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Inside-polygonO algorithm for curvilinear contours. 
Design and lmplementation 

Fernando Luis Cacciola Carballal 
May.1999 

cacciola@sminter.com.ar 

Abstract 

This paper describes an algorithm to determine whether a point is inside or outside a curvilinear polygon, based on the well known 
algorithm consisting of counting the intersections of an horizontal ray with the polygon. 

Curvilinear polygons. as analytic resources. are not common in computer graphics, but they do arise on sorne domains. Normally, 
parametric curves, such as cubic splines or beziers, are used to model curves in graphic applications. But parametric curves cannot be 
easily manipulated in analytic computations. For example, obtaining a curve parallel to another is not a simple task, and is not even 
possible under all circumstances. 
For this reason, sorne computational geometry applications use non-parametric polyline curves, formed by straight-Iine segments and 
circular arcs. The straightforward geometry of lines and circumferences makes it easy to develop complex algorithms to work with non­
parametric curves. 
But despite the fact that this curves are easy to treat analytically, they lack the parametric benefits of c1assical curves; and for this reason, it 
is very hard to find in the literature any work about them. 

If we are to represent curvilinear polygons using patches of straight-line segments and circular arcs, named polyline curvilinear polygons, 
one ofthe fundamental óperations that we need to implement is the point-in-polygon test. 
Haven't been able to find any such algorithm. the author adapted the c1assical method used with straight-Iine polygons, and extended it for 
use with polyline curves. 

Part 1. Design. 

General Method: 

Let e be a polyline curvilinear polygon, made up of an ordered and oriented sequence of straight-line segments and circular ares. 
Let p be a 2D point. 
The following method can be used to determine whether p is inside or outside C. 

1.Let L be a straight-line segment starting at p, and ending at q=(MaxX,p.y) 
L is a ray originating at p and extending to the right, beyond the rightest coordinate of C. 

2.Count the number of switclJing intersections between L and C. 

3.1fthe number of switching intersections is odd, p is inside; otherwise, p is outside C. 

Switching intersections: 

Definition 1: A switching intersection is an intersection between L and e, S.t. L passes from the interior of e to its exterior, or vice versa. 
Definition 2: A non-swilching intersection is an intersection between L and e, S.t. L remains in the interior, or exterior ofe. 

A switching intersection implies that L crosses C. 
A non-switching intersection implies that L only-touches e, without crossing it. 
We found non-switching intersections at sorne vertices. and at second-order intersections on circular ares. 

Iftwo intersections occur at the same point, they represent a single second-order intersection. 
Circular edges report second-order intersection when the crossing line is tangent to the circumference ofthe are. 
Straight-edges report only first order intersections. 
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uld not consider the staning point of the edges. 
uld be able to repon up to 2 interse ctions in the case of a circular edge. 
intersection must have an 'order' as sociated with it. If2 intersections with the same edge occur at the same point, only I intersection, 

order 2, should be reponed. 
uld not repon continuous intersecti ons. For example, two collinear straight-line segments do not intersect. 

es not have to repon the coordinate s ofthe intersection; only its existence and information indicating ifthey occur at the ending point 
e edge. 

sections at the venices. 

ment 1: A first-order intersection n ot at the ending point of an edge is a switching intersection. 
ment 2: A second-order intersectio n not at the ending point of an edge is a non-switching intersection. 

oblem arises at the venices, because there is a parametric discontinuity at those points. 
never an intersection occurs at the e nding point of an edge (a venex), we need to determine if L is crossing C, or just touching it: 

Ivsis of straie:ht-onlv ede:es: 

ider a polygon made up of straight edges. 
ider a ray, L, intersecting an edge a t its ending point. The ending point of an edge is a venex of the polygon. 

t v be its ending point (a vertex). urr be the intersected edge, and le 
fine Curr is not collinear with L; if L intersects Curr at v then Curr is aboye or below L. 
consider the next edge, Next, and assume it's not collinear with L. Then Next is 'also aboye or below L. 

r be seen that ifboth Curr and Nex t líe on the same side ofL (above or below), then L is not crossing the polygon, but touching it at 
pposite sides of L, then L crosses C. herwise, if Curr and Next lie on o 

ment 1 :A straight edge cannot cros s L more than once. 
ment 2: Being v the intersection of L and a straight edge E, ifv is an extreme (staninglending point) ofthe edge. E is entirely Above. 
IworOver L. 

