
A Genetic Approach Using Direct Representation of Solution for the
Parallel Task Scheduling Problem

Esquivel S.C., Gatica C. R., Gallard R.H.

Proyecto UNSL-3384031

Departamento de Informática

Universidad Nacional de San Luis (UNSL)
Ejército de los Andes 950 - Local 106

5700 - San Luis, Argentina.
E-mail: {esquivel, crgatica, rgallard}@unsl.edu.ar

Phone: + 54 652 420823
Fax : +54 652 430224

Abstract

In scheduling, a set of machines in parallel is a setting that is important, from both the theoretical and
practical points of view. From the theoretical viewpoint, it is a generalization of the single machine
scheduling problem. From the practical point of view the occurrence of resources in parallel is
common in real-world.
When machines are computers, a parallel program can be conceived as a set of parallel components
(tasks) which can be executed according to some precedence relationship.
In this case efficient scheduling of tasks permits to take full advantage of the computational power
provided by a multiprocessor or a multicomputer system. This kind of planning involves the
assignment of partially ordered tasks onto the system architecture processing components.
This paper shows the problem of allocating a number of non-identical tasks in a multiprocessor or
multicomputer system. The model assumes that the system consists of a number of identical
processors and only one task may execute on a processor at a time. All schedules and tasks are non-
preemptive. The well-known Graham’s list scheduling algorithm (LSA) is contrasted with an
evolutionary approach using a direct representation of solutions.

KEYWORDS: Task scheduling, evolutionary algorithms, direct representation, List Scheduling
Algorithm.

1. INTRODUCTION

A parallel program is a collection of tasks, some of which must be completed before than others begin.
The precedence relationships between tasks are commonly outlined in a directed acyclic graph known
as the task graph. Nodes in the graph identify tasks and their duration while arcs represent the
precedence relationship. Factors, such as number of processors, number of tasks and task precedence
constraints contribute to make difficult a good assignment.

1 The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT
(National Agency to Promote Science and Technology).

The problem to find an schedule on m > 2 processors of equal capacity, that minimizes the whole
processing time of independent tasks has been shown as belonging to the NP-complete class
[Horowitz E. 76].
Task scheduling can be classified as static and dynamic. In the case of static scheduling some strong
reasons make it applicable. First, static scheduling sometimes results in lower execution times than
dynamic scheduling. Second static scheduling allows only one process per processor, reducing process
creation, synchronization and termination overhead. Third, static scheduling can be used to predict
speedup that can be achieved by a particular parallel algorithm on a target machine, assuming that no
preemptions of processes occur.

2. A DETERMINISTIC MODEL

In a deterministic model, the execution time for each task and the precedence relations between them
are known in advance. This information is illustrated in a directed graph, usually known as the task
graph. In Fig. 1 we have eight tasks with the corresponding duration and their precedence relations

P2 T T3 T4 6
P T1 T1 T2 T5 T7 8

Time slot 1 2 3 4 5 6 7 8 9 10

Figure 2, shows a Gantt chart corresponding to one possible schedule of the parallel tasks of the task
graph of figure 1 onto two processors. By simple observation we notice a makespan2 of 10 and an
utilization of a 100% for processor P1 and an utilization of 60% for processor P2

2 For any arbitrary environmet itt is defined as the completion time of the last task leaving the system.

. Also an speed-up of
1.6 can be easily derived.

T3/1

T1/2

T2/3 T4/2

T5/3 T6/3

T8/1

T7/1

A task graph is a simplified representation
of a parallel program execution, ignoring
overheads due to interrupts for accessing
resources etc. Nevertheless, it provides a
basis for static allocation of processors.
A schedule is an allocation of tasks to
processors which can be depicted by a
Gantt chart.
In a Gantt chart, the initiation and ending
times for each task in the available
processors is indicated and the makespan
(total execution time of the parallel
program) of the schedule can be easily
derived.

Fig. 2. Scheduling 8 tasks onto 2 processors by LSA

Time 0 1 2 3 4 5 6 7 8 9 10

Connected with the makespan, an optimal schedule is such that the total execution time is minimized.
Other performance variables, such as individual processor utilization or evenness of load distribution
can be considered.
As we can see some simple scheduling problems can be solved to optimality in polynomial time while
others can be computationally intractable.
As we are interested in scheduling of arbitrary tasks graphs onto a reasonable number of processors we
would be content with polynomial time scheduling algorithms that provide good but no optimal
solutions.

