The B Method as an Environment for
the Verification of Eiffel Programs:
A Case Study

Juan Oviedo and Nazareno Aguirre

Departamento de Computacion, FCEFQyN,
Universidad Nacional de Rio Cuarto,
Enlace Rutas 8 y 36 Km. 601, Rio Cuarto, Cérdoba, Argentina,
{joviedo, naguirre}@dc.exa.unrc.edu.ar

Abstract

In this paper we present an attempt to represent Eiffel programs as B
specifications. Our purpose is to use the B method as an environment for
the verification of the correctness of Eiffel programs.

We study the difficulties associated with the representation of object
oriented features (inherent to Eiffel programs) in the non object oriented
B language. We use an extension to B in order to represent dynamic
creation and deletion of objects, and show how object interaction can be
achieved by borrowing some ideas from software architectures.

The paper is centred on a simple and well known case study, the tra-
ditional object oriented implementation of generic lists.

Keywords: Object orientation, Program Verification, B Method.

1 Introduction

Object orientation is one of the most successful modern methodologies for the
design and implementation of software systems. It constitutes an elegant and ef-
ficacious realisation of well established programming principles such as modular-
isation, information hiding and reuse. If used appropriately, object orientation
can lead to the development of quality software.

Currently, there exist various object oriented development techniques, and
a wide variety of object oriented programming languages. A particularly inter-
esting object oriented programming language is Eiffel [9]. Eiffel was created by
one of the leading researchers in object orientation, Bertrand Meyer, and relies
on a well founded design concept, called design by contract [10]. In the context
of object orientation, a contract is a statement that regulates the interaction be-
tween an object and its clients, and is expressed in terms of assertions. Typical
examples of these assertions are preconditions and postconditions for methods,
and class invariants, but other kinds of assertions are also possible.

Eiffel supports the definition of contracts by means of assertions, and pro-
vides mechanisms for capturing contract violation at run time, based mainly on

the use of exceptions. One can then realise if “something went wrong” during
the execution of a program, and act appropriately by catching the thrown excep-
tions. However, Eiffel does not directly provide a mechanism for verifying that
a program, or more precisely its constituent classes, satisfy their correspond-
ing contracts. Verifying that a class satisfies its contract is a very important
task, since it would ensure that, if the class is employed appropriately (i.e.,
within the “terms and conditions” of its contract), it will provide the required
functionalities (i.e., it will fulfill its contract).

In order to verify that a class satisfies its corresponding contract, Bertand
Meyer proposed attaching an abstract model to each class, and translate the
class into a mathematically defined version; in order to prove that the class
is correct, one needs to check that the mathematical version of the class is
consistent with its abstract model. As indicated in [12], this might be done by
translating Eiffel classes into specifications in the B language. The B formal
specification language is a model based formalism for software specification. It
has an associated method, the B Method [1], and commercial tool support,
including proof assistance [4][5].

In this paper, we study the difficulties associated with the representation of
object oriented features (inherent to Eiffel programs) in the non object oriented
B language. The B language does not directly support some object oriented con-
structs, most notably dynamic creation and deletion of components, inheritance
and communication through object references. We use a previously proposed
extension to B in order to represent dynamic creation and deletion of objects,
and show how object interaction can be achieved by borrowing some ideas from
software architectures.

The paper is centred on a simple and well known case study, the traditional
object oriented implementation of generic lists.

2 The B Method

The B language belongs to the class of the so called model based formal specifi-
cation languages. It has been used in industry with some success, in a number
of applications ranging from the development of control systems to smart cards.
As all formal methods, the B method provides a formal language to describe
systems, allowing for analysis and verification of certain system properties prior
to implementation. An important characteristic of B is that it covers the whole
development process, from specification to implementation.

B specifications are centred on the notion of abstract machine. Abstract
machines are the units of modularisation of specifications in B, and resemble
modules of non object oriented imperative languages. An abstract machine
encapsulates data and behaviour. Data is represented in terms of variables, and
behaviour in terms of operations. Consider, as a simple example, the abstract
machine in Fig. 1. This is a simple machine, composed of a single variable, and
two operations for setting and getting the value stored in this variable. This
variable is “typed” by a set which is passed as a parameter of the machine.

As seen in this abstract machine, the types of the variables are specified
within the invariant of the machine. The invariant might contain more complex
statements, indicating which properties must be maintained throughout the life
time of the abstract machine.

