
Translating Fork Spe
i�
ations into Logi

Programs

Gabriel Baum

LIFIA

Fa
ultad de Inform�ati
a

Universidad Na
ional de la Plata

gbaum�sol.info.unlp.edu.ar

Mar
elo Frias

�

Departamento de Computa
i�on

Fa
ultad de Cien
ias Exa
tas, F��si
as y Naturales

Universidad de Buenos Aires

mfrias�sol.info.unlp.edu.ar

Nazareno Aguirre Mar
elo Arroyo

�

Area de Computa
i�on

Fa
ultad de Cien
ias Exa
tas, F��si
o-Qu��mi
as y Naturales

Universidad Na
ional de R��o Cuarto

fnaguirre, marroyog�exa.unr
.edu.ar

Abstra
t

In this work a
ompiler from fork spe
i�
ations into logi
 programs

is presented. The te
hnique implemented by the
ompiler
onsists

of transforming a set of fork equations (with some restri
tions) into

normal logi
 programs in su
h a way that the semanti
s of the fork

equations is preserved.

After translating a fork spe
i�
ation, it
an be exe
uted by
on-

sulting the generated logi
 program.

1 Introdu
tion

Fork algebras are a kind of algebras of binary relations spe
ially developed

for program spe
i�
ation and
onstru
tion [3℄. Every relation in this formal-

ism represents a program, relating the input data (problem domain) with

�

The parti
ipation of Mar
elo Frias in this work has been partially supported by LIFIA,

Fa
ultad de Inform�ati
a, Universidad Na
ional de La Plata.

the output data (solutions). Fork algebras have several important properties

[4℄[6℄. One of their main features as spe
i�
ation language is their relational

nature, whi
h allows to write spe
i�
ations very easily, spe
ially for non-

deterministi
 tasks [5℄. The main property of (abstra
t) fork algebras as

environment for
al
ulating programs is the representability of abstra
t fork

algebras into proper ones [7℄; due to this property, the programmer
an port

knowledge from the problem domain to the abstra
t
al
ulus.

However, fork algebras, as many other formal languages, are not widely

used, partly be
ause of the absen
e of software tools for development within

the methodology.

There exist some software tools for supporting relational methods, su
h

as RELVIEW [11℄, RALF [10℄ and LIBRA [8℄. RELVIEW is a relational

evaluator, RALF is a theorem prover, and LIBRA,
loser to our
ompiler, is

a programming language based on the algebra of binary relations. However,

LIBRA is di�erent to our
ompiler, be
ause it is not fo
used on an abstra
t

al
ulus of relations.

Here we present a
ompiler that allows to translate fork spe
i�
ations

into normal logi
 programs, that
ould be exe
uted by a
ommon Prolog

intepreter in a sound way.

2 Fork Algebras

Proper Fork algebras are algebras of binary relations extended with a bi-

nary operation
alled fork. For formally de�ning proper fork algebras, it is

ne
essary �rst to de�ne the
lass of Full�PFA:

Definition 2.1 A Full�PFAis a two sorted stru
ture with domains P(U �

U) and U

hP (U � U) ; U;[;\;

{

; ;; U � U; j; Id;�;r; � i

su
h that

1. j , Id, � and

{

denote respe
tively
omposition of binary relations, the

identity relation on U ,
onverse of a binary relation and set
omple-

mentation w.r.t. U � U ,

2. � : U � U ! U is an inje
tive fun
tion,

3. RrS = f hx; � (y; z)i : xRy and xSz g.

Definition 2.2 The
lass of FullPFA is de�ned as RdFull�PFA, where Rd

takes redu
ts of the similarity type h[;\;

{

; ;; U � U; j; Id;�;r i, and the

lass PFA is de�ned as SPFullPFA, where S takes subalgebras and P
loses

a
lass under dire
t produ
t.