3. THE LIST SCHEDULING ALGORITHM (LSA)

For a given list of tasks ordered by priority, it is possible to assign tasks to processors by always
assigning each available processor to the first unassigned task on the list whose predecessor tasks have
already finished execution.
Let be:

T={T1

μ: T→ (0, ∞) a function which associates an execution time to each task,
,....,Tn} a set of tasks,

≤ a partial order in T and
L a priority list of tasks in T.

Each time a processors is idle, it immediately removes from L the first ready task; that is, an
unscheduled task whose ancestors under ≤ have all completed execution. In the case that two or more
processors attempt to execute the same task, the one with lowest identifier succeed and the remaining
processors look for another adequate task.
The Gantt chart of Fig. 2, resulted of applying the list scheduling algorithm to the task graph of Fig. 1,
with the priority list L = [T1, T2, T3, T4, T5, T6, T7

].

3.1 ANOMALIES OF THE LIST SCHEDULING ALGORITHM

Using this heuristic, contrary to the intuition, some anomalies can happen. For example, as shown in
Fig. 3, increasing the number of processors, decreasing the execution times of one or more tasks, or
eliminating some of the precedence constraints can actually increase the makespan. In his work
Graham [Graham R. 72] presented the following examples using the same priority task list L = [T1,
T2, T3, T4, T5, T6, T7,T8,T9

] for each schedule.

P3 T3 T6 T8
P2 T2 T4 T5 T7
P1 T1 T9
ts 1 2 3 4 5 6 7 8 9 10 11 12

P4 T4 T7
P3 T3 T6
P2 T2 T5 T9
P1 T1 T8
ts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1/3

T2/2

T3/2

T4/2

T9/9

T5/4

T6/4

T7/4

T8/4

(a)

4.USING EVOLUTIONARY ALGORITHMS TO PROVIDE NEAR-OPTIMAL SOLUTIONS

The task allocation problem has been investigated by many researchers [Cena M. 95], [Ercal F. 88],
[Flower J. 87], [Fox G. 88], [Fox G. 87], [Kidwell M. 93], [Mansour N. 91]. Several heuristics
methods has been proposed, such as mincut-based heuristics, orthogonal recursive bisection, simulated
annealing, genetic algorithms and neural networks.
From the representation perspective many evolutionary computation approaches to the general
scheduling problem exists. According to solution representation these methods can be roughly
categorized as indirect and direct representation [Bagchi S. 91].
In the case of indirect representation of solutions the algorithm works on a population of encoded
solutions. Because the representation do not directly provides a schedule a scheduler builder is
necessary to transform a chromosome into a schedule, validate and evaluate it. The scheduler builder
guarantees the feasibility of a solution and its work depends on the amount of information included in
the representation.
In direct representation [Bruns R. 93] a complete and feasible schedule is an individual of the evolving
population. The only method that performs the search is the evolutionary algorithm because the
represented information comprises the whole search space.

We devised different evolutionary computation approaches to task scheduling. First we addressed two
different representation schemes; direct and indirect. Second, we addressed the question of attempting
to improve performance by means of different recombination and mating approaches.
In this paper we concentrate only in direct representation.

4.1. DIRECT REPRESENTATION OF SOLUTIONS

Here we propose to use a schedule as a chromosome. Suppose we have two different schedules, (a)
and (b) (Fig. 4), for the model task graph of Fig. 1, represented by the following Gannt charts.