MACHINE
NODE(E)
VARIABLES
item
INVARIANT
item € E
INITTIALIZATION
item :€ E
OPERATIONS

set(i) = PRE<i € E THEN item := ¢ END
z «— get = BEGIN z := item END

END

Figure 1: A simple abstract machine

Operations are specified by means of preconditions and multiple assignments.
It is required that operations preserve the machine invariant. This constraint is
part of the proof obligations of abstract machines. These constraints must be
discharged in order to guarantee the consistency of the abstract machine.

2.1 Object Oriented Extensions to The B Method

Various facilities for structuring specifications are provided in B, helping to make
the specification and refinement activities scalable. However, the B method has
an important restriction regarding structuring mechanisms, namely, it does not
provide dynamic creation and deletion of modules or components. All struc-
turing mechanisms of B are static; they allow one to define abstract machines
whose architectural structure in terms of other components is fixed, i.e., it does
not change at run time [6]. Dynamic management of the population of com-
ponents is a feature often associated with object oriented languages, since the
replication of objects is intrinsic to these languages [11]. Indeed, dynamic man-
agement of “objects” appears frequently and naturally when modelling software,
perhaps due to the success of object oriented methodologies and programming
languages. However, fully fledged object oriented extensions of B would imply
a significant change to B’s (rather neat) syntax and semantics, and would ex-
cessively complicate the tool support implementation (especially in relation to
proof support).

In [2], an extension of the syntax of B is proposed for supporting dynamic
population management of components. This extension, in contrast with other
proposed extensions to model based specification languages with this feature,
such as some of the object oriented extensions to Z [14] or VDM [7], is not
object oriented. Moreover, it does not imply any changes to the standard se-
mantics of B, since it can be mapped into the standard language constructs [2].
The extension is essentially the provision of an extra structuring mechanism,
the AGGREGATES clause, which intuitively allows us to dynamically “link” a
set of abstract machines to a certain including machine. The semantics of AG-

GREGATES M relies on the generation of a population manager for M, i.e.,
a machine which represents a dynamic set of M, including operations for the
creation and deletion of machine instances. A very important feature of the
approach is that the generated population manager M Manager for M is cor-
rect by construction, provided that M is correct [2]. Moreover, if one counts
on a correct implementation for M, an implementation for M Manager can be
systematically constructed, which is also correct by construction [3].

The AGGREGATES M clause within a machine M’ is then simply interpreted
as INCLUDES M (or, more precisely, as EXTENDS M). As an example, consider
the population manager generated for machine NODE(FE) is shown in Fig. 2.
The meaning of AGGREGATES is graphically depicted in Fig. 3.

MACHINE
NODEManager(E)
VARIABLES
NODESet, item
INVARIANT

(Vn-n € NODESet = item(n) € E) A
(NODESet C NAME) A (item € NODESet — E)

INITIALIZATION
NODESet, item := 0,0
OPERATIONS

add_NODE(n) =

PRE n € (NAME — NODESet)

THEN NODESet := NODESet U {n} ||
item :€ E

END

del_NODE(n) =

PREn € NODESet
THEN NODESet := NODESet — {n} ||
item := (dom(item) — {n}) <+ item
END

set(i,n) =
PREic€ EAn € NODESet
THEN item := item U {(n, i)} END

z «— get(n) =

PREn € NODESet
THEN z := item(n) END

END

Figure 2: The NODEManager machine

3 Eiffel Programs

Eiffel is a strongly typed pure object oriented programming language. As such,
its programs are written exclusively in terms of interrelated classes. The lan-
guage itself supports the concepts of genericity, multiple inheritance and design

by contract; it also features a mechanism for exception handling, particularly
related to contract violation, and provides automatic memory management.

Eiffel’s syntax is based on languages such as Simula and Pascal. A simple
example of the “flat form” of two Eiffel classes can be seen in Figs. 4 and 5.
These two classes constitute (part of) a classical implementation of generic lists,
using single linked nodes.

One can specify the state and the behaviour of objects by defining features
(either attributes or routines) in their corresponding classes.

The language integrates the definition of assertions, such as preconditions
and postconditions for “methods”, variants and invariants for loop statements,
and class invariants, directly in the source code. These assertions are useful for
specifying and documenting classes, and can optionally be checked at run time.
When an assertion is violated, an exception is thrown. This exception must be
managed by some object in the invocation chain or will otherwise result in an
error that aborts the program execution.

As we will see later on in this paper, we are not concerned, for the moment,
with the implementation of methods. So, we have intentionally omitted, in the
examples, the implementations of the methods.

