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Abstract 
 
In scheduling, a set of machines in parallel is a setting that is important, from both the theoretical and 
practical points of view. From the theoretical viewpoint, it is a generalization of the single machine 
scheduling problem. From the practical point of view the occurrence of resources in parallel is 
common in real-world. 
When machines are computers, a parallel program can be conceived as a set of parallel components 
(tasks) which can be executed according to some precedence relationship. 
In this case efficient scheduling of tasks permits to take full advantage of the computational power 
provided by a multiprocessor or a multicomputer system. This kind of planning involves the 
assignment of partially ordered tasks onto the system architecture processing components. 
This paper shows the problem of allocating a number of non-identical tasks in a multiprocessor or 
multicomputer system. The model assumes that the system consists of a number of identical 
processors and only one task may execute on a processor at a time. All schedules and tasks are non-
preemptive. The well-known Graham’s list scheduling algorithm (LSA) is contrasted with an 
evolutionary approach using a direct representation of solutions. 
 
KEYWORDS: Task scheduling, evolutionary algorithms, direct representation, List Scheduling 
Algorithm. 
 
 
 
 
1. INTRODUCTION  
 
A parallel program is a collection of tasks, some of which must be completed before than others begin. 
The precedence relationships between tasks are commonly outlined in a directed acyclic graph known 
as the task graph. Nodes in the graph identify tasks and their duration while arcs represent the 
precedence relationship. Factors, such as number of processors, number of tasks and task precedence 
constraints contribute to make difficult a good assignment.  
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The problem to find an schedule on m > 2 processors of equal capacity, that minimizes the whole 
processing time of independent tasks has been shown as belonging to the NP-complete class 
[Horowitz E. 76]. 
Task scheduling can be classified as static and dynamic. In the case of static scheduling some strong 
reasons make it applicable. First, static scheduling sometimes results in lower execution times than 
dynamic scheduling. Second static scheduling allows only one process per processor, reducing process 
creation, synchronization and termination overhead. Third, static scheduling can be used to predict 
speedup that can be achieved by a particular parallel algorithm on a target machine, assuming that no 
preemptions of processes occur. 
 
2. A DETERMINISTIC MODEL 
 
In a deterministic model, the execution time for each task and the precedence relations between them 
are known in advance. This information is illustrated in a directed graph, usually known as the task 
graph.  In Fig. 1 we have eight tasks with the corresponding duration and their precedence relations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P2  T T3 T4 6  
P T1 T1 T2 T5 T7 8 

Time slot 1 2 3 4 5 6 7 8 9 10 
 
 
 
 
 
 
Figure 2, shows a Gantt chart corresponding to one possible schedule of the parallel tasks of the task 
graph of figure 1 onto two processors. By simple observation we notice a makespan2 of 10 and an 
utilization of a 100% for processor P1 and an utilization of 60% for processor P2

                                                 
2 For any arbitrary environmet itt is defined as the completion time of the last task leaving the system. 

. Also an speed-up of 
1.6 can be easily derived. 
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A task graph is a simplified representation 
of a parallel program execution, ignoring 
overheads due to interrupts for accessing 
resources etc. Nevertheless, it provides a 
basis for static allocation of processors. 
A schedule is an allocation of tasks to 
processors which can be depicted by a 
Gantt chart. 
In a Gantt chart, the initiation and ending 
times for each task in the available 
processors is indicated and the makespan 
(total execution time of the parallel 
program) of the schedule can be easily 
derived.  

Fig. 2. Scheduling 8 tasks onto 2 processors by LSA 

Time          0           1           2            3           4           5            6            7          8           9           10 



 

Connected with the makespan, an optimal schedule  is such that the total execution time is minimized. 
Other performance variables, such as individual processor utilization or evenness of load distribution 
can be considered. 
As we can see some simple scheduling problems can be solved to optimality in polynomial time while 
others can be computationally intractable. 
As we are interested in scheduling of arbitrary tasks graphs onto a reasonable number of processors we 
would be content with polynomial time scheduling algorithms that provide good but no optimal 
solutions. 
 
3. THE LIST SCHEDULING ALGORITHM (LSA) 
 
For a given list of tasks ordered by priority, it is possible to assign tasks to processors by always 
assigning each available processor to the first unassigned task on the list whose predecessor tasks have 
already finished execution. 
Let be: 

T={T1

μ: T→ (0, ∞) a function which associates an execution time to each task, 
,....,Tn} a set of tasks, 

≤ a partial order in T and 
L a priority list of tasks in T. 

