ;
}
else
{
// An intersection is valid if:
// 1.Is alcong the ray.
// 2.Is not at the stating point of the edge.
// 3.Is between the arc sweep.
if « 1X0 > 1Lx
&& ! equal (aArc.mSP , 1I0 , aDiskR)
&& fitAnglelInterval (aArc.mSA , 1lAlfa , aArc.mEA , aArc.mCCW)
)
risecs ++ ;
if | 1X1 > 1Lx
&& ! equal (aArc.mSP , 1I1 , aDiskR)
&& fitAngieInterval (aArc.mSA , lBeta , aArc.mEA , aArc.mCCW)
)
risecs ++ ;
}
}
retLrn risecs :

}
//

LITTTI0707070777070777077777777777707070777777777777707770777777770770777770777770777777717171717177

L117777777777770777777777777777777777770777777777777777777777707077777077727777077777077777077777777777

// Finds the intersections of the ray with the current edge.

// Uses the fact that the ray is an horizontal straight line.

//

int IntersectEdge (const edge & aEdge
const point & aP

double aDiskR '
bool & rVertex
)
{
if (-.aEdge.mType == cArc)
return IntersectArcEdge (aBdge , aP , aDiskR , rVertex) ;

else

return IntersectStraightEdge (aEdge , aP , aDiskR , rVertex) ;

}

LILLPLTTL0770777777070777707777770770777077777707717777717

// Test if the point is inside the curvilinear polygon.

// Algorithm:

// Count the number of switching intersections with an horizontal ray started at 'aP', and
// extending to the right.

// RAn intersection is considered switching if it crosses the polygon.

// An intersection is not considered switching if it is tangent to the polygon, and doesn’'t
// crosses it.

bool into_polygon (const edge * aPoly , const point & aP)
{
bool riInto ;

int 1lCount = 0 ;
bool lVertex H

double 1DiskR = 0.7 ; // Domain spacific. Assummes that the smaller edge is > 7 in length.

//
// The key point is to clasify intersections as 'switching' and 'not switching'.

// If the intersection is not at a polygon's vertex, then it is switching (counted).

// 1If it is at a polygon's vertex (vertex situation), then

// Determines the position of the edge with respect to the ray: Above,Over or Below.
// Determines the position of the next edge with respect to the ray.

// If positions are different, the vertex intersection is switching, otherwise not.
//

const edge * 1lCurr = aPoly , * 1lNext ;

do

{
1Next = 1lCurr -> mNext ;

// Get intersections.
int 1lIsecs = IntersectEdge (*1Curr , aP , 1DiskR , 1lVertex) ;

// Consider intersections.
if (lIsecs)
{
if (1lVertex)
{
// If it is a vertex intersection, compare positions of curr and
// next edge.

// position() returns the position(Above,Over or Below) of the current

// edge w.r.t. the ray.

// 'lExtralsecs' is needed if the edge is an arc.

int lExtralsecs = lIsecs - 1 ;

int 1lCurrPos = position (*1Curr , aP.y , lExtralsecs , cCurrent , 1lDiskR) ;

// Find position (Next).
// Skips edges aligned with ray (position(Next)==0ver).
int 1NextPos ;
for (bool lNextFound = false ; 1lNext && ! 1lNextFound ;)
{
// position() needs 'NextExtralsecs'.
// 1f next is a line, NextExtralsesc is 0, but if it is
// an arc, we need to compute this value.
// In this, case, we cache the intersections info found

// for the next edge, so 1t can be used in the next loop
// when next becomes curr.
int 1lNextExtralsecs = 0 ;
if (1lNext -> mType == CArc)
{
int lIsecs = IntersectArcEdge (* 1lNext ,
ap '
1DiskR ,
lVertex
)
1lNextExtralsecs = (1lVertex ? lIsecs - 1 : llsecs) ;

}
1NextPos = position (*1Next , aP.y , lNextExtralsecs , cNext , 1DiskR)

// Consider Next valid only if it is not aligned with ray.

if (1lNextPos != cOver)
1NextFound = true ;
if (! 1lNextFound)

1Next = 1lNext -> mNext ;

// If curr and next are on different positions w.r.t. the ray, we
// have a switching intersection.
if (1lCurrPos != 1lNextPos)

1Count ++ ;

// If curr is an arc, there might have been a extra intersection
// not at the vertex, we need to count that.
if (lExtralsecs)

1Count += lExtralsecs ;

// If the next edge is a straight edge, we don't need to
// consider it again.
if (lNext -> mType == cStraight)

lNext = lNext -> mNext ;

}
else

// If not a vertex inersection, count first order intersections only.
1Count += lIsecs ;

}

1Curr = 1lNext ;
}
while (1lCurr) :

// An 0Odd number of switching intersections means the point is inside.
rIinto = ((1lCount % 2) == 1) ;

return rinto ;

//
LINIITLTITIT 070777070 70070777777777707707777077777777770777777777777777707777777777707777771771777177

References:

[1]|Eric Haines, Point in Polygon Strategies, Graphics Gems IV, Academic Press, 1994.

[2]|Kevin Weiler, An Incremental Angle Point in Polygon Test, Graphics Gems 1V, Academic Press, 1994.
[3]{Joseph O'Rourke: Computational Geometry in C.

[4]|Joseph O'Rourke: Comp.Graphics.Algorithms, FAQ: 2D Polygon Computations.

[5]|Cesar N. Gon: GeoLab project, Polygon methods.

{6]|Martin Held: On the Computational Geometry of Pocket Machining, LNCS 500.