P2 T T3 T4 6
P T1 T1 T2 T5 T7 8
ts 1 2 3 4 5 6 7 8 9 10

Schedule (a)

Fig. 3. Increasing number of processors, decreasing tasks durations and eliminating
 precedence constraints can increase the makespan using the Graham’s

P3 T3 T7
P2 T2 T4 T6 T9
P1 T1 T5 T8
ts 1 2 3 4 5 6 7 8 9 10 11 12 13

T1/2

T2/1

T3/1

T4/1

T9/8

T5/3

T6/3

T7/3

T8/3

T1/3

T2/2

T3/2

T4/2

T9/9

T5/4

T6/4

T7/4

T8/4

P3 T3 T5 T8
P2 T2 T4 T7
P1 T1 T6 T9
ts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(b)

(c)

P2 T3 T5 T8
P T1 T1 T2 T4 T6 7
ts 1 2 3 4 5 6 7 8 9 10 11 12

Schedule (b)

The precedence relation described in the task graph can be properly represented in the corresponding
precedence matrix A, where element aij

 is set to 1 if task i precedes task j and it is set to 0 otherwise.
A gene in the chromosome can be the following four-tuple:

<task_id, proc_id, init_time, end_time >
where,
task_id, identifies the task to be allocated
proc_id, identifies the processor where the task will be allocated
init_time, it is the commencing time of the task_id in proc_id.
end_time, it is the termination time of the task_id in proc_id.

With this structure the list of the corresponding predecessors tasks is easily retrieved by entering the
column of A indexed by the task_id value.
The corresponding chromosomes Ca and Cb

 for schedules (a) and (b) are:

This representation has a problem. If we use conventional crossover such as one-point crossover
invalid offspring (unfeasible schedules) can be created. For example, if we decide to apply this
operator after the fifth position we would obtain two invalid chromosomes.

Both of them violate the restriction that a processor processes a task at a time. Genes 5 and 6 in Ca’
and Cb’ describe invalid schedules where the same processor (P1 for the case of Ca’ and P2 for the case
of Cb’

) processes two tasks at the same time interval.

Penalty functions or repair algorithms can be used to remedy this situation [Michalewicz Z. 96].
Penalty functions of varied severity can be applied to invalid offspring in order to lower their fitness
values but allowing them to remain in the population aiming to retain valuable genetic material.
Repair algorithms attempt to build up a valid solution from an invalid one. This approach is embedded
in the knowledge-augmented crossover operator proposed by Bruns. Here a collision occurs if an
operation (task processing) inherited from one of the parents cannot be scheduled in the specified time
interval on the assigned processor. In this case the processor assignment is unchanged and it is delayed
into the future until the processor is available.
In our example, this advanced crossover would generate the following chromosomes and
corresponding feasible schedules (Fig. 5):

Fig. 4. Feasible schedules for the model task graph.

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,2,5,8 7,1,8,9 8,1,9,10

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,1,7,10 7,1,10,11 8,2,11,12

Ca :

Cb:

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,1,7,10 7,1,10,11 8,2,11,12

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,2,5,8 7,1,8,9 8,1,9,10

Ca’ :

Cb’:

P2 T T3 4 T8
P T1 T1 T2 T5 T6 7
ts 1 2 3 4 5 6 7 8 9 10 11 12 13

Schedule (a”)

P2 T3 T T5 6
P T1 T1 T2 4 T T7 8
ts 1 2 3 4 5 6 7 8 9 10 11 12 13

Schedule (b”)

As expected both children have a larger makespan but still are feasible. In the proposed Bruns’s
knowledge-augmented crossover only a child is generated where the part taken from the first parent
build a consistent schedule. Then the assignment of the missing tasks are chosen from the second
parent maintaining the assignment order and the processor allocations to tasks. Timing adjustments are
included if neccesary. The latter decision can imply, as we showed, larger makespans for the children.

In our work we adopted a variant of the as-soon-as-possible (ASAP) approach, explained below. This
method is similar to the Brun’s proposal but modified because delays are avoided. This was
implemented by moving the assignment to the earliest possible time, by random selection of one idle
processor at the ready time of the unassigned task or the earliest free processor otherwise. In this way
no processor will remain idle if a task is available to be executed and the precedence constraints are
satisfied.The available processor is selected in way such to minimize the assignment changes in the
part of the offspring corresponding to the second parent.
In our example this decision provides only one alternative and would give us the following
chromosomes and their corresponding schedules, which differs from their parents in the assignments
of tasks T7 and T8

 only.