hition 2: S'(E) is an open segment of L which is under the cone of influence of an edge. That is. the locus of points c10ser to that edge 
to any other. 

ment 3: For a straight edge E, S'(E ) is entirelv Imide,Outside or Over C. 

nition 3: PosL'(E), is the position o fa straight edge E W.r.t L. 
~ be Above. Over or Below. 
ve and Below are oQQosite Qositions 

is not oQQosite to any other positio n. 

nition 4: PosS'(E), is the position of S'(E) w.r.t C. 
n be lnside. Over or Outside. 
~e and Outside are oQQosite Qositio ns. 

on. is not oQQosite to any other positi 

~'(E) is directly defined by PosL'( E); that is, the position ofa segment ofL w.r.t. C. is defined by the position ofthe edge E w.r.t L. 

ain words, the aboye definitions an d statements help in observing how the horizontal ray is getting in and out the polygon. By 
rving how the edges relate to L (ab ove, below or over), as we move along the polygon, we are observing how L relates to C (inside, 
de or over). 

ment 4: IfPosS'(Curr) is opposite to PosS'(Next), the venex intersection is a switching intersection. 
PosS'(Next), the venex intersection is a non-switching intersection. If PosS'(Curr) is equal to 

rly, if PosS'(Curr) is opposite to P 
ent aboye, or under Next. Thus, L 

osS'(Next), then the open segment of L under, or aboye Curr is in opposite position w.r.t the open 
crosses C at the intersection. 

larly. ifPosS'(Curr) is equal to Po sS'(Next) , both open segments of L are in the interior or the exterior of C, and L touches C, but 
n't crosses it. 



If PosS'(Next) is Over, the situation is undefined. We cannot detennine how L relates to C at this point. We need to look forward for the 
first edge whose PosS'(edge) is not Over. 
In the following, Next is the first edge nol over L. 

Analysis of circular edges. 

Statement 4 is based on statement 1; with circular arcs, we need other statements to extend the concept behind statement 4. 

Statement 5: A circular arc may cross L al most twice. 

Suppose that Curr is an arco Since L intersects the vertex v, and the ending point ofCurr is v, one ofthe possible intersections is at V. 

According to statement 5, only one more intersection might be found for this edge. 
This intersection cannot occur at the starting point of Curr, because we don't consider intersections at the starting point of edges. 
Therefore, the following is true: 

Statement 6: Ifthere is only I intersection between L and an edge, that edge is entirely Above, Be/owo Over L. 
Statement 7: Ifthere are 2 intersections between L and an edge, that edge can be conceptually splited in two portions, each ofone is 
entirely located at opposite sides of L. 
This definition is based on the constraint imposed on the intersection routine: second order intersections are reported as I single 
intersection. 

We denote a general edge portion as edge*. 
The first portion, noted edge>, is the sub arc going from the starting point to the first intersection. 
The last portion, noted <edge, is the sub arc going from the first intersection to the ending point. 
(The notation edge* is used when there is no need to specify first or last portion). 

lfthere is only l intersection, being E a straight or circular edge, E*, E> and <E denote the entire edge. (E=E*,<E,E» 

Statements 6 and 7 are a generalization of Statement 1 for straight or circular edges. 

Definition 5: S(E*) is the open segment of L which is under the cone of influence of an edge portion. That is, the locus ofpoints closer to 
that edge portion than lo any other edge. This definition does not compare different portions ofthe same edge. 

Definition 6: PosL(E*), is the position ofan edge portion E* w.r.t L. 
It can be Above. Over or Be/oV>'. 

Above and Be/ow are opposite positions. 
Over is not opposite to any other position. 

Definition 7: PosS(E), is the position of S(E) W.r.t C. 
lt can be ¡nside, Over or Outside. 
¡nside and Outside are opposite positions. 
Over is not opposite to any other position. 

Like PosS'(E), PosS(E*) is directly defined by PosL(E*). 
The trick here is that E* is not the same as E; it is a portion of E which is entirely at one si de of L. 

Statement 8: If PosS(Curr» is opposite to PosS«Next), the vertex intersection is a switching intersection. 
If PosS(Curr» is equa/ to PosS«Next), the vertex intersection is a non-switching intersection. 

The treatment ofthe possible values for PosS(Curr» and PosS«Next) remains as stated in the first analysis. 

AIgorithm. 