 
Each time a processors is idle, it immediately removes from L the first ready task; that is, an 
unscheduled task whose ancestors under ≤ have all completed execution. In the case that two or more 
processors attempt to execute the same task, the one with lowest identifier succeed and the remaining 
processors look for another adequate task.  
The Gantt chart of Fig. 2, resulted of applying the list scheduling algorithm to the task graph of Fig. 1, 
with the priority list L = [T1, T2, T3, T4, T5, T6, T7
 

]. 

3.1 ANOMALIES OF THE  LIST SCHEDULING ALGORITHM  
 
Using this heuristic, contrary to the intuition, some anomalies can happen. For example, as shown in 
Fig. 3, increasing the number of processors, decreasing the execution times of one or more tasks, or 
eliminating  some of the precedence constraints can actually increase the makespan. In his work 
Graham [Graham R. 72] presented the following examples using the same priority task list L = [T1, 
T2, T3, T4, T5, T6, T7,T8,T9
 

] for each schedule. 
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4.USING EVOLUTIONARY ALGORITHMS TO PROVIDE NEAR-OPTIMAL SOLUTIONS 
 
The task allocation problem has been investigated by many researchers [Cena M. 95], [Ercal F. 88], 
[Flower J. 87], [Fox G. 88], [Fox G. 87], [Kidwell M. 93], [Mansour N. 91]. Several heuristics 
methods has been proposed, such as mincut-based heuristics, orthogonal recursive bisection, simulated 
annealing, genetic algorithms and neural networks. 
From the representation perspective many evolutionary computation approaches to the general 
scheduling problem exists. According to solution representation these methods can be roughly 
categorized as indirect and direct representation  [Bagchi  S. 91]. 
In the case of indirect representation of solutions the algorithm works on a population of encoded 
solutions. Because the representation do not directly provides a schedule a scheduler builder is 
necessary to transform a chromosome into a schedule, validate and evaluate it. The scheduler builder 
guarantees the feasibility of a solution and its work depends on the amount of information included in 
the representation.  
In direct representation [Bruns R. 93] a complete and feasible schedule is an individual of the evolving 
population. The only method that performs the search is the evolutionary algorithm because the 
represented information comprises the whole search space. 
 
We devised different evolutionary computation approaches to task scheduling. First we addressed two 
different representation schemes; direct and indirect. Second, we addressed the question of attempting 
to improve performance by means of different recombination and mating approaches. 
In this paper we concentrate only in direct representation. 
 
4.1. DIRECT REPRESENTATION OF SOLUTIONS  
 
Here we propose to use a schedule as a chromosome. Suppose we have two different schedules, (a) 
and (b) (Fig. 4), for the model task graph of Fig. 1, represented by the following  Gannt charts. 
 

P2  T T3 T4 6  
P T1 T1 T2 T5 T7 8 
ts 1 2 3 4 5 6 7 8 9 10 

 
Schedule (a) 

 

Fig. 3. Increasing number of processors, decreasing tasks durations and eliminating 
              precedence constraints can increase the makespan using the Graham’s 
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P2  T3  T5  T8 
P T1 T1 T2 T4 T6 7  
ts 1 2 3 4 5 6 7 8 9 10 11 12 

 
Schedule (b) 

 
 
 
The precedence relation described in the task graph can be properly represented in the corresponding 
precedence matrix A, where element aij

 

 is set to 1 if task i precedes task j and it is set to 0 otherwise.  
A gene in the chromosome can be the following four-tuple: 

<task_id, proc_id, init_time, end_time > 
where, 
task_id, identifies  the task to be allocated 
proc_id, identifies the processor where the task will be allocated  
init_time, it is the commencing time of the task_id in proc_id. 
end_time, it is the termination time of the task_id in proc_id. 
 
With this structure the list of the corresponding predecessors tasks is easily retrieved by entering the 
column of A indexed by the task_id value. 
The corresponding chromosomes Ca and Cb
 

 for schedules (a) and (b) are: 

 
 
 
 
 
 
This representation has a problem. If we use conventional crossover such as one-point crossover 
invalid offspring (unfeasible schedules) can be created. For example, if we decide to apply this 
operator after the fifth position we would obtain two invalid chromosomes.  
 