The abstra
t
ounterpart of the
lass PFA is the
lass of abstra
t fork

algebras, whi
h is de�ned as follows:

Definition 2.3 An abstra
t fork algebra is an algebrai
 stru
ture

hR; + ; � ;

{

; 0; 1; ; ; 1

,

;�;r i

where + ; �; ; ;r are binary operations,

{

and � are unary, and 0; 1; 1

,

are

onstants, and the following set of axioms is satis�ed:

Those axioms stating that hR; + ; � ;

{

; 0; 1 i is a Boolean Algebra,

x ; (y ;z) = (x ;y) ;z; (Ax. 1)

(x+y) ;z = x ;z + y ;z; (Ax. 2)

(x+y)� = �x+ �y; (Ax. 3)

�

�x = x; (Ax. 4)

x ;1

,

= 1

,

;x = x; (Ax. 5)

(x ;y)� = �y ; �x; (Ax. 6)

x ;y � z = 0 i� z ; �y � x = 0 i� �x ;z � y = 0: (Ax. 7)

rrs = (r ; (1

,

r1)) � (s ; (1r1

,

)) ; (Ax. 8)

(rrs) ;(trq)� =

�

r ;

�

t

�

� (s ; �q) ; (Ax. 9)

(1

,

r1)�r(1r1

,

)� + 1

,

= 1

,

: (Ax. 10)

An useful operator for program spe
i�
ation using AFA is the operator

ross (denoted by
), whi
h
an be de�ned from the other operations as

R
 S = ((1

,

r1)� ; R) r ((1r1

,

)� ; S):

and whose meaning in the standard models of AFA is depi
ted in Figure 1.

Also, operations that behave as proje
tions in standard models
an be

abstra
tly de�ned as follows

� = (1

0

r1)� and � = (1r1

0

)�

The interpretation of � and � in the standard models is des
ribed pi
torally

in Figure 2.

-

-

x

�

y

w 2 R(x)

z 2 S(y)

 �

R

S

Figure 1: The operator
ross.

�

�

�

�R

�

�

�

��

x

�

y

r x

1

,

1

�

�

�

�R

�

�

�

��

x

�

y

r y

1

1

,

Figure 2: The proje
tions � and �.

2.1 Fork Algebras as Spe
i�
ation Language

Within fork algebras, program spe
i�
ations are made up by sets of abstra
t

fork equations. The intended meaning of a fork equation is a binary relation

that relates data (input) to results (output); hen
e, relational
omposition

represents sequential
omposition of programs, relational join represents pro-

gram joining, and so on. Program transformation rules are the theorems of

abstra
t fork algebras. for example, the term t

1

+ t

2

an be transformed into

t

2

+t

1

due to Commutativity of + (re
all that the stru
ture hR; + ; �;

{

; 0; 1 i

is a Boolean algebra).

Programs are homogeneous relations, so programs
an have input or

output from multiple data types in this formalism.

Some extra
onstant relations are in
luded, and its meaning is related

to basi
 operations on datatypes.

During the development pro
ess, the fork and
ross operations are very

important and useful. The reason is that they are
onvenient for spe
ifying

programs
omposed by subprograms that share data, and, in the
ase of

ross, it allows to perform parallel
omputations on data
onstru
ted by ?.

Example: Let us
onsider the operation that sums the elements of a list of

natural numbers. Let us suppose further that 1

0

L=0

is the partial identity on

the empty list, and 1

0

L>0

be the partial identity on nonempty lists, zero be

the
onstant that relates any element with the natural number 0; �nally, let

add be the relation that sums two natural numbers. The operation SUM

an be spe
i�ed as follows:

SUM = 1

0

L=0

; zero+ 1

0

L>0

;

hd

r

tl

;

1

0

SUM

; add

where hd and tl yield respe
tively the head and the tail of a (nonempty)

list.

Let us explain the meaning of the above spe
i�
ation. The sum of the

elements of the empty sequen
e is zero; if a list is nonempty we
al
ulate

the sum of the tail, and we add the head to that result.

As it is shown in the previous example, the
ombination of partial iden-

tities and the operator +
an be used to
onstru
t
ase-like
ompositions of

programs.

3 Logi
 Programs

Opposed to the untyped setting of
ommon logi
 programming systems, we

onsider a typed universe; instead of using the Herbrand universe, we
hoose

a restri
tion of it, in whi
h the terms are
onstru
ted as follows:

Suppose that the language supports types �

1

; :::; �

k

. Consider a �rst order

language L
omposed by:

� A numerable set of variable symbols,

� A numerable set of predi
ate symbols,

� for ea
h n-ary
onstru
tor f from a type �

i

, we in
lude f in the alpha-

bet as an n-ary fun
tion symbol of type �

i

,

� a binary fun
tion symbol ?, whi
h will be
alled star.