In order to tum these defmitions into an algorithm, we need to devise a way to uniquely obtain PosS(Curr» and PosS«Next) for an 
arbitrary edge. 



===i':.:.:e::.:.n:.:.t~9: Given the edge E which has exactly l interscction with L at \', where vis the ending point ofCurr, PosS(E*) is given by 
,p.y L.y); where p is the starting point of E when E is Curr, and its ending point for E being Next. 

';tate ent JO: Given the edge E which has exactly 2 first-order intersections with L, being one at v, where \' is the ending point of Curr, 
Pos S E* is given by (L.y-p.y), where p is the starting point of E when E is Curr, and its ending point for E being Next. 

Whe ever Curr has intersections with L, we need to detennine if any one ofthem is at its ending point 
IfCu r intersects L at v, where vis the ending point ofCurr, we are in a Ver/ex Situation, 
IfCu r intersects L, but not at v, we are in a non Vertex Situation 

situations: 

As e lained in the preceding paragraphs, we need to c1assify the vertex intersection. Ifwe regard it as a switching intersection, we count 
it ot erwise we don't. 
Ifwe ave found 2 intersections for Curr (they can only be first order), then l is directly regarded as switching and counted. This is 
corre t since Statement 7 says that the two portions ofthe arc are at opposite positions w.r.t L, and therefore C is at opposite positions 

on each arc portion, so L crosses C and that extra intersection is switching. 

statement 9 and 10, we can setup the procedure positionO which calculates the position ofthe ray w.r.t the polygon on each edge. 
rocedure is shown in the code) 

The a gorithm looks as follow: 

Sean 
I 

eaeh edge in turno 
the Curr edge has any interseetion with L. 
If at least 1 interseetion is at a vertex 

Take the Next non-aligned nor over edge. 
Compute position(Curr) and position(Next). 
Compare positions. 
If they are not equal 

Count the interseetion. 
If no interseetion is at a vertex 

Count only first-order interseetions. 

In ord r to compute position(Next), we need to fmd the intersections ofNext with L, because the procedure needs infonnation about how 
many tersections there are. 
An op imization can be introduced testing whether Next is a straight line or circular arco Ifit is a straight line, position(Next) can be 
comp ed directly from its ending point; if it is a circular are, we need to test for its intersection with L, and apply the positionO procedure. 

«Next) is Over, we have to search for the first edge not Overo This is true because: 
Ifthe dge is a straight edge, PosS«Next)=Over means the edge is geometrically over L, so it is aligned with it. 
Ifthe dge is a circular edge, PosS«Next)=Over means that L switches sides twice, in this case, the situation with L w.r.t C is undefined 
just as fNext were aligned with L. 

Part 11. Implementation_ 

Re res ntations: 

Unfo ately, since we need to represent polyline polygons fonned with circular arcs, we need to use floating point coordinates. 
Becaus ofthis, a technique called bounded evaluation will be used in order to assure robustness. 
Bound d evaluation defines the operation equal as: A=B iif I A-B I <e. 
The nu ber e, called epsilon, is dornain specific. For that reason, it is not a constant but a parameter passed along the different parts ofthe 

. (Sorne prograrns uses the standard epsilon value defined as the difference between two adjacent floating point representations, 
ose to leave this user defined). 

represent the polygon as a Iinked list of edges. There are straight and arc edges. 
t edge is defmed by its endpoints. 



An arc edge is defined by its center, radius. endpoints. endangles and a flag indicating ifthe angles are measured counter-c1ockwise or 
c1ockwise. Sorne applications forceccw orientation; I wanted to show how this is not a constraint ofthe algorilhm so I provided support 
for arbitrary orientations. 

The intersection routines: 

Because the ray is an horizontalline, we can optimize the interseetion routines. 
Intersections at lhe ending points ofthe edges are central beeause they indicate a vertex situation. Therefore, the inlersection routines test 
for this case specifically. 
For straight edges. horizontal edges or edges Iying completely al one side ofthe ray have no intersections, and this can be detected easily 
by comparing coordinates. 
For arc edges, ifthe ray is tangent to the circumference, we have a second order intersection. According to the definitions and statements 
shown in the algorithm design, second order intersections should be counted only in vertex situations; indeed, only tangent intersections 
that occur at the ending point ofthe arc are reported. In this way, second order intersections are simply never reported, and the code is 
simplified because it doesn't need to account for 2 types of intersections. The are intersection routine uses a trigonometric approach; there 
are others, but I choose this one because I believe it is numerieally stable. 
Because the ending point of an edge is the starting point of the next edge, we cannot report intersections that occur at the starting point. 
Null edges, that is, edges in which the starting point and ending point are equal, or zero-radius arcs, are assumed not to appear. There are 
no special considerations for this in the codeo but ifthey might arise in praetice. additional tests should be added. 

