XIll Congreso Argentino de Ciencias de la Computacion

Design and Implementation of a FIPA based
Agent Communication Model for
a Logic Programming Framework

Mariano Tucat Alejandro J. Garcia

mt@cs.uns.edu.ar ajglcs.uns.edu.ar

Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET)
Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering, Universidad Nacional del Sur,

Abstract

In this paper we consider the design of an agent communication model based on the FIPA Architec-
ture and FIPA Interaction Protocols. Our goal is to allow the agents to reach each other by their
characteristics and to exchange messages using a standard Agent Communication Language. We pro-
pose the design and implementation of a framework as an extension of Prolog, following the spirit
of Logic Programming. In our framework, the agents are allowed to register themselves in MASs in
order to allow other agents to locate them easily. The agents may search for agents having specific
characteristics, or providing determined services in order to interact with them.

Keywords: Agent Communication, Interaction Protocols, Logic Programming

1 INTRODUCTION

Interaction is an essential characteristic of Multi-Agent Systems (MAS). Agent interactions
are usually performed by exchanging messages according to some conversation policy or by
executing services upon requests made by other agents. Therefore, the ability to locate other
agents and communicate with them are features that need to be implemented in agents that
are part of a MAS.

The goal of this paper is to design an agent communication model based on the FIPA
Architecture [6] and FIPA Interaction Protocols [5]. Thus, our model should allow the agents
both to reach each other by their characteristics and to exchange messages. The message
exchange should be done using standard Agent Communication Languages (ACLs), in order to
allow the interaction among heterogeneous agents.

Suppose as an example that there exist some agents selling books and other agents buying
books on behalf of their users. The agents buying books will need to find the agents selling books

Partially supported by CONICET (PIP 5050) and SGCyT Universidad Nacional del Sur (24/ZN11)

VIIl Workshop de Agentes y Sistemas Inteligentes 1562

XIll Congreso Argentino de Ciencias de la Computacion

and interact with them, but only the ones that sells the books they are interested in. Another
similar situation may arise when we have agents controlling the printers of an organization and
there exist agents that are trying to print documents on behalf of their users.

The theory of agent communication languages and conversation policies has received a lot
of attention in recent years [1, 3, 11, 14]. However, the creation of tools for implementing these
formalisms has been progressing at a slower pace, and it is clear that the techniques resulting
from such contributions will only be widely adopted when suitable programming languages and
tools are available.

There exist different alternatives for implementing MASs. One alternative is to implement
the whole MAS ad-hoc. Another way is to use a MultiAgent development framework such as
JACK [10], JADEX [13] or 3APL [9]. Finally, another alternative is to implement an MAS
using a Programming Language extension that provides the capabilities of finding other agents
and exchanging messages.

The alternative of implementing the whole MAS ad-hoc means that the developer of the
system is allowed to choose the architecture of each agent, the way they interact and also the
way they locate each other. Thus, this alternative has the advantage of a great flexibility in the
design and implementation of the system. However, the main disadvantage is that the developer
may have to implement everything, including the mechanisms used to locate the agents and
also the primitives for exchanging messages.

The alternative of using a MultiAgent development framework such as JACK, JADEX or
3APL, has the advantage of reducing the amount of work needed to implement the system.
However, this alternative constrains the developer of the systems to use a specific agent archi-
tecture and may also determine the way in which the agents should exchange messages.

Finally, the alternative of implementing the MAS using a Programming Language extension
or a framework that provides the capabilities of finding other agents and exchanging messages
(such JADE [2] or MadKit [8]) allows a flexible design of the system. This way of implementing
the MAS tries to maintain the advantages of the alternatives mentioned before also avoiding
their disadvantages.

Our proposal corresponds to the last alternative. Since Logic Programming is widely
adopted for the development of intelligent agents, we propose to design and implement a frame-
work as an extension of this language. The extension consist of a set of primitives that follows
the spirit of Logic Programming: to provide a specification of the solution and to hide as much
of the implementation details as possible.