 
 
 
 
 
 
Both of them violate the restriction that a processor processes a task at a time. Genes 5 and 6  in Ca’ 
and Cb’ describe invalid schedules where the same processor (P1 for the case of Ca’ and P2 for the case 
of Cb’
 

) processes two tasks at the same time interval. 

Penalty functions or repair algorithms can be used to remedy this situation [Michalewicz Z. 96]. 
Penalty functions of varied severity can be applied to invalid offspring in order to lower their fitness 
values but allowing them to remain in the population aiming to retain valuable genetic material. 
Repair algorithms attempt to build up a valid solution from an invalid one. This approach is embedded 
in the knowledge-augmented crossover operator proposed by Bruns. Here a collision occurs if an 
operation (task processing) inherited from one of the parents cannot be scheduled in the specified time 
interval on the assigned processor. In this case the processor assignment is unchanged and it is delayed  
into the future until the processor is available.   
In our example, this advanced crossover would generate the following chromosomes and 
corresponding feasible schedules (Fig. 5): 

Fig. 4. Feasible schedules for the model task graph. 
 

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,2,5,8 7,1,8,9 8,1,9,10 
 
 

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,1,7,10 7,1,10,11 8,2,11,12 
 

 
Ca : 
 
 

Cb:  

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,1,7,10 7,1,10,11 8,2,11,12 
 
 

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,2,5,8 7,1,8,9 8,1,9,10 
 

 
Ca’ : 
 
 

Cb’:  



 

 
 
 
 
 
 
 
 
 
 
 

P2  T T3 4  T8 
P T1 T1 T2 T5 T6 7  
ts 1 2 3 4 5 6 7 8 9 10 11 12 13 

 
 

Schedule (a”) 
 
 

P2  T3  T T5 6  
P T1 T1 T2 4  T T7 8 
ts 1 2 3 4 5 6 7 8 9 10 11 12 13 

 
Schedule (b”)  

 
 
 
As expected both children have a larger makespan but still are feasible. In the proposed Bruns’s 
knowledge-augmented crossover only a child is generated where the part taken from the first parent 
build a consistent schedule. Then the assignment of the missing tasks are chosen from the second 
parent maintaining the assignment order and the processor allocations to tasks. Timing adjustments are 
included if neccesary. The latter decision can imply, as we showed, larger makespans for the children. 
 
In our work we adopted a variant of the as-soon-as-possible (ASAP) approach, explained below. This 
method is similar to the Brun’s proposal but modified because delays are avoided. This was 
implemented by moving the assignment to the earliest possible time, by random selection of one idle 
processor at the ready time of the unassigned task or the earliest free processor otherwise. In this way 
no processor will remain idle if a task is available to be executed and the precedence constraints are 
satisfied.The available processor is selected in way such to minimize the assignment changes in the 
part of the offspring corresponding to the second parent.  
In our example this decision provides only one alternative and would give us the following 
chromosomes and their corresponding schedules, which differs from their parents in the assignments 
of tasks T7 and T8
 

 only. 

 
 
 
 
 
 

P2  T T3 T4 6  T8 
P T1 T1 T2 T5 7  
ts 1 2 3 4 5 6 7 8 9 10 

Schedule (a’’’) 
 

P2  T3  T5  
P T1 T1 T2 T4 T6 7 T8 
ts 1 2 3 4 5 6 7 8 9 10 11 12 

Schedule (b’’’) 
 

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,1,8,11 7,1,11,12 8,2,12,13 
 
 

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,2,8,11 7,1,11,12 8,1,12,13 
 
 
 
 

 
Ca”: 
 
 
Cb”:  

Fig 5. Feasible offspring schedules for the model task graph (Bruns). 

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,2,5,8 7,1,8,9 8,2,9,10 
 
 

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,1,7,10 7,1,10,11 8,1,11,12 
 

Ca’’’ : 
 
 
 
Cb’’’:  

Fig 5.6. Feasible offspring schedules for the model task graph (ASAP). 



 

 
For mutation also a switch-processor operator was conceived. If the chromosome undergoes mutation 
then a search is done, from left to right, until one gene is modified in the following way: choosing an 
alternative free processor at commencing time or moving the assignment to the earliest possible time. 
This would imply modifying subsequent genes of the chromosome to create a valid offspring. 
 