P2 T T3 T4 6 T8
P T1 T1 T2 T5 7
ts 1 2 3 4 5 6 7 8 9 10

Schedule (a’’’)

P2 T3 T5
P T1 T1 T2 T4 T6 7 T8
ts 1 2 3 4 5 6 7 8 9 10 11 12

Schedule (b’’’)

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,1,8,11 7,1,11,12 8,2,12,13

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,2,8,11 7,1,11,12 8,1,12,13

Ca”:

Cb”:

Fig 5. Feasible offspring schedules for the model task graph (Bruns).

1,1,0,2 2,1,2,5 3,2,2,3 4,2,3,5 5,1,5,8 6,2,5,8 7,1,8,9 8,2,9,10

1,1,0,2 2,1,2,5 3,2,2,3 4,1,5,7 5,2,5,8 6,1,7,10 7,1,10,11 8,1,11,12

Ca’’’ :

Cb’’’:

Fig 5.6. Feasible offspring schedules for the model task graph (ASAP).

For mutation also a switch-processor operator was conceived. If the chromosome undergoes mutation
then a search is done, from left to right, until one gene is modified in the following way: choosing an
alternative free processor at commencing time or moving the assignment to the earliest possible time.
This would imply modifying subsequent genes of the chromosome to create a valid offspring.

5. EXPERIMENTS AND RESULTS

The preliminary experiments implemented a generational GA with direct representation of
chromosomes and randomised initial population of size fixed to 50 individuals. The ASAP was applied
on a pair of parents generating two children. Many runs were performed on five testing cases, using
elitism, one point crossover and switch-processor mutation. The maximum number of generations was
fixed to 100, but an stop criterion was used to accept convergence when after 20 consecutive
generations, mean population fitness values differing in ε ≤ 0.001 were obtained. Probabilities for
crossover and mutation were fixed to 0.65 and 0.001. The testing cases corresponded to:

Case 1: Task graph of Fig. 1, but not including task 8 (7 tasks and 3 processors)
Case 2: Task graph of Fig. 3.a (9 tasks and 3 processors)
Case 3: Task graph of Fig. 3.a (9 tasks and 4 processors)
Case 4: Task graph of Fig. 3.b (9 tasks and 3 processors, decreasing task’s duration)
Case 5: Task graph of Fig. 3.c (9 tasks and 3 processors, eliminating precedence constraints)
The following performance variables were considered to contrast the genetic approach (GA) versus
the LSA:

Alt: Number of alternative solutions. It is the mean number of distinct alternative solutions found by
the algorithm including optimum and non-optimum solutions.

Opt: : Number of optimal solutions. It is the mean number of distinct optimum solutions found by the
algorithm per run.

Topt : Total number of optima. It is the total number of distinct optimal solutions found by the
algorithm throughout all the runs.

Case Alt Opt Topt
GA LSA GA LSA GA LSA

1 20.9 1 20.9 1 194 1
2 5.5 1 1.1 1 11 1
3 5.3 1 5.3 - 53 -
4 3.1 1 2.9 - 29 -
5 3.2 1 1.2 - 12 -

Table 1. GA versus LSA, comparative performance

The stop criterion allowed to run the GA a mean number of generations between 31.6 to 87.1. In some
of the alternative solutions, 1 or more processors remained idle (no tasks allocated to them). As the
permutation of processors provides new alternative solutions, all the allocation list of an occupied
processor can be switched to an idle one. Consequently a fault tolerance scheme can be implemented
when the GA provides schedules with idle processors.
By observing table 1 the following comparisons can be done:

• The genetic approach found many and no a single optimal solution for any case as LSA does.

• All the anomalies observed with LSA do not hold when GA is applied, because:

• When the number of processors is increased the minimum (optimum) makespan is
 also found.

• When the duration of tasks is reduced this reduction is reflected in a reduced
 optimum makespan.

• When the number of precedence restrictions is reduced the optimum makespan is
 preserved.

A more detailed analysis on each run detected that in most of the cases alternative solutions do not
include, or include a low percentage, of non-optimal alternative solutions. That means that the final
population is composed of many replicas of the optimal solutions due to a loss of diversity. This fact
stagnate the search and further improvements are difficult to obtain.
To avoid this behaviour it would be necessary to continue experimentation with different parameter
settings and recombination approaches.