Endpoint intersections: 

Because a vertex is a point shared by two adjacent edges, if an intersection at the ending point of one edge has been reported, the 
intersections at the starting point ofthe next edge should be discarded. 
Because ofthe Iimitations offloating point calculations, we use a bounded evaluation to determine ifthe intersection is at the ending point 
ofthe edge. This evaluation defines that 2 points are equal iftheir Euclidean distance is lower than sorne number R. 
This can be seen as using a disk ofradius R centered at the endpoint ofthe edge, ifthe ray enters the disk it intersects the edge. 
Similarly, for the next edge, we put the disk at its starting point. and ifthe ray enters the disk, it doesn't intersect the edge. 
In the code, because there are specific comparisons arranged so that fewer calculations are actually performed, this disk is conceptually 
applied in each stage. 
What needs to be assured is that if an intersection is reported at the endpoint of an edge, it is not reported again at the starting point ofthe 
next edge. To assure this, the code is designed so that starting and ending point tests are mutually exclusive. 

The code: 

The following code is C++ codeo lt does not use the language extensively in order to keep it generie. For this reason, the edge structure is a 
super slTUcture with all the information for both straight and arc edges; this is not the way you would do this in C++, but it fits the purpose 
ofthis paper. 
The code is self-contained, so general functions and definitions have been included. 
I've chosen to improve in c1arity rather than in efficiency, so the code is dissected in a lot offunctions, including C++ inline functions for 
small calculations. The C++ inline facility let this code be fast even if it appears to have too many function calls. 

/////////////////////////////////////////////////////////////////////////////////////////////// 
// A1gorithm po1ygon into() for curvi1inear po1y1ine po1ygons. 
// 1999, Fernando LuIs Caeeio1a Carba11a1. 
// 
//---------------------------------------------------------------------------------------------
// Representations. 
// 
// point: 2D f1oating-point coordinates. 
// edge: straight and are edge. 
struet point ( point (doub1e x = O , doub1e _y O) x ( x) , y ( _y ) (1 

doub1e x , y ; 
) ; 

const int cStraight O 
eonst int eAre 1 
struet edge 
( 

I ; 

edge 
int 
point 
doub1e 
bool 

void ) { ZeroMemory ( this , sizeof ( edge ) ) 
mType ; 
mSP , mEP , me 
mR , mSA , mEA 
mCCW ; 

edge * mNext ; 

//---------------------------------------------------------------------------------------------



'1--- -----------------------------------------------------------------------------------------
'/ Au'iliary functions, 
enlin boci equal ( double a , double b , double epsilon ) 

ret rn ( a > b ? ( a - b ) < epsilon (b - a ) < epsi 1 on ) 
enlin bool fitClosedlnterval ( double 1 , double n , double h 
; ret rn ( 1 <= n ) && ( n <= h ) ; } 
enlin bool fitOpenlnterval ( double 1 , double n , double h 
, ret rn ( 1 < n ) && ( n < h ) ; } 
Lnlin double abs ( double n ) 
: ret rn n >= O ? n : - n ; } 
Lnlin double pow2 ( double n ) 
( ret rn n * n ; ) 
enlin double distance ( const point & a , const point & b ) 
; ret rn sqrt ( pow2 ( b.x - a.x) + pow2 ( b,y - a.y ) ) ; 
inlin bool equal ( const point & a , const point & b , double epsilbn ) 
{ ret rn distance ( a , b ) < epsilon ; } 
11--- -----------------------------------------------------------------------------------------

11--- -----------------------------------------------------------------------------------------
11 fu ction position: 
// 
1/ Re rns the position of the edge with respect to the ray at 'y', 
11 It could be Below(-l), Over(O) or Above(l}. 
1/ 
1/ 
11 
11 
11 
1/ 
// 

