Using Defeasible Argumentation in Progression and
Regression Planning

Some Preliminary Explorations

Guillemo R. Simari Alejandro J. Garcia

grs@cs.uns.edu.ar agarcia@cs.uns.edu.ar
Laboratorio de Investigacion y Desarrollo en Inteligencia Artificial
Departamento de Ciencias e Ingenieria de la Computacion
Universidad Nacional del Sur
Av. Alem 1253, (8000) Bahia Blanca, Argentina

Abstract

The aim of this work is to study an argumentation-based formalism that an
agent could use for constructing plans. Elsewhere we have introduced a formalism
for agents to represent knowledge about their environment in Defeasible Logic Pro-
gramming, and a set of actions that they are capable of executing in order to change
the environment where they are performing their tasks. We have also shown that
action selection is more involved than expected when combined with a defeasible
argumentation formalism.

In this paper we will develop a novel way of using argumentation in the definition
of actions and combining those actions to form plans. Since our interest here lies
in exploring the important issues that need to be addressed, the main contribution
will be to show meaningful examples where those issues are exhibited and not in
improving current planning implementations. Therefore, we will use simple planning
algorithms in an effort to reduce the complexity of the examples. Nevertheless, as
the different ways of constructing plans introduce interesting details we will be
considering progression and regression planning.

Keywords: Artificial Intelligence, Planning, Defeasible Argumentation.

1 Introduction

The aim of this work is to study an argumentation-based formalism that an agent could
use for constructing plans. In [9] we have introduced a formalism where agents have
certain knowledge about their environment represented in Defeasible Logic Programming
(DeLLP) [4]. They also have a set of actions they are capable of executing in order to change
the environment where they are performing their tasks. We have also shown [9] that
action selection is more involved than expected when combined with an argumentation
formalism.

In this paper we will develop a novel way of using argumentation in the definition
of actions and combining those actions to form plans. Since our interest here lies in
exploring the important issues that need to be addressed, the main contribution here will
be to show meaningful examples where those issues are exposed and not in improving

current planning implementations. Therefore, we will use simple planning algorithms in
an effort to reduce the complexity of the examples. Nevertheless, as the different manners
of constructing plans introduce interesting details we will be considering progression and
regression planning.

2 Knowledge Representation and Actions

The agent’s knowledge will be represented by a knowledge base K = (®, A), where ¢ will
be a consistent set of facts, and A a set of defeasible rules. For example, below we have
an agent’s knowledge base. This agent, named tom, has a match, he is in an explosive
place, and the knowledge base contains a pair of defeasible rules representing that “if the
agent wants to produce fire and it has a match, then there is a good reason for striking
the match” and “being in an explosive place is a good reason for not striking the match”.

® = {has(tom, match), at(tom, explosive_place)}
A strike(X, match) — has(X, match), wants(X, fire)
| ~strike(X, match) — has(X, match), at(X, explosive_place)

Notice that defeasible rules are the key element for introducing defeasibility [6] and they
will be used to represent a relation between pieces of knowledge that could be defeated after
all things are considered. A defeasible rule “Head — Body” is understood as expressing
that “reasons to believe in the antecedent Body provide reasons to believe in the consequent
Head” [10]. Strong negation is allowed in the head of defeasible rules, and hence may be
used to represent contradictory knowledge.

The agent’s knowledge base will be a restricted Defeasible Logic Program (DeLP). The
results already obtained for such argumentation-based extension of logic programming will
be used freely here. A brief description of DeLLP follows. The interested reader is referred
to [4, 2, 3] for details about DeLP.

In DeLP, a literal h is warranted if there exists a non-defeated argument A supporting
h. An argument structure A for a literal i (denoted (A, h)) is a minimal and consistent
set of defeasible rules that allows to infer h. In order to establish whether (A, h) is a
non-defeated argument, argument rebuttals or counter-arguments that could be defeaters
for (A, h) are considered, i.e., counter-arguments that by some criterion, are preferred
to (A, h). Since counter-arguments are arguments, there may exist defeaters for them,
and defeaters for these defeaters, and so on. Thus, a sequence of arguments called ar-
gumentation line may appear, where each argument defeats its predecessor in the line
(see the following example). Usually, each argument has more than one defeater and
more than one argumentation line exists. Therefore, a tree of arguments called dialectical
tree is constructed, where the root is (A, h) and each path from the root to a leaf is an
argumentation line. A dialectical analysis of this tree is used for deciding whether h is
warranted.