6. CONCLUSIONS

The allocation of a number of parallel tasks in parallel supporting environments, multiprocessors or
multicomputers, is a difficult and important issue in computer systems.
In this paper we approached allocation attempting to minimize makespan. Other performance
variables such as individual processor utilization or evenness of load distribution can be considered.
Also results from this research can be applied to more general problems of parallel machine
scheduling.
As we are interested in scheduling of arbitrary tasks graphs onto a reasonable number of processors, in
many cases we would be content with polynomial time scheduling algorithms that provide good but no
optimal solutions. The list scheduling algorithm (LSA) satisfy this requirement.
Here a genetic approach was undertaken to contrast its behaviour against the LSA. Preliminary results
on the selected test suite showed two important facts. Firstly, GA provides not a single but a set of
optimal solutions, providing fault tolerance when system dynamics must be considered. Secondly, GA
is free of the LSA anomalies. This facts do not guarantee finding optimal solutions for any arbitrary
task graph but show a better approach to the problem.
Consequently further research is necessary to investigate potentials and limitations of the GA
approach under more complex test suites, different representations, and convenient genetic operators.
A new indirect-decode representation approach is now being implemented.

7. ACKNOWLEDGEMENTS

We acknowledge the cooperation of the project group for providing new ideas and constructive criticisms.
Also to the Universidad Nacional de San Luis, and the ANPCYT from which we receive continuous
support.

8. REFERENCES

[Bagchi S. 91] Bagchi S., Uckum S., Miyabe Y., Kawamura K. – Exploring problem-specific

recombination operators for job shop scheduling- Proceedings of the Fourth
International Conference on Genetic Algorithms, pp 10-17, 1991.

[Bruns R. 93] Bruns R. – Direct chomosome representation and advanced genetic operator for

production scheduling. Proceedings of the Fifth International Conference on
Genetic Algorithms, pp 352-359, 1993.

[Cena M. 95] Cena M.,Crespo M., Gallard R., - Transparent Remote Execution in LAHNOS by

Means of a Neural Network Device- ACM Press, Operating Systems Review ,
Vol. 29, Nr. 1, pp 17-28, January 1995

[Ercal F. 88] Ercal F.- Heuristic approaches to Task Allocation for parallel Computing-
Doctoral Dissertation, Ohio State University, 1988.

[Flower J. 87] Flower J. , Otto S., Salama M. – Optimal mapping of irregular finite element

domains to parallel processors- Caltech C3P#292b, 1987.

[Fox G. 88] Fox G. C. – A review of automatic load balancing and decomposition methods

for the hipercube- In M Shultz, ed., Numerical algorithms for modern parallel
computer architectures, Springer Verlag, pp 63-76, 1988.

[Fox G. 87] Fox G.C., Kolawa A., Williams R. – The implementation of a dynamic load

balancer - Proc. of the 2nd

 Conf. on Hipercube multiprocessors, pp 114-121,
1987.

[Graham R. 72] Graham R. L. – Bounds on multiprocessing anomalies and packing algorithms
Proceedings of the AFIPS 1972 Spring Joint Computer Conference, pp 205-217,
1972.

[Horowitz E. 76] Horowitz E. and Sahni S – Exact and approximate algorithms for scheduling

nonidentical processors – Journal of the ACM, vol. 23, No. 2, pp 317-327, 1976.

[Kidwell M. 93] Kidwell M. – Using genetic algorithms to schedule tasks on a bus-based system. -

Proceedings of the Fifth International Conference on Genetic Algorithms, pp 368-
374, 1993.

[Mansour N. 91] Mansour N., Fox G.C. – A hybrid genetic algorithm for task allocation in

multicomputers. Proceedings of the Fourth International Conference on Genetic
Algorithms, pp 466-473, 1991.

[Michalewicz Z. 96] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs

Springer Verlag , Third, Extended Edition, 1996.

	Phone: + 54 652 420823
	2. A deterministic model
	T2/3
	3. The list scheduling algorithm (LSA)
	4.Using evolutionary algorithms to provide near-optimal solutions
	4.1. Direct representation of solutions
	T6/4
	T1/2