Eiffel provides interesting features related to information hiding. As typical
in other programming languages, one can define an “interface” for a class, indi-
cating which features are “exported”. But in contrast with other programming
languages, in Eiffel one must specify which classes are allowed to access the
exported features. The traditional public/private exporting becomes a special
case of this more sophisticated notion of interface; in order to represent these,
Eiffel provides two special built-in classes, ANY and NONE. A feature exported
to ANY is “public”, since ANY is an abstract class that is at the top of the
FEiffel class hierarchy; class NONE, on the other hand, is at the bottom of the
hierarchy and no class can inherit from it, so a feature exported to NONE is
“private”.

As we mentioned, Eiffel supports multiple inheritance, and the correspond-
ing mechanisms to avoid problems related to it, such as repeated inheritance
and name collisions. Contracts are inherited too; this is regulated by the “sub-
contracting principle”, which establishes that a redefined method must preserve
or weaken the precondition, and maintain or strengthen the postconditions.

Although we have been concerned with the description of Eiffel as a pro-
gramming language, it is better understood if seen as a methodology for software

automatic generation

RN

M M M Manager

AGGREGATES —_—
EXTENDS

M’ M’

Figure 3: The meaning of AGGREGATES in terms of EXTENDS.

class LINKI[E]
creation make
feature {NONE}
item: E
next: LINKI[E]
feature {ANY}
make (i: E; n: LINK[E]) is

ensure
item = 1
next = n
end

set_item(i: E) is

ensure
item = i
end

set_next(n: LINK[E]) is

ensure
next = n
end

end -- LINK[E]

Figure 4: Class Link

development. Eiffel, as a methodology, aims at good quality and productivity,
by taking advantage of well established programming principles, and supporting
them within the programming language. Eiffel also covers the entire develop-
ment process; during the earliest stages, one can use Eiffel to directly specify
the abstract properties of the objects by using assertions; in later stages, one
can implement the software using Eiffel again, and test the programs against
their specifications.

4 An Overview of the Approach

The reader might already find some similarities between Eiffel, as a method,
and B. Both cover the entire development process, and share common notions
such as class invariants (abstract machine invariants in B), preconditions and
postconditions for methods (operations in abstract machines), etc. However,
as we argue in this paper, their differences are not trivial to overcome. In
particular, there exists an important “gap” when trying to map Eiffel programs
into B specifications, namely the lack of object orientation in B.

Eiffel merges, in the same language, constructs for specifications in terms

class LISTI[E]

creation make

feature {NONE}
head: LINK[E]

feature {ANY}
make is

ensure
head = Void
end

insert_front(e: E) is
require
e /= Void

ensure
head.item = e
head.next = old head
end

end -- LINK[E]

Figure 5: Class List

of assertions and for implementation. B, on the other hand, has specialised
and separated language constructs for specification and implementation. In B,
one starts by specifying an abstract machine, say M. After proving that M
is consistent (operations preserve the machine invariant, etc), one can define a
refinement (resp. an implementation) for M. B counts on a number of condi-
tions which must be discharged in order to prove that the proposed refinement
(resp. implementation) is correct with respect to M. The tool support asso-
ciated with the B method provides theorem proving facilities for carrying out
this verification task.

Basically, the approach we propose in order to use the B method as an
environment for the verification of Eiffel programs is the following:

Given an Eiffel class P, with contracts expressed as assertions, two
B specifications are synthesised:

e an abstract machine Mp, which is constructed only from the
assertions of P, and captures its invariant and pre and post-
conditions of its operations,

e an implementation Ip, constructed only from the code of P,
and which represents the realisation of P’s methods.

Verifying the correctness of class P thus reduces to prove that Ip is
a valid implementation of Mp. One can now attempt to prove this
within B’s mathematical framework, and by using the available tool
support.

Graphically, this can be illustrated as in Fig. 6. The part of this diagram which
is wrapped in dotted lines is what we study in this paper.

from contract from implementation

Eiffel class

B Abstract Machine

1

1

1

1

1

1

1

' refines?
B Implementation

. o p

1

L]

1

1

1

Figure 6: Graphical view of the proposed approach to the verification of Eiffel
classes

5 A Case Study

In order to study the possible difficulties in representing Eiffel programs as B
specifications, we choose to develop a case study. This case study consists of
a simple and widely known datatype implementation, more precisely, a tra-
ditional object oriented implementation of generic lists. Since object pointers
or references are particularly useful in object oriented implementations (e.g.,
they are normally used to implement class associations and client-provider re-
lationships), we decided to base our study on the single linked reference based
implementation of lists.

