
Generic Parsing Combinators

Pablo E� Mart��nez L�opez�

Dpto� de Ingenier��a e Investigaciones Tecnol�ogicas� Universidad Nacional de La Matanza

Florencio Varela ���	� 
���
� San Justo� Buenos Aires� Rep�ublica Argentina�

URL� http���www�unlm�edu�ar�

Abstract

Parsing combinators are a well known technique to the functional programming com�

munity� Several de�nitions of them were proposed� and each one has its own advantages�

From the programmer point of view� this wide range of possibilities implies that she needs

to mantain several di�erent modules� with several di�erent namespaces� but all aimed to

solve the same problem�

Type classes and constructor classes were introduced in Functional Programming as a

mean to provide overloading � that is� sharing of names between functions of di�erent types�

Several design decisions can be made when implementing class systems� In particular� multi�

parameter type classes is a di�cult feature to add� and its addition makes sense only if extra

expressiveness is achieved with them�

This paper proposes the use of the class system� extended with multi�parameter type

classes� to unify the de�nition of parsing combinators� The advantage is that di�erent

solutions can share their interfaces� thus simplifying the programmer�s activity� She uses

this common interface� and the actual implementation is decided only changing the type

signature� Moreover� this use of the class system is an example of the usefulness of multi�

parameter type classes�

Keywords� Functional Programming� Parsing Combinators�

Monads� Multi�parameter Type Classes

�The author is also member of LIFIA� UNLP� C�C��� Correo Central� 
����� La Plata� Buenos Aires� Rep�ublica

Argentina



Generic Parsing Combinators

� Introduction

Parsing combinators are a well known technique for functional programmers� It is an attempt

to solve the parsing problem � obtaining a structure from a elementary description of it� usually

in text format � by means of combinators� Combinators are functions that take solutions to

sub�problems and combines them into a solution for the problem� thus capturing very well the

idea of modular programming� Several implementations of parsing combinators were proposed

�Hut��� Fok�	� Wad�	� R
oj�	� HM���� each one with its own features� but providing a particular

implementation of combinators� usually with di
erent names� In general� each solution starts

de�ning a type to represent parsers� and then gives the de�nition for atomic parsers and standard

combinators in terms of the base type operations� The choice of names for the di
erent parsers

and combinators varies from one proposal to another one� but the intention behind them is very

similar� when not the same� In �HM���� a monadic generalization in the de�nition of components

is proposed� but this proposal is still based in the provision of a base type for parsers� From

the programmer point of view� this wide range of possibilities implies that she needs to mantain

several di
erent modules� with several di
erent namespaces� but all aimed to solve the same

problem�

Type classes and constructor classes �WB��� Jon�	b� were introduced in Functional Pro�

gramming as a mean to provide overloading � that is sharing of names between functions of

di
erent types� At present the class system is an experimental feature� and thus di
erent de�

sign decisions were made in di
erent languages� For example� Haskell �PH���� imposes several

restrictions to the declaration and use of classes� in order to mantain soundness and decidability

� something that Haskell�s constructor classes do not have� precisely because of some of these

restrictions� On the other hand� Gofer �Jon�	a� allows several extensions to the system� but

interactions with other aspects of the language have resulted in a type system that is unsound

and undecidable� An extensive analysis of design decisions for the class system and a suggestion

of a good choice of them is developed in �JJM���� In particular� multi�parameter type classes is

a di�cult feature to add� and its addition makes sense only if extra expressiveness is achieved

with them� as it is stated in that work� Using the class system of Haskell� it is possible to

express� for example� the sharing of the monadic operation names between di
erent monads�

But for parsing combinators it is not the case� the expressive power of the Haskell class system

is not enough�

This paper proposes the use of the class system� extended with multi�parameter type classes�

to unify the de�nition of parsing combinators� Based on the monadic uni�cation of combinators

given in �HM���� a class Parser is given to provide the overloading of the primitive parsers and

non�monadic combinators� The advantage is that di
erent solutions can share their interfaces�

thus simplifying the programmer�s activity� She uses this common interface� and the actual



implementation is decided only changing the type signature� For each of the parsing combinator

proposals� an instance of the Parser class is given� Also� the special features of each proposal

are captured in subclasses of the Parser class�

Moreover� the Parser class is a good example of the usefulness of multi�parameter type

classes� and thus it shows that this feature is worth to add in the class system�

The rest of this paper is organized as follows� In Sect� �� the parsing problem is presented

with some detail� and following �Wad�	� and �HM���� it is stated that parsers are monads� In

Sect� � the de�nition of the Parser class is given� for each proposal in the literature� an instance

of this class and some subclasses that captures special features are also given� Finally� some

conclusions and future work are presented in Sect� ��

As� at present� only Gofer �Jon�	a� allows multi�parameter type classes� the Gofer syntax

will be used for the de�nitions and examples�

� Parsing and Combinators

The parsing problem consists in the construction of an elaborated representation for a structure

from an elementary description of it� usually in text format� A classical example of this problem

is the front end of a compiler for a programming language� given the source code� it must returns

the corresponding intermediate code� Usually� the compiler proceeds �rst with a lexicographical

analysis� transforming the source code �list of characters� into a list of reserved words� numerical

literals� identi�ers� etc� �called tokens�� The syntactical analysis is then performed using the list

of tokens as input� For that reason it is usual to generalize the problem� changing the elementary

description to a list of tokens whose type is abstracted away using parametric polimorphism�

In the same way� the type of the elaborated representation can take di
erent forms depending

on the subject� and thus it is also abstracted away using parametric polimorphism�

The combinator technique provides the solution to a problem by providing three things�

a basic type to represent solutions to the problem� a number of basic elements representing

solutions to basic instances �also called atomic solutions�� and a number of ways to combine

solutions to subproblems to get solutions to more complex problems� It is assumed that all the

solutions can be represented as combinations of smaller solutions� This technique is common in

functional programming� and was used not only for the parsing problem� but also for algebraic

representation of pictures �FJ�	�� for expressing music with functional notation �Hud���� and to

construct hypermedia documents �SMLR���� The functional implementation of the combinator

technique provides functions to represent combination of solutions � these functions are called

combinators �

To implement parsing combinators� a basic type must be chosen� This type will represent

parsers� that is functions that transform an elementary description into one or more elaborated

representations� In all the implementations considered� this type is �xed at the beggining� In

�Hut���� �Wad�	�� and �HM���� the type of the elementary description is �xed to String� but

in �Fok�	�� �R
oj�	�� the more general type �token� is considered� In all the cases� the type

of the elaborated representation is a polimorphic type variable� The type �AParser token a�



will represent the choosed type� being token the variable for tokens� and a the variable for

elaborated representations� This type captures not only the functional nature of parsers� but

also another characteristics� as the possibility to fail� the possibility to return more than one

representation for a given input� reporting positions of errors� etc� In the next section� the type

AParser will be replaced by a class Parser grouping all the possible implementations for this

type� and the type of combinators will change accordingly� using a variable parser that belongs

to that class�

The atomic solutions for the parsing problem are four simple parsers� They are a parser that

succeeds without consuming input� a parser that always fails� a parser to recognize and return

a single element� and a parser that conditionally recognizes an element� Some other simple

parsers can also be considered� but these four ones are common to all the works considered�

Di
erent names were used for these basic parsers� but in this work it will be called�

return �� a �� AParser tok a

zero �� AParser tok a

item �� AParser tok tok

satisfy �� �tok �� Bool� �� AParser tok tok

The argument of the return parser is the representation to return when succeeding� The

argument of the satisfy parser is the condition that the element must satisfy� if the �rst

element does not satisfy it� then the parser is equivalent to zero� In �R
oj�	�� an interesting

basic parser is presented� eof� that succeeds only when there are no more tokens to recognize�

It is not presented in any other work� but it can be introduced in every one� and as it is usefull

and not expressible as combination of the others� it will be considered a basic one in this work�

The combinators for parsers implements sequencing� alternation and repetition� Also the

transformation of the returned representation is expressed as a combinator� As in the case of

basic parsers� many names were used� but in this work they will be called�

sequ �� AParser tok a �� AParser tok b �� AParser tok �a	b�

alt �� AParser tok a �� AParser tok a �� AParser tok a

many �� AParser tok a �� AParser tok �a�

using �� AParser tok a �� �a �� b� �� AParser tok b

The combinators usually are more readable when used in�x� For that reason� some of the

combinators have an equivalent operator � for example� �
��� for sequ� and �
�� for using�

Using the atomic parsers and the combinators� other parsers and combinators can be de�ned�

For example� a combinator that recognizes a structured surrounded by two �xed elements can

be de�ned using satisfy and sequ�

pack �� tok �� AParser tok tok �� tok

pack t
 p t� � satisfy ���t
� 
�� p 
�� satisfy ���t��

The basic parsers and combinators presented does not form a monad� But an operation for

bind ����� can be de�ned and then the type of parsers becomes a monad� as it is stated� for

example� in �HM����



����� �� AParser tok a �� �a��AParser tok b� �� AParser tok b

The operation succeed is the unit of the monad� and the operation ����� is the bind operation�

Moreover� the operation fail is a zero for parsers� and the operation alt is a plus� and thus

the parsers form a monad with zero and plus�

Using ������ some of the basic parsers and combinators can be de�ned in terms of the

others� For example� satisfy can be de�ned using item� and vice�versa� Also� sequ� many� and

using can be de�ned using ������ The only non�monadic operation that cannot be de�ned in

terms of monadic ones is item� Additional combinators can be de�ned using this combinators�

For example� di
erent forms of sequential composition �di
ering in the results returned�� a kind

of functional application for parsers� etc�

� ���� �� Monad m �� �� m a �� m b �� m b

� ma �� mb � ma ��� �� �� mb

� �
�� �� Monad m �� �� m a �� m b �� m a

� ma 
� mb � return const �� ma �� mb

� ����	 ap �� Monad m �� m �a �� b� �� m a �� m b

� mf �� ma � mf ��� �f �� ma ��� �a �� return �f a�

� ap � ����

In all the works studied� the type for parsers is functional� and then the way to use a parser

is functional application� But in order to generalize the type of parsers and view it as abstract�

there must exist a way to use a parser� That way will be represented by a function runparser�

that given a parser and a list of tokens will return the elaborated structure� plus the unconsumed

tokens�

The exact de�nition of the basic parsers and combinators �return� zero� ������ alt� and

item�� and the type and de�nition of runparser depend completely on the type choosed to

represent parsers�

The problem with all the solutions is that di
erent interfaces are needed for di
erent imple�

mentations � usually function names are augmented with some pre�x or su�x indicating the

type� Type classes are an attempt to solve that problem� but for the case of parsers no good

class is known at present � perhaps due to the restrictions of the Haskell class system� that

prevent a good de�nition for it� In the next section� a class for parsers is de�ned� and then�

each particular type for parsers can be de�ned as instances of this class� In such way� there

is only one interface that all the implementations share� and thus the programmer�s activity is

much easier� The solution uses multi�parameter type classes in a complex way� thus showing

the usefulness of this feature�

� Generic Parsing Combinators

Type classes and constructor classes �WB��� Jon�	b� were introduced in Functional Program�

ming as a mean to provide overloading � that is sharing of names between functions of di
erent



types� These sharing is obtained establishing that certain function names are overloaded� and

that a type must provide an implementation for the operation in order to share it� The class

declaration establishes the names and types for the functions that will be overloaded� and the

instance declaration establishes that a certain type belongs to the class� and also provides the

implementation for the overloaded functions�

One good example of the use of type classes is the de�nition of a class for monads� Monad�

in order to share the operations return and ������ Using those overloaded operations many

overloaded functions may be provided � for example many functions of the previous section �

to work with arbitrary monads� But in order to provide a class for parsers in the same way�

some extra expressiveness is needed� In the rest of the section� it is assumed the de�nition of

the classes Monad� MonadZero� and MonadPlus that appears in Haskell �PH����� as well as the

de�nition of the derived combinators for monads presented in Sect� ��

Multi�parameter type classes is a feature that allows groups of types to share a function

name� It is a di�cult feature to add to the class system� because it does not interact very well

with other ones �JJM����

The type Parser from the previous section is replaced by a type variable parser restricted

using multi�parameter type classes� Classes are used in order to de�ne a unique interface for