The proposed framework should provide a reliable way for programming communicative
agents without dealing with low-level details such as the actual location of an agent. In our
framework, agents register themselves in MASs in order to allow other agents to locate them
easily. The agents may group themselves by their common characteristics, or by the services
provided. Thus, any agent may search for agents having specific characteristics, or providing
determined services. Whenever an agent registers itself, it sets the name that other agents will
use to identify it.

VIIl Workshop de Agentes y Sistemas Inteligentes 1563

XIll Congreso Argentino de Ciencias de la Computacion

2 THE PROPOSED AGENT COMMUNICATION MODEL

The main goal of our model is to allow the agents to reach each other by their characteristics or
services, without worrying about their locations. Once reached, the agents will exchange mes-
sages. This message exchange should be held using standard Agent Communication Languages
(ACLs), in order to allow the interaction among heterogeneous agents (i. e., agents developed
using different languages or technics).

Thus, in our model, agents register themselves in MASs in order to allow other agents to
locate them easily. The agents may group themselves by their common characteristics, such as
the type of printer the agent controls, or by the services provided, such as selling science fiction
books. Thus, any agent may search for agents having specific characteristics, or providing
determined services.

Whenever an agent registers itself, it sets the name that other agents will use to identify it.
The agent may choose any desired name, especially a location independent name. Since this
name will be used to identify the agent, it must be unique. The entity in charge of maintaining
the registered agents is responsible for the uniqueness of the agent names. This entity may
reject any agent trying to register itself with an already used name.

Figure 1 depicts our Agent Communication Model. An agent in our model is an stand-
alone program with the capability of interacting with other agents through its Communication
Library (CL). The CL provides communication, thus allowing the agent to register itself in
different MASs, searching for specific agents and exchanging messages with them. In our model,
there exists a special agent, called Yellow Pages Agent (YPA), responsible for maintaining all the
information of the agents registration in the different MASs and also guarantying the uniqueness
of the names identifying the agents.

Yellow
Agent Pages
Agent

Communication Communication
Library Library

Figure 1: The Proposed Agent Communication Model

Since we based our model in the FIPA Standards [4], it has some similarities with the
reference model provided by FIPA, but it also has some differences as we will explain next.
The FIPA Reference Model (see Figure 2) includes the agents, the Agent Management System
(AMS), the Directory Facilitator (DF) and the Message Transport System (MTS), all of them
being part of the Agent Platform (AP), that provides the physical infrastructure in which
agents are deployed.

VIIl Workshop de Agentes y Sistemas Inteligentes 1564

XIll Congreso Argentino de Ciencias de la Computacion

Agent Platform
Agent .
Agent Management I? 'rfi?t';otrv
System acilitator
Message Transport System

Figure 2: FIPA Reference Model

The AP consists of the machine(s), operating system, agent support software, FIPA agent
management components (DF, AMS and MTS) and agents. In our model, we propose that
each agent should be an stand-alone program capable of interacting directly with other agents.
Thus, we do not provide an AP in which the agent are deployed.

Another difference with the FIPA Architecture corresponds to the existence of the AMS.
The AMS exerts supervisory control over access to and use of the AP. The AMS also maintains
a directory of AIDs which contain transport addresses for agents registered with the AP. In our
model, we avoid the existence of the AMS since the AP does not exist. The directory of AIDs
containing transport addresses will be held by the YPA, and these addresses will be kept hidden
to the agent developer, which will use only the name chosen by the agents.

Our YPA is based on the DF provided by the FIPA Reference Model. The DF provides
yellow pages services to other agents. Agents may register their services or characteristics with
the DF or query the DF to find out what services are offered by other agents. In our case,
our YPA has also the responsibility of guarantying the uniqueness of the names identifying the
agents registered.

As we will see in detail in Section 3, the agents in our model uses FIPA ACL and FIPA
Interaction Protocols in order to interact with the YPA, thus allowing any agent FIPA complaint
to interact with them. In order to interact, the agents have the CL, which is similar to the
MTS, with the only difference that our CL is used to exchange messages among any agent,
whereas the MTS is the default communication method between agents on different APs.