Constru
tors from types must be inje
tive fun
tions, and the ranges of two

di�erent
onstru
tors of the same type must be disjoint sets.

Definition 3.1 The set of ur-terms for language L is
onstru
ted as fol-

lows:

� Ea
h variable symbol is an ur-term,

� ea
h 0-ary fun
tion symbol f

0

of type �

i

is an ur-term of type �

i

� If f is a k-ary fun
tion symbol, where k � 1,
orresponding to a

onstru
tor

f : �

j

1

; :::; �

j

k

! �

i

and t

1

; :::; t

k

are ur-terms of type �

j

1

; :::; �

j

k

respe
tively, then f(t

1

; :::; t

k

)

is an ur-term of type �

i

.

Definition 3.2 The set of terms for language L is
onstru
ted in the fol-

lowing way:

� If t is an ur-term then it is a term,

� if t

1

; t

2

are terms, so is ?(t

1

; t

2

).

3.1 Syntax of Programs

Let L be a language as des
ribed above. If p is an n-ary predi
ate symbol,

and t

1

; :::; t

n

are terms, then p(t

1

; :::; t

n

) is an atom. A literal is an atom or

a negated atom (it is to say, :hatomi).

The S-base of L, denoted by B

L

, is the set of all ground atoms (i.e., the

set of all atoms that do not
ontain variables).

A
lause is an expression of the form:

p p

1

; :::; p

n

for ea
h n � 0, where p is an atom and every p

i

, 1 � i � n is a literal.

A program is a pair

hP;mi

where P is a set of
lauses and m is a predi
ate symbol.

We will denote the
lass of all logi
 programs by Prog.

3.2 Semanti
s of Programs

Let S be a subset of B

L

and Cl be a set of
lauses. We will say that S is a

model of Cl if S satis�es every
lause in Cl. A
lause of the form

p p

1

; :::; p

k

is interpreted as the universal
losure of the formula p

1

^ :::^ p

k

! p (inter-

preting the symbol : as logi
al negation).

We
annot
hoose as semanti
s for our programs the minimal model

semanti
s, be
ause negation is allowed in the body of
lauses. This produ
es

that many distin
t minimal models
ould exist for a parti
ular program; it

ould be worst: a set of
lauses
ould be in
onsistent. So, we restri
t the

lass Prog to a set of programs,
alled strati�ed, for whi
h always there

exist a minimal model. We
onsider for these programs the standard model

semanti
s [2℄, whi
h
onsists in dividing a program into (monotoni
) strata,

where ea
h stratum uses negatively only predi
ates from previous strata,

and
onstru
t the minimal model of ea
h stratum based on the result on the

previous one.

Definition 3.3 Let hP;mi 2 Prog. We
onstru
t the depende
y graph

DG(P) for P as follows:

� For every predi
ate symbol q o

uring in P , there is a node in DG(P)

labeled by q,

� if there exists a
lause in P of the form:

q(:::) :::; p(:::); :::

then there is an ar
 in DG(P) from the node labeled by p to the node

labeled by q,

� if there exists a
lause in P of the form:

q(:::) :::;:p(:::); :::

then there is an ar
 in DG(P) labeled by `:' from the node labeled by

p to the node labeled by q.

We will say that hP;mi is strati�ed if DG(P) has no
y
les with an ar

labeled by :.

We will denote by Prog

Strat

the
lass of all the strati�ed programs.

Definition 3.4 Consider a set of
lauses Cl. Cl = Cl

1

[Cl

2

[::: [Cl

n

is

alled a strati�
ation of Cl is for i 2 [1; n℄ Cl

i

uses

� positively only predi
ates de�ned in

S

i

j=1

Cl

j

,

� negatively only predi
ates de�ned in

S

i�1

j=1

Cl

j

.

Definition 3.5 Let Cl be a strati�ed set of
lauses. Assume a strati�
ation

Cl = Cl

1

[Cl

2

[::: [Cl

n

, and let M jS, where M � B

L

and S is a set of

lauses, denote the interpretation M restri
ted to predi
ates in
lauses of S.