Single linked reference based lists can be implemented in Eiffel by defining a
LINK class, meant to hold an item of the list, and having as a feature a reference
to the link holding the “next item” in the list. An Eiffel definition of such a
class was already shown in Fig. 4. Again, we have omitted the actual bodies of
the methods of this class, and just showed their corresponding contracts, i.e.,
their pre and postconditions. Their implementations are not relevant to us for
the moment, since we are only concerned, at this stage, with translating the
“specification” of classes, i.e., their contracts. However, the implementations
of these methods are obvious. Note that class LINK is generic, since it is
parameterised by a (class) type E.

With class LINK defined, a single linked reference based list can be easily
constructed, in the typical way, i.e., with a “reference” to the head of the list.
The corresponding Eiffel class was previously shown in Fig. 5. Again, we have
omitted the bodies of the methods of this class, but most readers should be
already familiar with that.

Let us now start trying to define an appropriate translation of this Eiffel pro-

gram. We would prefer to maintain the architectural structure of the program,
i.e., to provide one abstract machine for LINK, and another abstract machine
for LIST, based on the first one. This is so due to the fact that, in specifications,
modularisation is also important: modular specifications allow us to alleviate
the proof efforts (for proving consistency, for instance) and help us understand
complex specifications [4].

5.1 Representing class LINK

Class LINK should then be represented by an abstract machine LINK. Our first
task in representing class LINK’s constituents is the characterisation of its pa-
rameter E. This does not constitute any difficulty, since it can trivially be defined
as a set parameter of the corresponding abstract machine. A different case is
that of the representation of LINK’s attributes (i.e., features that correspond to
variables). The first of these is item, and its type is E. The second one, next is
the problematic one, since its type is LINK, the very same class we are defining.
In B, this is not allowed; abstract machines can only be hierarchically organised
in terms of simpler machines, and no recursion or dynamism is permitted in
this structure. This variable and its associated methods cannot be represented
within LINK. LINK’s representation as a B abstract machine becomes reduced
to abstract machine NODE, given in Fig. 1. Since the “link” to the next item
has been lost in the translation of LINK into a B abstract machine, we prefer
to call the resulting abstract machine NODE, instead of LINK.

Of course, class NODE is not a faithful representation of class LINK, since
a crucial part of it was lost in the translation. We will have to find a way of
representing the “lost link”; as we will see, we will do this by borrowing some
ideas from software architectures, externalising object interactions, and defining
connectors.

5.2 Representing References

Since references to other modules or components is not, in general, straightfor-
wardly supported in B, we need to represent them outside component defini-
tions. A possible approach is that of software architectures [13]. In software
architectures, systems are built out of components, which interact through con-
nectors. Communication between components (objects in our case) is then ez-
ternalised from the component definitions.

As we explained before, a special type NAME is used to characterise names of
instances. In order to represent the ‘next’ attribute of the LINK original class,
we can employ a binary relation next on NAME, relating instances of NODE
within class LIST to their right neighbour. Since each instance of NODE has
at most one right neighbour, relation nert must be functional. But, of course,
these elements should be defined within abstract machine LIST.

5.3 Representing class LIST

As is the case for class LINK, we represent class LIST as a separate abstract
machine LIST. As we mentioned, attribute “next” originating in class LINK,
has to be defined within this abstract machine. We also have a proper attribute
of class LIST, namely variable head. The resulting abstract machine is shown in

Fig. 7. We make use of the AGGREGATES clause, that allows us to have several
“dynamic instances” of the NODE abstract machine, as one expects to have in
a list. Such instances are now elements of a set called NODESet, and controlled
“dynamically” by a NODEManager abstract machine.

We assume the existence of a special constant Void which does not belong
to NAME. Void is meant to represent, as in programming languages, a null
reference. In our example, we employ Void as an initial value for attribute
head.

MACHINE
List(E)
AGGREGATES
NODE(E)
VARIABLES
head, next
INVARIANT

head € NAME U {Void} A
next € NODESet — NODESet

INITIALIZATION
head := Void
OPERATIONS

set_next(z,y) =
PRE « € NODESet Ny € NODESet
THEN
next(z) ==y
END
insert_front(e) =
PRE ec E
THEN
ANY z WHERE (« € NAME — NODESet) A
(z # Void)
THEN
add_NODE(z) || item := item U {(z, e)} ||
next := next U {z, head} || head := x
END
END

END

Figure 7: Abstract machine List(E).

6 Related Work

There is some evidence of the need of representing object oriented features in B,
for a variety of reasons. The work of H. Treharne [16] is close to ours. Treharne
tries to supplement an object oriented development (using the UML notation)
with B. As opposed to the approach of [2], followed in this paper, the represen-
tation of object oriented features in B in Treharne’s work is unstructured. As

we explained before, it is in our interest to produce structured B specifications
from object oriented programs/specifications, since structure in specifications
helps one in dealing with the complexity of large systems, alleviates the proof
efforts, etc.