In order to facilitate the development of agents in our model, we propose a small set of
primitives that allow them to interact with the YPA, registering themselves and also searching
for specific agents. This set of primitives includes two primitives that allow the agent to connect
to a specific YPA (connect and disconnect), two primitives for registering specific services or
characteristics (register and deregister) and finally, two primitives for searching for agents
with specific characteristics or providing certain services (which_agents and which MASs).

e connect(+Name, -Error)

VIIl Workshop de Agentes y Sistemas Inteligentes 1565

XIIl Congreso Argentino de Ciencias de la Computacion

disconnect (-Error)

register(+Characteristics, +Ontology, -Error)
deregister(+Characteristics, +Ontology, -Error)
which-MASs(-List_Of_MASs, +Ontology, -Error)
which_agents(-List_Of_Agents, +Characteristics, +Ontology, -Error)

Suppose that we want to develop a system that decides, on behalf of the user, which is the
better printer to use in order to print a specific document. Thus, one way to accomplish this
task is to develop an agent for each printer and agents that interact with them in order to print
documents. In our model, the agents controlling the printers will register themselves in MASs
according with their characteristics and the agents willing to print documents will search for
agents in specific MASs depending on the desired characteristics of the printer.

The agents controlling the different printers will connect to the YPA, using the primitive
connect/2. Suppose that we have two monochromatic laser printers and that we also have
three color ink-jet printers. Thus, the agents controlling these printers will use the primitive
connect (Name, Error) (see 1 on Figure 3), in order to be able to interact with the YPA.

Connected

icatio 1 .:‘ .--' | . _..‘ -.] DIMM!
; ; Monochromatic
Laser Printer Ag .
Color InkJet SR :

Printer Agents

Color

B Printer Agents J, <" :

Figure 3: The agents interacting with the YPA

Once connected with the YPA, they will register themselves, depending on their character-
istics, using the primitive register/3. For example, an agent controlling a monochromatic
laser printer may registry itself calling register(printers([color(no), type(laser)]),
computer _printers, Error) (see 2 on Figure 3), thus identifying its characteristics and de-
termining the ontology of the terms used. An agent controlling a color ink-jet printer may use
register(printers([color(yes), type(ink-yet)]), computer_ printers, Error) (see 3
on Figure 3).

VIl Workshop de Agentes y Sistemas Inteligentes 1566

XIll Congreso Argentino de Ciencias de la Computacion

After that, any agent willing to print a specific document will have to connect to the
YPA and then search for the needed printer. In order to search for the existent MASSs,
the agents may use which MASs/3. It may call which MASs(List, computer printers,
Error), obtaining in List the existent MASs (i. e., printers([color(no), type(laser)])
and printers([color(yes), type(inkjet)])).

In the case that the document to print is in color, the agent will try to find a color printer,
looking for agents in the MAS having printers with this characteristic. Thus, it may call
which agents(List, printers([color(yes)]), computer printers, Error). In our ex-
ample, the agent user1 will obtain in List the names of the three color ink-jet printers (see 4
on Figure 3). Then, the agent may interact with any of the agents controlling the color printers,
for example, it may interact with the agent Epson400 (see 5 on Figure 3).

3 FRAMEWORK IMPLEMENTATION

As mentioned above, in order to facilitate the development of agents in our model, we propose
a set of primitives that allow the agents to interact with the YPA. This set of primitives is
provided by the CL, and in this section we will explain in detail these primitives and one
way of implementing them in Prolog. Our framework also provides an implementation of the
YPA that supports the registration of agents and the search of them through their characteristics
or services provided.

This set of primitives was designed and implemented as an extension of Logic Programming
since this language is widely adopted for the development of intelligent agents. These primitives
provide a reliable way for programming communicative agents without dealing with low-level
details such as the actual location of an agent. The framework also facilitates the use of
sophisticated Knowledge Representation and reasoning formalisms already developed for LP.

As we mentioned in section 2, we use FIPA ACL and the FIPA Interaction Protocols in
order to interact with the YPA, thus allowing any agent FIPA complaint to interact with our
agents. The YPA implements the interaction protocols defined by FIPA, therefore any agent,
developed from scratch or using another FIPA complaint framework, interacting with it and
following these standard protocols, will obtain the corresponding answers.