Then, we de�ne:

M

1

= minimal model for Cl

1

,

M

2

= minimal model for Cl

2

su
h that M

2

jCl

1

= M

1

,

...

M

n

= minimal model for Cl

n

su
h that M

n

jCl

1

= M

1

; :::;M

n

jCl

n�1

=

M

n�1

.

M

n

is
alled the standard model of Cl.

It is shown in [2℄ that the standard model is minimal and supported,

and that it does not depend on the strati�
ation.

Definition 3.6 Let hP;mi 2 Prog

Strat

. We will
all general meaning

of hP;mi the standard model of P . The meaning of hP;mi, denoted by

M(hP;mi) is the set of atoms in the general meaning that have m as pred-

i
ate symbol.

4 The Language

Basi
ally, a spe
i�
ation is a set of fork equations, where a fork equation

has the form

h variable i= h term i

An equation may be thought of as the de�nition of a program module,

where the variable is the \name" of the module and the term is its imple-

mentation. The term may
ontain variables, that may be seen as \
alls" to

other program modules.

A variable is simply an identi�er,
omposed by any sequen
e of
hara
-

ters, not beginning with `n'. A term is a (possibly nonground) abstra
t fork

term, where the names of the fork operations are the following:

1 nuniv

1

0

nid

0 nempty

� npi

� nrho

arg

1

; arg

2

arg

1

; arg

2

arg

1

+ arg

2

njoinfarg

1

gfarg

2

g

arg

1

� arg

2

nmeetfarg

1

gfarg

2

g

arg

1

rarg

2

nforkfarg

1

gfarg

2

g

arg

1

 arg

2

n
rossfarg

1

gfarg

2

g

arg� n
onverfargg

arg n
omplfargg

Example: Consider the following fork spe
i�
ation

TWO PARALLEL X =

1

0

r

1

0

;

X

X

that intuitively performs two parallel
omputations of X to the same argu-

ment; in our language it is written as follows:

TWO_PARALLEL_X = \fork{\id}{\id} ; \
ross{X}{X}

4.1 Types

It is obvious that without further
onstant relations it is not possible to

write interesting spe
i�
ations; in fa
t, we
ould not use datatypes if only

the basi
 fork operations are available.

Thus, we in
lude some extra operations whose behavior is related to

datatype manipulation.

Natural numbers

The extra relational operations that our language supports for manipu-

lating natural numbers are:

� nzero: This operation relates any element (an element from any datatype)

to the natural number zero.

� nsu

: relates a natural number to its su

essor.

� npred: relates a nonzero natural number to its prede
essor.

Lists of natural numbers

The relations that a
t on lists of natural numbers are:

� nnil: relates any element to the empty list.

� n
ons: Given a pair,
onstru
ted by `?', whose �rst
omponent is a

natural number n and the se
ond one is a list l, relation n
ons relates

this pair to the list
onstru
ted by putting n in front of l.

� nhd: relates a nonempty list to its head.

� ntl: relates a nonempty list to its tail.

Booleans

The relations that manipulate boolean values are:

� ntrue: relates any element to the boolean value true.

� nfalse: relates any element to the boolean value false.

Binary Trees of natural numbers

The following relations allow to use binary trees:

� nniltree: relates any element to the empty tree.

� nmaketree: Given a 3-uple (a
tually is a pair) whose �rst
omponent

is a natural number n, and whose se
ond and third
omponents are

binary trees b

1

and b

2

respe
tively, nmaketree relates this triuple to

the tree
omposed by b

1

as left
hild, b

2

as right
hild, and n as root.

� nl
h: relates a nonempty tree to its left
hild.

� nr
h: relates a nonempty tree to its right
hild.

� nroot: relates a nonempty tree to its root.

We in
lude also relations that
orrespond to \�lters" on the range of

onstru
tor relations, su
h as nidnil, whi
h is the partial identity on the

empty list. The grammar of our spe
i�
ation language is shown in Figure

3.