'a ge': the edge to be considered. 
'y': y-coordinate of rayo 
'aE.traIsecs': Needed if the edge is 
'aC rrOrNext': Indicates if the edge 
'aE silon': Ai thmetic epsilon. (le-5 

an arco See algorithm description. 
is the curr or next edge. 
is usu~lly a good value) 

const nt cBelow - 1 // return value from position () 
const nt cOver O // return value from position () 
const nt cAbove + 1 // return value from position () 
const nt cCurrent O // indicates current edge. 
const nt cNext 1 // indica tes next edge. 

inline int position ( const edge & aEdge , double y , int aExtraIsecs, int aCurrOrNext , double aEpsilon ) 
{ 

} 

dou le ey = ( aCurrOrNext == cCurrent ? aEdge.mSP.y aEdge.mEP.y); 
dou le d = ( aExtraIsecs ? y - ey ey - y ) ; 
ret rn equal ( d , 0.0 , aEpsilon ) ? cOver : d > O ? cAbove : cBelow 

//---- ----------------------------------------------------------------------------------------

1///// //////////////////////////////////////////////////////////////////////////////////////// 
1/ fun tion IntersectStraightEdge 
1/ 
1/ Tes is the straight edge intersects the horizontal ray to the right of 'aP' 
1/ 
1/ If dge is incident upon the ray, report 1 vertex intersection. 
1/ Oth rwise, check if aEdge straddles the rayo If does, compute and test intersection. 
,/ 
;tatic 'nt IntersectStraightEdge ( const edge & aEdge 

const point & aP 
double aDiskR 
bool & rVertex 

int Isecs = O ; 
rVer ex = false ; 

bool lHorizontal = equal ( aEdge.mSP.y , aEdge.mEP.y' , aDiskR ) ; 

// 1 the edge is horizontal we skip it, because it dosen't intersect the 
// r y (is parallel or coincident with it). 
if ( ! lHorizontal ) 
{ 

double lLx = aP.x - aDiskR ; 
bool lToRay = equal ( aEdge.mEP.y , ap.y , aDiskR 

// If the edge is incidient upon the ray, this is a vertex intersection. 
if ( lToRay && aEdge.mEP.x > lLx ) 
{ 

else 
{ 

rIsecs 1 
rVertex true 

// See if the edge's ending points are on oposite sides of the rayo 
bool lFAbove = aEdge.mSP.y > ap.y ; 



} 

boo1 1TAbove = aEdge.mEP.y > ap.y 

if 1FAbove!= 1TAbove ) 
{ 

return rIsees 

II If the 
doub1e dx 
doub1e dy 
doub1e d 
doub1e 1Ix 

edge straddles the ray, check actual intersection. 
aEdge .mEP. :.: 
aEdge.mEP.y 
( aEdge.mEP.y 
aEdge.mEP.>: -

if 1Ix > 1Lx ) 
{ 

aEdgE:.rr.SP.:-: ; 
aEdge.mSP.y ; 

aP.y ) • d>: I dy 
d ; 

point 11 ( 11x , ap.y ) ; 
if ( ! equa1 ( 11 , aEdge .mSP , aDiskE 
{ 

rIsecs 
rVertex false 

II 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

1111111111111/11/11111//11111111111111111111111111/1/111/11/111/11/1111111111111111111111111111 
/1 funetion InterseetAreEdge 

Test if the are edge interseets the horizontal ray to the right of 'aP' 
The following cases are specially tested and eonsidered: 

The ray is tangent to the eireunferenee: 

II 
II 
/1 
II 
II 
/1 
II 
1/ 
II 
II 

A vertex interseetion is reported if the ray starts from the left of the eenter, 
and the are ends at 90 or 270 deg. (that is, the are is ineident upon the ray). 

The ray is inside the eireunferenee: 2 interseetions might existo 
If the are is ineident upon the ray, report 1 vertex interseetion. 
Otherwise, report interseetions if they are inside the are (testing angles), and 
the ray starts from the left of the interseetion x eoordinate. 