Example 2.1 Consider the following knowledge base K= (®, A)

¢ = {a,b,c,d}

A={(p—=0b),(g—=r),(r—=d),(~r—=s),(s—=<b),(~s —<a,b), (w—=D>),(~w—<b,c)}
Here, the literal p has the argument A={p —< b} supporting it, A is undefeated because
there is no counter-argument for it. Hence, p is warranted. The literal ¢ has the argument

Ai={(¢—<r), (r—=d) }, but A; is defeated by As= { (~r —<s),(s —<b) }, that attacks

r, an inner point in A;. The argument A, is in turn defeated by As= { (~s —<a,b)}.
Thus, the argumentation line [A;,A5,43] is obtained. The literal ¢ is warranted because
its supporting argument A; has only one defeater A, that it is defeated by A3, and Aj
has no defeaters.

Observe that there is no warrant for ~r because Ajs is defeated by Az. The literals ¢
and ~t have no argument, so neither of them is warranted. Every fact of ® is trivially
warranted, because no counter-argument can defeat a fact. O

Besides its knowledge base K, an agent will have a set of actions I' that it may use
to change its world. Once an action has been applied, the effect of the action will change
the set IC. The formal definitions that were introduced in [9] are recalled below.

Definition 2.1 [Action] An action A is an ordered triple (P, X, C), where P is a set
of literals representing preconditions for A, X is a consistent set of literals representing
consequences of executing A, and C is a set of constraints of the form not L, where L is
a literal. We will denote actions as follows:

{X1,..., X} <= {P1,..., Pu},not {Cy,...,Ci}
Notice that the notation not {C4,...,Ck} represents {not Ci,...,not Cy}. O

Definition 2.2 [Applicable Action] Let £ = (®,A) be an agent’s knowledge base.
Let ' be the set of actions available to that agent. An action A in I, defined as before,
is applicable if every precondition P; in P has a warrant built from (®,A) and every
constraint C; in C fails to be warranted. O

Definition 2.3 [Action Effect] Let K = (®,A) be an agent’s knowledge base. Let I'
be the set of actions available to that agent. Let A be an applicable action in I' defined
by:

(X1, . X} < {P,... P}y not {Cy,...,Cp
The effect of executing A is the revision of ® by X, i.e. X = *{X1-Xn} Revision will
consist of removing any literal in ® that is complementary of any literal in X and then
adding X to the resulting set. Formally:

q)*X — @*{Xl,...,Xn} — ((I) . X) U X
where X represents the set of complements of members of X. O

Example 2.2 Let K= (®, A) be an agent’s knowledge base as defined in Example 2.1
¢ = {a,b,c,~d}
A={(p—=0b),(¢g—=r),(r—=d),(~r—=<s),(s—=<b),(~s —<a,b), (w—=D>),(~w—<b,c)}
And T the set of available actions containing only:

{~a,d,z} A {a,p,q},not {t,~t, w}

That action is applicable because every literal in the precondition set has a warrant, and
no constraints in {t,~t, w} are warranted (see Example 2.1). If the action is executed the
set of facts becomes:

& = {b,c,~a,d,x}

Observe that the precondition a was “consumed” by the action. O

In [9] we have shown that the interaction between actions and the defeasible argu-
mentation formalism is twofold. On one hand, as stated by Definition 2.2, defeasible
argumentation is used for testing preconditions and constraints through the warrant no-
tion. On the other hand, actions may be used by agents in order to change the world
(actually the set ®) and then have a warrant for a literal h that has no warrant from the
current knowledge base (®, A).

As we have shown in [9] this interaction produces a more powerful formalism. However,
some new elements that are not present in traditional planning systems prompt for a
deeper analysis.