The set of primitives proposed allows the agents to register themselves and also to search
for specific agents. This set includes two primitives to connect to a specific YPA (connect
and disconnect), two primitives for registering specific services or characteristics (register
and deregister) and two primitives for searching for agents with specific characteristics
(which_agents and which MASs).

The primitives to connect to a specific YPA have as primary goal to establish the connection
between the agent and the specified YPA. Once the connection is established, the agent will
register itself with a proposed name and the YPA may agree or refused the request. In the case
that the chosen name is unused, the YPA will agree, whereas in the other case, it will refuse.

A simplified version of the predicate connect/2 can be seen in Figure 4. The predicate
creates an address to receive messages from other agents (calling listen/1), and then it es-
tablishes the connection with the YPA (calling establish _connection/3), using the obtained
address (get_ypa_address/2). The address of the YPA can be set using a specific predicate
(set_ypa_address/2). Note that it may connect with any YPA running on the same network.

VIl Workshop de Agentes y Sistemas Inteligentes 1567

XIll Congreso Argentino de Ciencias de la Computacion

connect (+Name, -Error) :-
listen(-Port),
get_ypa_address(-Host, -Port),
establish_connection(+ypa, +Host, +Port),
send_connection_request (+ypa, +Name),
get_answer (-Answer) ,
(Answer = done,

Error = no_error

Answer = failure,
Error = used_name (+Name)

Figure 4: A simplified version of the connect/2 predicate

After the connection is established, the agent starts the interaction sending the correspond-
ing request message to the YPA (send_connection request/2) and waits for the answer. De-
pending on the result of the interaction, the term Error will be instantiated with no_error,
indicating that the connection was successfully accomplished, or it may be instantiated with
used_name (Name), indicating that the name is already used and that the agent should choose
another one.

The predicate disconnect/1 closes the connection established with the YPA, also eliminat-
ing any registered characteristic. Once done, the agent will not be allowed to register any
characteristic or service provided, or even to search for any specific agent, until it connects
again with an YPA. In order to do this, the predicate will first interact with the YPA using the
corresponding protocol and then it will close the connection.

The primitive register allows the agents to register specific services or characteristics into
different MASs, thus, allowing other agents to locate them easily. In the case of the deregister,
it allows the agents to eliminate any characteristic or service registered before. Both primitives
require that the agent and the YPA have already established a connection using the primitive
connect/2, explained above.

In Figure 5, a simplified version of the primitive register/3 is shown. The predicate
interacts with the YPA by sending a request for registering the corresponding characteristics
(send_register_request/3) and then it waits for the result of the interaction. Finally, it
instantiates the term Error accordingly.

register (+Characteristics, +Ontology, -Error) :-
send_register_request(+ypa, +Characteristics, +Ontology),
get_answer (-Answer) ,
(Answer = done,
Error = no_error

Answer = failure,
Error = error_registering_characteristics

Figure 5: A simplified version of the register/3 predicate

VIIl Workshop de Agentes y Sistemas Inteligentes 1568

XIll Congreso Argentino de Ciencias de la Computacion

In the case of the primitive deregister/3, it is similar to the register primitive, with the only
difference that it will have exactly the opposite result. That is, it will eliminate characteristics
or services from the YPA, that have been previously registered.

Finally, we proposed two primitives for searching for agents with specific characteristics:

e which MASs(-List_Of_ MASs, +Ontology, -Error)
e which_agents(-List_Of_Agents, +Characteristics, +Ontology, -Error)

The primitive which MASs allows the agent to obtain the different MASs existing in the
YPA, containing agents with similar characteristics. It will return the list of MASs in the
first parameter, corresponding to the ontology specified in the second parameter. Since the
implementation of this primitive and the one explained next is similar to the implementation
of the predicate register/3 (shown in Figure 5), it will be omitted.

In the case of the primitive which_agents, it allows the agents to acquire the information of
all the registered agents having equal characteristics or providing equivalent services. Thus, this
primitive will return the list of agents in the first parameter, having the characteristics specified
in the second parameter and corresponding to the ontology defined in the third parameter.