II------~--------------------------------------------------------------------------------------
II funetion fitAngleInterval 
II 
II Test is 'aAngle' is in the interval ['aStartA', 'aEndA']. 
II Angles are asurnmed to be normalized: inside [O,2PI). 
II 'aCCW' indieates if the angles are measured eounter-eloekwise or cloekwise. 
II 
inline bool fitAnglelnterval ( doub1e aStartA , doucle aAngle , double aEndA , bool aCCW ) 
{ 

bool rIs = false 
if ( aCCW ) 
{ 

if aEndA > aStartA ) 
{ 

if ( fitClosedlnterval ( aStartA , aAngle , aEndA ) ) rIs true 

else 
{ 

el se 
{ 

if( fitOpenlnterval ( aEndA , aAngle , aStartA ) ) rIs 

if aEndA > aStartA ) 
{ 

true 

if ( ! fitOpenlnterval ( aStartA , aAngle , aEndA ) ) rIs true 

el se 
{ 

if ( fitClosedlnterval ( aEndA , aAngle , aStartA ) ) rls true 

return rIs ; 
} 

11---------------------------------------------------------------------------------------------

eonst double ePi 
eonst double cHalfPi 
eonst double eThreeHalfPi 
eonst double eTwoPi 

3.14159265358979323846 
ePi I 2.0 
3.0 * ePi I 2.0 ; 
2.0 * ePi 



le lnt InterseetArcEdge ( const edge 
const point 
double 

& aArc 
& aP 

aDiskR 
rVertex bool & 

int rlsees = O ; 
rVertex = false 

double 
double 
bool 
bool 

lDy 
lDyAbs 
lTangent 
lStraddle 

aP.y - aArc.mC.y 
abs ( lDy ) ; 
equal ( lDyAbs , aArc.mR , aDiskR ) 
lDyAbs < aAre.mR 

Note: lTangent might be true in near-tangent eonditions, but lStraddle eould also 
be true; indeed, lTangent should be tested first. 

ouble lLx = aP.x - aDiskR ; 
// The ray is tangent to the circunferece. 
"f ( lTangent && lLx < aArc.mC.x ) 
{ 

bool lEndV = equal ( aArc.mEP.x , aArc.mC.x , aDiskR 
bool lEndAt90 aArc.mEP.y > aArc.mC.y && lEndV 
bool lEndAt270 = aArc.mEP.y < aArc.mC.y && lEndV ; 

// lf the ray is above the 
// or the ray is below and 
// there is 1 vertex isec, 
if ( ( 1Dy > O && lEndAt90 
{ 

rlsecs ++ 
rVertex = true 

center and the arc ends at 90 deg, 
the arc ends at 270 deg, 
otherwise, tangent intersections are not counted. 

) I I ( lDy < O && lEndAt270 ) ) 

lse if ( lStraddle ) 
{ 

// Get intersection angles (symmetry around the Y center line). 
double lAlfa asin ( lDyAbs / aArc.mR ); // O-radius arcs are not supported! 
double lBeta = lAlfa + cPi ; 

// Get angles in 3rd and 4th quadrants if the ray is below the eenter. 
if ll?y < O ) 
{ 

lAlfa 
lBeta 

cTwoPi - lAlfa 
cTwoPi - lBeta 

// Compute the x coordinates of the intersections. 
doub1e lXO aAr~.mC.x + cos ( lAlfa ) * aArc.mR 
double lX1 = aArc.mC.x + cos ( lBeta ) * aArc.mR 

point 110 ( lXO , ap.y , 111 lX1 , ap.y ) ; 

// Test for a vertex situation. 
if ( ( equal ( aArc .mEP , 110 , aDiskR && lXO > lLx 

&& lX1 > lLx 

e1se 
{ 

I I ( equal ( aArc.mEP , 111 , aDiskR 

rlsecs 1 
rVertex true 

// An intersection is valid if: 
// 1.1s along the rayo 
// 2.1s not at the stating point of the edge. 
// 3.1s between the arc sweep. 
if ( lXO > lLx 

&& ! equa1 ( aArc.mSP , 110 , aDiskR ) 
&& fitAnglelnterva1 ( aArc.mSA , lAlfa , aArc.mEA , aArc.mCCW ) 

rlsecs ++ ; 

if ( lX1 > lLx 
&& ! equal ( aArc.mSP , 111 , aDiskR ) 
&& fitAnglelnterval (aArc.mSA, lBeta , aArc.mEA , aArc.mCCW ) 

rlsecs ++ 

ret rn rIsecs 



} 
// 
/////////////////////////////////////////////1111111111111111111111111111111111/1111/111/////// 

///////1/////11/////////1///////1////11/11/11111/111/11/11111111111111/111111111111111111111111 
11 Finds the intersections of the ray with the current edge. 
11 Uses the fact that the ray is an horlzontal straight lineo 
11 
int IntersectEdge (const edge & aEdge 