3 Planning with argumentation

A simple formulation of a planning problem defines three inputs [13]: a description of the
initial state of the world in some formal language, a description of the agent’s goal, and a
description of the possible actions that can be performed. The initial state is the current
agent’s representation of the world, and in our case it will be the set ®. As stated above,
through the execution of actions the agent may change its world. Therefore, in order to
achieve its goals, the agent will start in the initial state ® and it will execute a sequence
of actions transforming ® in ®’. The agent’s goal will be a set G of literals that the agent
wants to be true in his world. The agent will satisfy its goals when through a sequence
of actions it reaches some state ® where each literal of GG is warranted. The planner will
be in charge of obtaining the proper sequence of actions in advance.

3.1 Progression Planning

A progression planner searches forward from the initial state I to the goal state G. The
outline of a progression planner that searches through the space of possible states follows:

Initialize the current state C' with [

REPEAT

- select an action which its preconditions hold in C

- simulate the action execution modifying C' with the action effects
UNTIL G C C

That is, the planner starts in the initial state I, it selects one applicable action and
simulates its execution modifying the state with the action effects. The process continues
until all the literals in GG hold in the current state C'. If there are more than one applicable
action to select, then a choice point is generated and backtracking is possible. Thus, the
planner will explore a space of states rooted in I.

Combining our proposed formalism with a progression planner is straightforward. The
initial state is represented with the agent’s facts ®. In each step the planner will select
an applicable action in the current state ®, that is, an action a=(P, X, C), where every
precondition P; in P has a warrant built from (®, A), and every constraint C; in C fails to
be warranted from (®, A). The action effect will be calculated with ®**. A progression
planner algorithm that uses defeasible argumentation follows:

Let ® be the initial state and G the agent’s goal.
REPEAT

- select an applicable action a=(P, X, C)

- simulate the action effect with ® := ®**

UNTIL all literals in G are warranted from (&, A).

The main advantage of combining a progression planner with our approach is that
no further considerations are necessary. However, if there is a considerable number of
actions, then the branching factor could be very large and the search problem intractable.
Regression planning tries to avoid this search problem. In the next section we will analyze
the combination of regression planning with our approach.

3.2 Regression Planning

A regression planner searches backward from the goal state G to the initial state I. The
outline of a typical regression planner that searches through the space of possible states
is given below:

REPEAT

- select an action a=(P, X, C), such that one consequent is in G. Formally: XN(G—1) # ()
- (G is recomputed replacing X by P, that is, G := G — XUP

UNTIL G C [

Unfortunately, it is known that XN(G—1) #) is not enough as a selection condition. In
a regression planner, the first action to be selected is the last to be executed. Therefore, at
any point of the search, a selected action a could have some consequents that in the order
of the plan execution could interact with an action already selected but to be executed
after a in the plan. Consider the following example: the initial state is I = {c, e, f}, the
goal state G = {a}, and the actions are:

{a} <& {b,c},not {}
{~d, b} 22 {d}, not {}
{~e,dy <2 {e},not {}

{d} < {f},not {}
{e} &= {f},not {}

The following table shows one possible trace of the regression planner outline:

G selected action X P
{a} Al {a} {ba C}
{b,c} Ay {~d,b} | {d}

{c,d} As {~c,d} | {e}
{c. e}

Since we are using a regression planner, the selected actions in an inverse order should
be plan. However, if the sequence [As, As, A;1] is executed in this order, action Az will
delete the literal ¢ from the initial state, and the action A; needs ¢ as a precondition.
Observe that ¢ was “assumed” to be present along the search. The problem can be solved
is the literal ¢ is “protected”. For example, one possibility is to add to the selection
mechanism the condition X NG = (. That is,

REPEAT

- select an action a=(P, X, C), such that XN (G —I) # 0 and X NG =0
- G is recomputed as G :=G — XUP

UNTIL G C [

Although this is a well known problem, we recall it here because in our approach the
proposed solution is not enough and some other consideration have to be done. We will
consider first actions without constraints.