Example:

1. Let us
onsider the following spe
i�
ation:

LENGTH = 1

0

L=0

; zero + 1

0

L>0

; tl;LENGTH ; su

where 1

0

L=0

is the partial identity on the empty list, 1

0

L>0

is the partial

identity on nonempty lists, zero relates any element to zero, tl
al
u-

lates the tail of a list, and su

 adds 1 to a natural number. Clearly,

LENGTH re
ursively
omputes the length of a list. In our language

it is written as:

LENGTH = \join{\idnil;\zero}

{\id
ons;\tl;LENGTH;\su

}

2. Let us
onsider now the following spe
i�
ation:

add =

1

0

N=0

1

0

Nat

; �+

1

0

N>0

1

0

Nat

;

pred

1

0

; add; su

where pred
al
ulates the prede
essor of a natural number, and the

identities 1

0

N=0

, 1

0

N>0

, 1

0

Nat

are respe
tively �lters on the natural zero,

nonzero natural numbers and natural numbers. The relation add
om-

putes the sum of two natural numbers. This spe
i�
ation
an be writ-

ten in our language in the following way:

add = \join{\
ross{\idzero}{\join{\idzero}{\idsu

}};\rho}

{\
ross{\idzero}{\idsu

};

\
ross{\pred}{\id};

add;

\su

}

4.2 Restri
tions

There exist some restri
tions on the spe
i�
ations. As it is indi
ated in [1℄,

a set of equations must be strati�ed with respe
t to
omplementation; this

means that if a relation R depends on the
omplementation of S then S

annot depend on R.

It is also ne
essary that all the equations from a set have di�erent vari-

ables in their left-hand side (no multiple de�nitions of relations).

<program> : <eqlist>

<eqlist> : <equation>

| <eqlist> . <equation>

<equation> : <VAR> = <term_list>

<term_list>: <term>

| <term_list> ; <term>

<term> : <VAR> | \fork <arg> <arg> | \join <arg> <arg>

| \meet <arg> <arg> | \
ross <arg> <arg> | \
ons

| \
onver <arg> | \
ompl <arg> | \su

 | \pred

| \hd | \tl | \dom <arg> | \ran <arg> | \id

| \idnil | \id
ons | \idzero | \idsu

 | \univ

| \empty | \pi | \rho | \zero | \nil | \niltree

| \maketree | \root | \left
hild | \right
hild

| \idniltree | \idnvtree | \true | \false

| \idfalse | \idtrue

<arg> : { <term_list> }

Figure 3: Grammar of the spe
i�
ation language.

4.3 Semanti
s of Fork Spe
i�
ations

Although the semanti
s of fork spe
i�
ations will not be studied in this

paper, it is important to note that, as it is explained and proved in [1℄, the

way in whi
h spe
i�
ations are de�ned and translated is
ompletely natural,

and yields a straightforward de�nition for semanti
s of strati�ed sets of

equations.

5 The Fork Compiler

The fork
ompiler that we des
ribe in this se
tion is a tool that allows to

exe
ute fork spe
i�
ations. It works translating a fork spe
i�
ation into a

normal logi
 program in su
h a manner that the semanti
s of the original

spe
i�
ation is preserved.

5.1 Exe
uting a Spe
i�
ation

On
e a spe
i�
ation is written, it
an be translated into a logi
 program by

using the fork
ompiler. Then, the programmer
an exe
ute the spe
i�
ation

by interpreting the generated
ode in a logi
 programming interpreter.

For ea
h relation de�nition of the form

X = T

a predi
ate p X is generated in the output logi
 program, so the programmer

may
onsult predi
ate p X to exe
ute the relational program X .

Example: Let us
onsider the LENGTH spe
i�
ation given above. The

logi
 program generated by the
ompiler in
lude the predi
ate p LENGTH ,

whi
h
an be used to exe
ute LENGTH . If the programmer wants to

ompute the length of the list [1; 2; 3; 4℄, he would make the following
onsult

to the generated program:

p_LENGTH([1,2,3,4℄, X).

5.2 Using a Common Prolog Interpreter to Exe
ute Spe
i�-

ations

The de
larative meaning of logi
 programs is given by the standard model

semanti
s [2℄; although Prolog does not support this semanti
s, the refu-

tation pro
edure [9℄ (pro
edural semanti
s of programs in Prolog) is sound

with respe
t to this meaning. Thus, a Prolog interpreter
an be used to

evaluate a program generated by the fork
ompiler. However, two problems

ould arise if a Prolog interpreter is used to evaluate fork logi
 programs:

� the refutation pro
edure
ould fail to �nd su

essful results, spe
ially

when the original fork spe
i�
ation use the
omplementation opera-

tion,

� be
ause of the untyped nature of Prolog semanti
s, a program
ould

yield meaningless terms as results if it is evaluated on a non-well-

formed term (it is not
ontrolled by the interpreter). For example, if

the relation pred (that relates a nonzero natural number to its prede-

essor) is evaluated on the term s(?(0; 0)), whi
h is not well-formed,

it will yield ?(0; 0) as result.