Note that, although the primitive which_agents will only return the names of the agents,
the CL will know the agents addresses, in order to be able to send messages. Thus, the CL
also provides a set of primitives for the deliver and retrieval of messages, in order to allow the
agent to interact with any other agents.

Whenever an agent tries to send a message to another agent, the CL will try to establish a
connection with the corresponding agent directly and send the message. The CL may not be
able to establish the connection with the agent, depending on different reasons. These possible
reasons may be that the CL does not know the agent address or that the agent is not reachable
at the location known by the CL. In either case, the CL will contact the YPA querying for the
last address known of the agent and it will try again to send the message.

| The Prolog Code |

send register request (+YPA, +Characteristics, +Ontology} =

my_nama {Nam;) -
adapt characteristics (Charact.ansucs: FIPA Cha:-act;“ _’ ":e i ip]t Message L.

send (request ([
sender (Name) , :sender (agent-identifier :name Name :addresses (...))
receiver ([YPA]), ireceiver (set {aqent—:l.dent;f:l.nr :iname YPA :addresses (...))
ontology (fipa-agent-management) , :ontology fipa-agent-m g
language (fipa-s10), :language fipa-sl10
protocol (fipa-request) , ;protocol fipa-request
content ([:content
action(" (action
YPA, (agent-identifier :name YPA :addresses (...))
register((register
df-agent-description([{df-agent-description
name (Name) , :name Name
services ([service-description (FIPA Charact)]), :services (...)
ontology (Ontolegy)1)))]_f :ontelogy Ontology)))"
1)1)).)

Figure 6: The send register _request Predicate and the resulting FIPA Message

The CL uses the FIPA ACL Message Representation in String in order to allow agents
developed using this framework to interact with any FIPA Complaint agent. Thus, it provides

VIIl Workshop de Agentes y Sistemas Inteligentes 1569

XIll Congreso Argentino de Ciencias de la Computacion

a way of sending and receiving messages that allow the agent to exchange FIPA Messages. See
for example the predicate send register request of Figure 5. The implementation of this
predicate is shown in Figure 6, also showing the FIPA message that the CL will sent.

4 RELATED WORK

There are several agent platforms available for developing multi-agent systems [12]. Most of
these platforms are focused either in the cognitive part of the architecture or in the infras-
tructural one. In other words, some platforms are FIPA-compliant concerning only the infras-
tructural problem, such as middle-ware issues, whereas other platforms are reasoning-centered,
focusing on the behavior of a single agent.

JADE, a Java Agent Development Framework [2], is a software framework to develop agent
applications in compliance with the FIPA specifications for interoperable intelligent multi-agent
systems. Similar to us, the goal of JADE is to simplify development while ensuring standard
compliance through a comprehensive set of system services and agents. Thus, JADE can then
be considered an agent middle-ware that implements an Agent Platform and a development
framework, dealing with all those aspects that are not peculiar of the agent internals and that
are independent of the applications.

However, there exist some differences between our approach and the one proposed by JADE.
JADE offers a FIPA-compliant Agent Platform, including the AMS, the DF and the MTS,
whereas our approach presents some variations to the FIPA Reference Model explained in
detail in Section 2. While JADE has been fully coded in Java and an agent programmer should
code his/her agents in Java, our framework is based on Logic Programming (LP), and the
agents should be developed using Prolog.

Another approach corresponds to the MadKit Agent Platform Architecture [8], a generic
multi-agent platform. This toolkit is based on a organizational model. It uses concepts of
groups (similar to our MASs) and roles (similar to our agents characteristics or services) for
agents to manage different agent models and multi-agent systems at the same time.

Unlike our approach, the MadKit architecture is based on a minimalist agent kernel decou-
pled from specific agency models. Thus the platform is not an agent platform in the classical
sense. It presents the concept of “agent micro-kernel”, handling the control of local groups and
roles, the agent life-cycle management and the local message passing. In our approach, the
YPA maintains the information of the different MASs and the agent characteristics and services,
the agents are stand-alone programs and there is no agent life-cycle management, and finally,
the CL provides message exchange between agents, independently of their location.