Observe that our approach use a deductive knowledge base (®,A), so a goal is achieve
not just because is a member of a set. A literal g of the goal G is achieved if g is warranted
from the current agent’s knowledge base (®, A). In the rest of the paper we will use w(G)
to represent the subset of warranted literals of G, formally, w(G) = {I|l € G and [is
warranted }. Thus, a planning problem will be solved when all the literals of G were
warranted, that is, G = w(G). The modified outline follows:

REPEAT

- select an action a=(P, X, C), such that X N (G — w(G)) # § and X NG = ()
- G is recomputed as G =G — XUP

UNTIL G = w(Q)

We will analyze the behavior of this last outline through meaningful examples. In all
of the examples the agent has the goal G = {a}, and the actions of the agent are:

{a} <& {b,c},not {}
{~a, b} <2 {e},not {}

Example 3.1 [Argument Clipping]
Suppose that the agent has the following knowledge base: &= { e,x } and A= { ¢ —< z}.
In order to achieve the goal “a”, action A; is selected first, and G becomes {b, c}. Observe
that B= { ¢ —<z} is an undefeated argument, so the literal ¢ is warranted. Since literal
b is not warranted, the planning process continues and action Ay=(P, X, C) is selected.
The effect of Ay is X= {b, ~x}, so X NG = @ holds, and G becomes { e, ¢ }. Since both
literals are warranted, therefore a plan [As, A;] seems to be found.

However, if action A, is executed in the initial state, then literal x is removed from ®.
Therefore, no argument for ¢ can be built and the action A; can not be executed. O

Example 3.1 shows that the literals to be protected are not only the ones in G. All
the facts used for constructing arguments involved in the warrant of a literal in G need to
be protected. The following example shows a different situation where an action causes,
as a side effect, that a new argument exists. This new argument becomes a defeater of an
argument that was assumed undefeated.

Example 3.2 [Enabling a Defeater|

Suppose that the agent has the following knowledge base: &= { ex,d } and A= {
(¢ —<d}), (~c—<~x) }. In order to achieve the goal “a”, action A; is selected first,
and G becomes { b, c}. The literal ¢ is warrant, because B= { ¢ — d} is an undefeated
argument that supports it. Observe that although there is a rule with head ~c, there is no
defeater for B because ~x is not in the knowledge base. Since literal b is not warranted,
the planning process continues and action Ay=(P, X, C) is selected. The effect of A, is X=
{b, ~x}, so X NG =) holds, and G becomes { e, ¢ }. Since both literals are warranted,
therefore a plan [Ay, A;] seems to be found.

However, if action A, is executed, literal ~z is added to ®, and then the argument

C= { ~c—< ~a} can be obtained. Since C defeats B, there is no warrant for ¢ and the
action A; can not be executed. O

The Example 3.2 shows a case where as a side effect of one of the selected actions, a
new argument can be built. This new argument interferes with the warrant of a literal
that was assumed warranted. Therefore, not only the literals but the warrant of literals
need to be protected. The following example shows a different situation where a warrant
disappears because a supporting argument defeating a defeater disappears.

Example 3.3 [Disabling a Defeater]

Suppose that the agent has the following knowledge base: &= { e x,g } and A= { (¢ —< d}),
(d—e}), (~d—e, f), (f <g), (~f —x)}. In order to achieve the goal “a”, action A,
is selected first, and G becomes { b, c}. The literal ¢ is warrant, because although B= {
(c—<d}), (d —<e})} is defeated by C= { (~d —<e, f), (f —<g)}, a third argument D= {
~f —<x} defeats C reinstating 5.

Again, action A;=(P, X, C) is selected next, G becomes { e, ¢ }, and a plan [As, A;]
seems to be found. However, if action A, is executed, literal = is removed from ®, and then
the argument D= { ~f —< x} can not be obtained. The argument C is now undefeated
and since C defeats B, there is no warrant for ¢ and the action A; can not be executed
because c is needed as a precondition. O

As the reader has noticed, when an action is executed new literals can be added
or deleted from ®, and therefore, new defeaters could appear or disappear interfering
somehow with the assumed warrants. As it was shown in the previous examples, this
could cause that the planner selects an improper sequence of actions that can not be used
as a plan. In traditional planning the solution is to protect the literals. However, since in
this approach we are using a deductive knowledge base, we need to protect the warrant
of the literals. A solution is proposed in the following section.