5. EXPERIMENTS AND RESULTS 
 
The preliminary experiments implemented a generational GA with direct representation of 
chromosomes and randomised initial population of size fixed to 50 individuals. The ASAP was applied 
on a pair of parents generating two children. Many runs were performed on five testing cases, using 
elitism, one point crossover and switch-processor mutation. The maximum number of generations was 
fixed to 100, but an stop criterion was used to accept convergence when after 20 consecutive 
generations, mean population fitness values differing in ε ≤ 0.001 were obtained. Probabilities for 
crossover and mutation were fixed to 0.65 and 0.001. The testing cases corresponded to: 
 
Case 1: Task graph of Fig. 1, but not including task 8   (7 tasks and 3 processors) 
Case 2: Task graph of Fig. 3.a (9 tasks and 3 processors) 
Case 3: Task graph of Fig. 3.a (9 tasks and 4 processors) 
Case 4: Task graph of Fig. 3.b (9 tasks and 3 processors, decreasing task’s duration) 
Case 5: Task graph of Fig. 3.c (9 tasks and 3 processors, eliminating precedence constraints) 
The following performance variables were considered to contrast the genetic approach  (GA) versus 
the LSA: 
 
Alt: Number of alternative solutions. It is the mean number of distinct alternative solutions found by 
the algorithm including optimum and non-optimum solutions. 
 
Opt: : Number of optimal solutions. It is the mean number of distinct optimum solutions found by the 
algorithm per run. 
 
Topt : Total number of optima. It is the total number of distinct optimal solutions found by the 
algorithm throughout all the runs. 

 
 

Case Alt Opt Topt 
GA LSA GA LSA GA LSA 

1 20.9 1 20.9 1 194 1 
2 5.5 1 1.1 1 11 1 
3 5.3 1 5.3 - 53 - 
4 3.1 1 2.9 - 29 - 
5 3.2 1 1.2 - 12 - 

 
Table 1. GA versus LSA, comparative performance  

 
The stop criterion allowed to run the GA a mean number of generations between 31.6 to 87.1. In some 
of the alternative solutions, 1 or more processors remained idle (no tasks allocated to them). As the 
permutation of processors provides new alternative solutions, all the allocation list of an occupied 
processor can be switched to an idle one. Consequently a fault tolerance scheme can be implemented 
when the GA provides schedules with idle processors. 
By observing table 1 the following comparisons can be done: 
 
• The genetic approach found many and no a single optimal solution for any case as LSA does. 
 
• All the anomalies observed with LSA do not hold when GA is applied, because: 
 



 

• When the number of processors is increased the minimum (optimum) makespan is  
                         also found. 

• When the duration of tasks is reduced this reduction is reflected in a reduced  
                         optimum  makespan. 

• When the number of precedence restrictions is reduced the optimum makespan is 
               preserved. 

 
A more detailed analysis on each run detected that in most of the cases alternative solutions do not 
include, or include a low percentage, of non-optimal alternative solutions. That means that the final  
population is composed of many replicas of the optimal solutions due to a loss of diversity. This fact 
stagnate the search and further improvements are difficult to obtain. 
To avoid this behaviour it would be necessary to continue experimentation with different parameter 
settings and recombination approaches. 
   
 
6. CONCLUSIONS 
 
The allocation of a number of parallel tasks in parallel supporting environments, multiprocessors or 
multicomputers, is a difficult and important issue in computer systems.  
In this paper we approached allocation attempting to minimize makespan. Other performance 
variables such as individual processor utilization or evenness of load distribution can be considered. 
Also results from this research can be applied to more general problems of parallel machine 
scheduling. 
As we are interested in scheduling of arbitrary tasks graphs onto a reasonable number of processors, in 
many cases we would be content with polynomial time scheduling algorithms that provide good but no 
optimal solutions. The list scheduling algorithm (LSA) satisfy this requirement.  
Here a genetic approach was undertaken to contrast its behaviour against the LSA. Preliminary results 
on the selected test suite showed two important facts. Firstly,  GA provides not a single but a set of 
optimal solutions, providing fault tolerance when system dynamics must be considered. Secondly, GA 
is free of the LSA anomalies. This facts do not guarantee finding optimal solutions for any arbitrary 
task graph but show a better approach to the problem. 
Consequently further research is necessary to investigate potentials and limitations of the GA 
approach under more complex test suites, different representations, and convenient genetic operators. 
A new indirect-decode representation approach is now being implemented. 
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