5.3 Optimizations to the Generated Code

Some simple optimizations
an be made to the generated program, that

does not a�e
t the performan
e of the program, but improve its reading.

They are unfolding of predi
ates, in order to avoid the use of unne
essary

predi
ate de�nitions, and the elimination of repeated predi
ate de�nitions,

produ
ed by the sharing of some subexpressions in fork spe
i�
ations.

6 Con
lusions

The tool that we have presented allows to translate a fork spe
i�
ation into

a logi
 program preserving the meaning of the original spe
i�
ation. This

tool
an be extended in many ways. At �rst, an interpreter that
he
ks

the
orre
t
onstru
tion of predi
ate arguments when
onsulting a program

should be made; also, the strati�
ation of spe
i�
ations should be
he
ked

stati
ly.

Another useful extension is the
onstru
tion of a visual tool for editing

fork spe
i�
ations, and language extension for supporting further datatypes.

A
knowledgements

Part of this work was written while Mar
elo Frias was visiting the Univer-

sidad Na
ional de R��o Cuarto. The hospitality of Jorge Aguirre, Ri
ardo

Medel, Ver�oni
a Gentile, Laura Sabatini, Javier Smaldone, Ni
ol�as Merkis

and Ri
ky is gratefully a
knowledged.

Referen
es

[1℄ Aguirre, N., A logi
al interpretation of abstra
t fork spe
i�
ations, in

Pro
eedings of Workshop Argentino de Inform�ati
a Te�ori
a WAIT'99,

28

o

Jornadas Argentinas de Inform�ati
a e Investiga
i�on Operativa 28

JAIIO, 1999.

[2℄ Apt, k.R., Blair, H.A., Walker, A., Towards a Theory of De
larative

Knowledge, in J. Minker (Ed.), Foundations of Dedu
tive Databases

and Logi
 Programming, Morgan Kaufmann Pub., Washington D. C.,

1988.

[3℄ Baum, G.A., Frias, M.F., Haeberer, A.M. and Mart��nez L�opez, P.E.,

From Spe
i�
ations to Programs: A Fork{algebrai
 Approa
h to Bridge

the Gap, in Pro
eedings of MFCS'96, LNCS 1113, Springer-Verlag,

pp. 180{191, 1996.

[4℄ Brink, C., Kahl, W. and S
hmidt, G. (Eds.), Relational Methods in

Computer S
ien
e, Springer, Wien New York, 1997.

[5℄ Frias, M. F., Baum, G. A. and Haeberer, A. M., Representability and

Program Constru
tion within Fork Algebras, to appear in Journal of the

IGPL.

[6℄ Frias, M. F., Baum, G. A., Haeberer, A. M. and Veloso, P. A. S., A

Representation Theorem for Fork Algebras, (Te
hni
al Report) MCC.

29/93, PUC-RJ, August 1993.

[7℄ Frias, M. F., Baum, G. A., Haeberer, A. M. and Veloso, P. A. S.,

Fork Algebras are Representable, in Bulletin of the Se
tion of Logi
,

University of L�od�z, Vol. 24, No. 2, pp.64{75, 1995.

[8℄ Libra Programming Language, Department of Computer S
i-

en
e, University of Adelaide, Adelaide, South Australia, URL:

www.
s.adelaide.edu.au/users/dwyer/TR95-10 TOC.html.

[9℄ Lloyd, J. W., Foundations of Logi
 Programming, Springer-Verlag,

1987.

[10℄ Ralf System, Home Page of RelMiCS, URL: inf2-

www.informatik.unibw-muen
hen.de/Resear
h/Tools/Ralf/ralfmanual.html.

[11℄ Relview System, Department of Computer S
ien
e and Applied Math-

emathi
s, University of Kiel, Germany. URL: www.informatik.uni-

kiel.de/~progsys/relview.html.