4 Protecting Warrants in Regression Planning
In DeLLP an argumentation line starting in (Ag, ho) is a sequence of arguments

[(Ao, ho), (A1, hi), (Az, ha) (As, hs), ..]

where each element of the sequence (A;, h;), ¢ > 0, is a defeater of its predecessor
(Ai—1,hi—1). Then, (Ag, ho) becomes a supporting argument for hg, (A, hi) an inter-
fering argument, (As, ho) a supporting argument, (As, h3) an interfering one, and so on.

Thus, an argumentation line A = [(Ayg, ho), (A1, h1), (As, ha) (As, hs),...] can be split in
two disjoint sets: The set Ag= { (Ao, ho), (A2, ha), (A4, h4), ... } of supporting argu-
ments, and the set Aj= {(Ay, hy), (As, h3), ...} of interfering arguments. The warrant of
a literal hg is obtained exploring all possible argumentation lines that starts with (Ao, ho),
what in DelLP terminology is called a dialectical tree (see [4] for details).

Suppose now that during the planning process the literal p was assumed to be war-
ranted for selecting an action a, and that warrant exists because of the argumentation line
[(Ao, ho),(A1, hi),(Asg, ha),(As, hs), (A4, hs)]. On the one hand, if an action b selected after
(but to be executed before) a delete one of the literals used in the supporting arguments {
(Ao, ho), (Az, ha), (A4, hy)}, then the warrant for p could disappear. On the other hand,
is the selected action b adds a fact to the knowledge base, such that a new undefeated
argument (A;, h;) can be build and (A;, h;) defeats any of the supporting arguments {
(Ao, ho), (Aa, ha), (A4, hy)}, then the warrant for p could also disappear.

The first problem could be avoided collecting all the facts used in { (Ay, ho), (As, ha),
(A4, hy)} and protecting them requiring that no action could delete those facts. The
second one, ensuring that no new defeaters for the supporting arguments { (Ao, ho),
(Ag, ha), (A4, hy)} can be obtained.

Finally observe that if a literal used in an interfering argument for p {{A;, h1), (As, h3)}
is erased, then although the dialectical tree changes, the warrant for p remains. However,
it is important to note that a literal could be used both in supporting and interfering
arguments, so in such a case it should be protected for the supporting argument.

Therefore, to protect a warrant, all the facts used in supporting arguments, and all
the potential points of attack will be collected. This information will be used for avoiding
in advance the selection of an improper action. Consider the following definitions:

Definition 4.1 Let hy be a warranted literal.

e Protect(hy) will be the set of all literals from ® used in supporting arguments
involved in the warrant of hg.

e PossAttack(hg) will be the set of all points of attack of supporting arguments
involved in the warrant of hg. A literal [is a point of attack if [¢ ®

O

Definition 4.2 Let K = (®, A) be the agent’s knowledge base, G the agent’s goal, and
[Ay, Ay, ..., A, the selected actions by the regression planner. Let {hj,ho,..., hy} be
the set of literals that were assumed to be warranted for the selection of the actions
[A1, Ay, ..., Ay]l. Then, we will define Protect = U;—;_j Protect(h;) and PossAttack =
U1 PossAttack(h;) O

The sets Protect and PossAttack will be used by the planner during the action se-
lection process. Thus, the planner will not select an action that in the execution of a
plan could cause that a protected literal to be erased, or a new defeater for a supporting
argument to be constructed. Note that if backtracking occurs, then the sets Protect and
PossAttack have to be updated accordingly. The modified outline of the planner follows:

REPEAT
- select an action a=(P, X, C), such that

XN (G—-w(G)#0

2) X N Protect = ()

3) there is no new undefeated argument for a member of PossAttack from & U X
- G is recomputed as G =G — XUP
- Protect and PossAttack are updated accordingly. UNTIL G = w(G)