MadKit is focused only the infrastructural problem and it is not centered in the cognitive
part of the architecture. In the case of JADE, it provides a full integration with JESS [7] offering
a so-called JessBehaviour, whereas our framework, as we already mentioned, is implemented as
an extension of LP, and thus, sophisticated Knowledge Representation and reasoning formalisms
developed for LP can be easily used.

VIIl Workshop de Agentes y Sistemas Inteligentes 1570

XIll Congreso Argentino de Ciencias de la Computacion

5 CONCLUSIONS AND FUTURE WORK

In this paper we have considered the development of agent interaction in Multi-Agent Systems.
We have proposed a communication model among agents based on the FIPA Architecture and
FIPA Interaction Protocols. Our main goal was to allow the agents both to reach each other
by their characteristics and to exchange messages. In order to allow the interaction among
heterogeneous agents, we have used standard Agent Communication Languages in the message
exchange.

We have designed and implemented a framework as an extension of Prolog since this lan-
guage is widely adopted for the development of intelligent agents. The framework corresponds
to a set of primitives that follows the spirit of Logic Programming. Agents may register them-
selves in MASs in order to allow other agents to locate them easily. Any agent is allowed to
search for agents having specific characteristics, or providing determined services. Thus, the
framework proposed provide a reliable way for programming communicative agents without
dealing with low-level details such as the actual location of an agent.

The resulting framework has some limitations that we have addressed as future work. One
limitation concerns security aspects, for example, the YPA may allow the agents to create private
MASSs and restrict the access to specific agents. We are also planning to extend the framework
adding implementations of the standards Interaction Protocols defined by FIPA. Another pos-
sible extension corresponds to agent mobility, since in our framework, agents identifies each
other by their names, and this feature simplifies the implementation.

REFERENCES

[1] B. Bauer, J. P. Mller, and J. J. Odell. Agent UML: A Formalism for Specifying Multiagent
Interaction. In Agent Oriented Software Engineering,. Ciancarini y Wooldridge (ed.), 2001.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. JADE — A FIPA-compliant agent framework. In
Proceedings of the 4th International Conference and Exhibition on The Practical Applica-
tion of Intelligent Agents and Multi-Agent Technology (PAAM’99), pages 97-108, London,
UK, April 1999.

[3] T. Finin and Y. Labrou. Agent Communication Languages. In Proceedings of ASA/MA’99,
First International Symposium on Agent Systems and Applications, and Third Interna-
tional Symposium on Mobile Agents, 1999.

FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org.

Ot

FIPA. Interaction Protocol Library Specification, November 2000.

D
= 2. =

FIPA. Abstract Architecture Specification, December 2002.

— o — —

Ernest J. Friedman-Hill. Jess, The Java Ezxpert System Shell. Sandia National Laborato-
ries, Livermore, CA, USA, March 1998. Version 4.0.

[8] Olivier Gutknecht and Jacques Ferber. The MADKIT agent platform architecture. In
Thomas Wagner and Omer F. Rana, editors, Agents Workshop on Infrastructure for Multi-
Agent Systems, volume 1887 of Lecture Notes in Computer Science, pages 48-55. Springer,
2000.

VIIl Workshop de Agentes y Sistemas Inteligentes 1571

XIll Congreso Argentino de Ciencias de la Computacion

9] K. V. Hindriks, F. S. De Boer, Hoek Wiebe van der, and J. Jc Meyer. Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357-401, 1999. Publisher:
Kluwer Academic Publishers, Netherlands.

[10] JACK. JACK Intelligent Agents Framework. http://www.agent-software.com/.

[11] Y. Labrou. Standardizing agent communication. In Proceedings of the Advanced Course
on Artificial Intelligence (ACAI’01). Springer-Verlag, 2001.

[12] Eleni Mangina. Review of Software Products for Multi-Agent Systems, 2002.
http://www.agentlink.org /resources/software-report.html.

[13] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A BDI reasoning
engine. In Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fallah-Seghrouchni,
editors, Multi-Agent Programming, volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations, pages 149-174. Springer, 2005.

[14] M. Wooldridge. Semantic issues in the verification of agent communication languages. In
Journal of Autonomous Agents and Multi Agent Systems, 2000.

VIIl Workshop de Agentes y Sistemas Inteligentes 1572