Another line of work related to B and object orientation is that of B. Tat-
ibouet et al. [15], who propose translating B specifications into less formal
notations, such as class diagrams or statecharts. Their work is less related to
ours, since the direction of the translation is the opposite, and the objectives
are rather unrelated (we intend to use B to verify programs, whereas Tatibouet
et al.’s main objective is to provide more familiar “front-ends” of B for software
engineers without mathematical background).

There exist object oriented alternatives to some model based formal meth-
ods, particularly Object Z, Z++ and VDM++. It is not our intention to provide
a “fully flavoured” object oriented extension of B. Instead, we try to incorporate
only some object oriented features into B, without destroying B’s methodology.
The main advantages of our approach are the compatibility with the tool support
available and existing work on B. K. Lano proposes to use these object oriented
variants of model based formal methods for formal object oriented development

[8].

7 Conclusions

We studied some difficulties associated with the representation of object oriented
features in the non object oriented B specification language. The motivation for
our work is the use of the B language (and method) as a verification framework
for object oriented programs, particularly Eiffel programs.

We have chosen to use an available extension to B, presented in [2], to
characterise dynamic creation and deletion of modules or components (abstract
machines in B). We have shown by means of a case study that the work in [2]
is insufficient, and that some simple and very common specification tasks could
not be achieved using the extension ‘as is’.

Other concepts intrinsic to object orientation, such as inheritance, were not
considered in this paper. As work in progress, we are trying to extend the work
in [2] to deal with the problems acknowledged here, and we are already studying
possible representations of inheritance and associations in B.

References

[1] J.-R. Abrial, The B-Book, Assigning Programs to Meanings, Cambridge
University Press, 1996.

[2] N. Aguirre, J. Bicarregui, T. Dimitrakos and T. Maibaum, Towards Dy-
namic Population Management of Components in the B Method, in Pro-
ceedings of the 3rd International Conference of B and Z Users ZB2003,
Turku, Finland, LNCS, Springer-Verlag, June 2003.

[3] N. Aguirre, J. Bicarregui, L. Guzmén and T. Maibaum, Implementing Dy-
namic Aggregations of Abstract Machines in the B Method, to appear in

[16]

Proceedings of the International Conference on Formal Engineering Meth-
ods ICFEM 2004, Seattle, USA, LNCS, Springer-Verlag, 2004.

The B-Toolkit User’s Manual, version 3.2, B-Core (UK) Limited, 1996.

Digilog, Atelier B - Générateur d’Obligation de Preuve, Spécifications,
Technical Report, RATP SNCF INRETS, 1994.

T. Dimitrakos, J. Bicarregui, B. Matthews and T. Maibaum, Compositional
Structuring in the B-Method: A Logical Viewpoint of the Static Context,
in Proceedings of the International Conference of B and Z Users ZB2000,
York, United Kingdom, LNCS, Springer-Verlag, 2000.

C. Jones, Systematic Software Development Using VDM, 2nd edition, Pren-
tice Hall International,1990.

K. Lano, Formal Object-Oriented Development. Formal Approaches to
Computing and Information Technology, Springer, 1995.

, B. Meyer, Fiffel: The Language, Second printing, Prentice-Hall, 1991.

B. Meyer, Applying ‘Design by Contract’, in IEEE Computer, Vol. 25, No.
10, 1992.

B. Meyer, Object-Oriented Software Construction, Second Edition,
Prentice-Hall International, 2000.

B. Meyer, A Fremework for Proving Contract-Equipped Classes, in Pro-
ceedings of the 10th International Workshop on Abstract State Machines
2003— Advances in Theory and Applications, Taormina, Italy, Springer,
2003.

M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerg-
ing Discipline, Pearson Education, 1996.

M. Spivey, The Z Notation: A Reference Manual, 2nd edition, Prentice
Hall International, 1992.

B. Tatibouet, A. Hammad, and J.-C. Voisinet, From an abstract B spec-
ification to UML class diagram, in Proceedings of the 2nd IEEE Interna-
tional Symposium on Signal Processing and Information Technology (IS-
SPIT’2002), Marrakech, Maroc, 2002.

H. Treharne, Supplementing a UML Development Process with B, in Pro-
ceedings of Formal Methods Europe FME 2002, Getting IT Right, Lecture
Notes in Computer Science, Copenhagen, Denmark, 2002.