Although this last solution averts the mentioned problems, it is not complete. Consider
the example below that is a variation of Example 3.1

Example 4.1 [Action Selection]
Consider an agent with the goal G = {a}, and the actions:

{a} <& {b,c},not {}
{~a, b} <2 {e},not {}
{c} <= {e},not {}

Suppose that the agent has the following knowledge base: ®= { ex } and A= {
(¢ —~<xz}) }. In order to achieve the goal “a”, action A; is selected first, and G becomes
{ b, c}. Observe that the literal ¢ is warranted because B= { ¢ —< x} is an undefeated
argument The planner has to protect the warrant of ¢ and therefore sets Protect = {z}.
Since literal b is not warranted, the planning process continues and action A,=(P, X, C)
is considered. The action can not be selected because X N Protect = {x}. Therefore, no
plan is found.

As the reader may notice a plan exists: [Ag, A3, A;]. However, this plan was not
considered because the literal ¢ was warranted when the action A4; was selected. O

In order to avert the problem introduced in Example 4.1 we propose the following
solution. When an applicable action a can not be selected because one of its effects delete
a protected literal that is necessary for the warrant of a literal ¢, then instead of simply
discard the action, the planner will search for an other way of obtaining ¢ and insert this
subsidiary plan into the main plan.

5 Conclusions and Future Work

We have proposed a novel way of using argumentation in the definition of actions and
combining those actions to form plans. Our aim was not centered in to improving current
planning implementations. We have explored how this new approach can be integrated
with a simple planning algorithm.

As showed above, the use of defeasible argumentation in progression planning is
straightforward. However, regression planning deserves more attention. The combina-
tion of searching backwards with the generation of warrants for literals could produce
unexpected results. Several examples to illustrate those problems were introduced, and
solutions were proposed.

Future work include the analysis of other planning systems as Partial Order Planning
and GraphPlan.

References

1]

2]

[10]

[11]

[12]

[13]

John Fox and Simon Parsons. On using arguments for reasoning about action and
values. In Proceedings of the AAAI Spring Symposium on Qualitative. Stanford, 1997.

Alejandro J. Garcia. Defeasible Logic Programming: Definition, Operational Se-
mantics and Parallelism. PhD thesis, Computer Science Department, Universidad
Nacional del Sur, Bahia Blanca, Argentina, December 2000.

Alejandro J. Garcia and Guillermo R. Simari. Parallel defeasible argumentation.
Journal of Computer Science and Technology Special Issue: Artificial Intelligence
and Evolutive Computation. hitp://journal.info.unlp.edu.ar/, 1(2):45-57, 1999.

Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming: An
argumentative approach. Theory and Practice of Logic Programming, 2002. accepted
for publication.

Pablo Noriega and Carles Sierra. Towards layered dialogical agents. In Proc. of the
ECAI’'96 Workshop on Agents, Theories, Architectures and Languages (Budapest),
pages 69-81, 1996.

John Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. MIT
Press, 1995.

John Pollock. Implementing defeasible reasoing. workshop on Computation Dialec-
tics, 1996.

Jordi Sabater, Carles Sierra, Simon Parsons, and Nick Jennings. Engineering ex-
ecutable agents using multi-context systems. Journal of Logic and Computation
(In-press), 2001.

Guillermo R. Simari and Alejandro J. Garcia. Actions and arguments: Preliminaries
and examples. In Proceedings of the VII Congreso Argentino en Cliencias de la

Computacion, pages 273-283. Universidad Nacional de la Patagonia San Juan Bosco,
El Calafate, Argentina, October 2001. ISBN 987-96-288-6-1.

Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible
Reasoning and its Implementation. Artificial Intelligence, 53:125-157, 1992.

Bart Verheij. Rules, Reasons, Arguments: formal studies of argumentation and de-
feat. PhD thesis, Maastricht University, Holland, December 1996.

Gerard A.W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence,
90:225-279, 1997.

Daniel S. Weld. Recent advances in Al planning. Al Magazine, 20(2):93-123, 1999.