} 

const point 
double 
bool & 

if (·aEdge.mType == cArc } 
return IntersectArcEdge 

else 

& aP 
aDiskR 
rVertex 

aEdge 

return IntersectStraightEdge aEdge 

aP aDiskR rVertex 

aP aDiskR rVertex 

11 
1111111111/1/11/1111/1/11111111111111111111111111/11111111111111111111111111111111111/111111/1/ 

/1---------------------------------------------------- -----------------------------------------
/1 Test if the point is inside the curvilinear polygon. 
11 
11 
11 
// 
11 
11 

Algorithm: 
Count the number of switching intersections with an horizontal ray started at 'aP', and 
extending to the right. 
An intersection is considered switching if it crosses the polygon. 
An intersection is not considered switching if it is tangent to the polygon, and doesn·t 

11 crosses it. 
/1 
bool into polygon ( const edge * aPoly , const point & aP ) 
{ -

bool rlnto ; 

int lCount = O 
bool lVertex 

double lDiskR 0.7 1/ Domain spacific. Assurnmes that the smaller edge is > 7 in length. 

1/ 
11 The key point is to clasify intersections as 'switching' and 'not switching'. 
1/ 
11 
11 
/1 
// 
11 
/1 
/1 

If the intersection is not at a polygon's vertex, then it is switching (counted). 

If it is at a polygon's vertex (vertex situation), then 
Determines the position of the edge with respect to the ray: Above,Over or Below. 
Determines the position of the next edge with respect to the rayo 
If positions are different, the vertex intersection is switching, otherwise noto 

const edge * lCurr = aPoly , * lNext ; 
do 
{ 

lNext = lCurr -> mNext 

1/ Get intersections. 
int lIsecs = IntersectEdge ( *lCurr , ap , lDiskR , lVertex ) ; 

II-------------------------------------~-------------------------------------------
/1 Consider intersections. 
if ( lIsecs ) 
{ 

if lVertex 
{ 

/1 If it is a vertex intersection, compare positions of curr and 
// next edge. 

1/ position() returns the position(Above,Over or Below) of the current 
11 edge w.r.t. the rayo 
// 'lExtraIsecs' is needed if the edge is an arc. 
int lExtraIsecs = lIsecs - 1 ; 
int lCurrPos = position ( *lCurr , ap.y , lExtraIsecs , cCurrent , lDiskR ) 

// Find position(Next). 
11 Skips edges aligned with ray (position(Next)==Over). 
int lNextPos ; 
for ( bool lNextFound = false ; lNext && ! lNextFound 
{ 

1/ position() needs 'NextExtralsecs'. 
/1 If next is a line, NextExtraIsesc is O, but if it is 
/1 an arc, we need to compute this value. 
/1 In this, case, we cache the intersections info found 



} 

II 

else 
{ 

II for "ne next edge, so ~t can be used in the next loop 
II when next becomes curro 
in: lNextExtralsecs = O ; 
if ( lNext -> mType == cArc 
{ 

int lIsecs = IntersectArcEdge • lNext 
aP 
lDiskR 
lVertex 

lNextExtralsecs = ( lVertex ? llsecs - 1 : llsecs ) ; 

lNextPos = position ( 'lNext , ap.y , lNextExtraIsecs , cNext , lDiskR ) 

II Consider Next valid only if it is not aligned with rayo 
if lNextPos!= cOver ) 

lNextFound = true ; 
if ! lNextFound ) 

lNext lNext -> mNext 

II If curr and next are on different positions w.r.t. the ray, we 
II have a switching intersection. 
if ( lCurrPos != lNextPos ) 

lCount ++ ; 

II If curr is an are, there might have been a extra intersection 
II not at the vertex, we need to count that. 
if ( lExtralsecs ) 

lCount += lExtralsecs ; 

II If the next edge is a straight edge, we don't need to 
II consider it again. 
if ( lNext -> mType == cStraight 

lNext = lNext -> mNext ; 

II If not a vertex inersection, count first order intersections only. 
lCount += lIsecs 

lCurr = lNext 

while ( lCurr ) ; 

II An Odd number of switching intersections means the point is inside. 
rInto = ( ( lCount % :2 ) == 1 ) ; 

return rlnto ; 

II 111/////////////////////////////////////////1//////////////////1//////////////////////////// 
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