parsers� The de�nition for the class Parser establishes that� in order to be a parser� a type

must be �rst a monad with zero and plus �as it is stated in Sect� ���

� class �MonadPlus m	 MonadPlus �parser m tok�� ��

� Parser parser m tok

� where

� item �� parser m tok tok

� satisfy �� �tok �� Bool� �� parser m tok tok

� eof �� parser m tok ��

�

� item � satisfy �const True�

� satisfy p � item ��� �tok ��

� if �p tok�

� then return tok

� else zero

The constructor parser takes three arguments� The �rst one is a type constructor for a monad

with zero and plus� the second one is the type of tokens� and the third one is the type of the

results� The �rst argument is used in the de�nition of the function runparser�

� class Parser parser m tok ��

� RunningParser parser m tok a aux

� where

� runparser �� parser m tok aux �� �tok� �� m �a	 �tok��



� parse �� RunningParser parser m tok a a ��

parser m tok a �� �tok� �� m �a	 �tok��

� parse � runparser

The function runparser takes a parser and a list of tokens and returns a monad containing

the result and the unconsumed input� The monad parameter is used to change the features

added to a parser �for example� nondeterminism� error reporting� etc��� Aditionally� the function

runparser can change the result from the parser in some way� from type aux to type a� The

function parse is provided as a shorthand for the case when aux and a are the same�

In order to provide instances for the class parser� there must be provided at least the

functions eof and either item or satisfy �or both�� If one of the latter two is ommited� the

default implementation is used�

It is assumed that an instance of class Parser satis�es at least the following rules�

�� parse �return a� ts � return �a	 ts�

�� parse �p ��� f� ts � parse p ts ��� ��a	 ts�� ��

�� parse �f a� ts�

�� parse zero ts � zero

�� parse �p �alt� q� ts � parse p ts �alt� parse q ts

�� parse item �� � zero

�� parse item �t�ts� � return �t	ts�

�� parse eof �� � return ���	���

�� parse eof �t�ts� � zero

These laws establishes the way in wich the monad parameter is used to add features to the basic

structure�

Before giving any instance of the class Parser� an example will be constructed� showing

that only the interface is needed to use parser combinators in the construction of parsers� But�

in order for the example to run� some instance will eventually be needed� The example must

convert a string representing an integer into the corresponding number� The BNF grammar

de�ning the syntax of the numbers is the following�

int ��� uint � sign uint uint ��� dig � dig uint

dig ��� � � �� � � sign ��� � � �

Beggining with this grammar� and using the combinators� a parser is provided for every syn�

tactical cathegory� The parsers recognize the input� and transform the results to cooperate in

the construction of the number�

� intP	 uintP �� Parser parser m Char �� parser m Char Int

� intP � �uintP �alt� signP �� uintP� 
� eof

� uintP � return ��d ds �� digs�num �d�ds��

� �� digP

� �� many digP



� digP �� Parser parser m Char �� parser m Char Char

� digP � satisfy isDigit

� signP �� Parser parser m Char �� parser m Char �Int��Int�

� signP � symbol ��� 
� const id

� �alt�

� symbol ��� 
� const negate

� digs�num � foldl g � where g n c � n�
� � dig�num c

� dig�num c � ord c � ord ���

The function digs�num �� �Char� �� Int transforms a list of digits into a number �eg�

digs�num ���
� � ��
��

In order to use the parser for numbers� one speci�c instance of the class Parser must be

choosed� The selection is done using an explicit type signature� For example� taking the type

FokParser from Sect� ���� the following expression can be constructed�

parse �intP �� FokParser Char Int� ���
�

The value of this expression is the list ����
	�����

The de�nitions of parser combinators mentioned in the previous sections can be de�ned

now as instances of the Parser class� In some cases minor changes are needed in order to ful�ll

some requirements of the class system � being the inability to work with type synonyms the

most remarkable� In the following subsections are shown the implementations from �Fok�	��

�HM���� and �R
oj�	�� In each subsection appears not only the implementation of the common

operations� but also extensions and enhancements proposed for the particular implementations�

��� Fokker�s Implementation

The implementation proposed in �Fok�	� � and also the one proposed in �Wad�	� � is based on a

function that takes a list of tokens and returns a list of pairs � each pair containing a structure

described by a sub�list of tokens� and the remaining input� To represent these parsers� the type

AParser t a is de�ned as �t� �� ��a	�t���� and all the operations are de�ned accordingly�

In this case� the added feature is the possibility to return more than one structure as output�

represented by the list of pairs� The type FokParser is an instance of a more general type that�

instead of returning lists� returns a monadic value� thus allowing the change of features� This

type� FunParser� is de�ned as an algebraic type in order to instantiate it for the class Parser�

Instantiating the monadic value to other monads� di
erent features can be obtained � in the

example� deterministic parsers� DetFokParser�

� data FunParser m t a � FP ��t� �� m �a	 �t���



� instance Monad m �� Monad �FunParser m t� where

� return a � FP ��ts �� return �a	 ts��

� �FP p
� ��� f � FP ��ts �� p
 ts ��� ��a	ts�� ��

� let FP p� � f a

� in p� ts�

� �

� instance MonadZero m �� MonadZero �FunParser m t� where

� zero � FP ��ts �� zero�

� instance MonadPlus m �� MonadPlus �FunParser m t� where

� �FP p
� �alt� �FP p�� � FP ��ts �� p
 ts �alt� p� ts�

� instance MonadPlus m �� Parser FunParser m t where

� item � FP ��ts �� case ts of

� �� �� zero

� �t�ts�� �� return �t	ts��

� �

� eof � FP ��ts �� case ts of

� �� �� return ���	 ���

� ����� �� zero

� �

� instance RunningParser FunParser m t a a where

� runparser �FP p� ts � p ts

� type FokParser t a � FunParser �� t a

� type DetFokParser t a � FunParser Maybe t a

The runparser function is simply the application of the function representing the parser to the

given input�

The class Parser does not distinguish between deterministic and non�deterministic parsers�

In order to do that� �Fok�	� provides an operation that given any parser� returns a deterministic

one� This operation is called first� and in this work it is provided as an overloaded function�

to mantain generality� resulting in a subclass of Parser�

� class Parser parser m tok ��

� DetParser parser m tok

� where

� first �� parser m tok a �� parser m tok a

� first � id



� p �detalt� q � first �p �alt� q�

� greedy p � first �many p�

The combinators for alternative and repetition are re�de�ned to behave as deterministic� and a

change on the name distinguish these from the �possibly� non�deterministic ones� The operation

first has the identity function as default de�nition in order to simplify the instance declaration

for parsers that are already deterministic � but it also allows that an instance ignores the

deterministic requirement� For example� the types DetFokParser and FokParser can be de�ned

as instances of DetParser�

� instance DetParser FunParser Maybe t �� DetFokParser

� instance DetParser FunParser �� t where �� FokParser

� first �FP p� � FP ��ts �� case p ts of

� �� �� ��

� �x��� �� �x�

� �

Another variation provided by �Fok�	� and �Wad�	� is a way to force a parser to succeed� even

when success is not assured� The programmer is responsible for using this operation correctly

� for example in the case of many combinator� that never fails� Again� a subclass of Parser is

provided to capture this enhancement�

� class Parser parser m tok ��

� ForceableParser parser m tok

� where

� force �� parser m tok a �� parser m tok a

� force � id

� lazymany p � force � �return ��� �� p �� lazymany p�

� �alt�

� �return ���

The types DetFokParser and FokParser can be de�ned as instances of ForceableParser�

� instance ForceableParser FunParser �� t where

� force �FP p� � FP ��ts �� let x � p ts

� hx � head x

� tx � tail x

� in �fst hx	 snd hx��tx

� �

� instance ForceableParser FunParser Maybe t where

� force �FP p� � FP ��ts �� let x � p ts



� hx � fromJust x

� in Just �fst hx	 snd hx�

� �

These two force functions use explicit constructors for list and tuples to force the results to a

speci�c pattern � in such a way� the functions never fail�

��� Hutton�s Implementation

In �HM��� there are several implementation for parser combinators� The most simple one is

similar to the one proposed by �Fok�	�� save that only consider Char as the type for tokens�

But the interesting ones are those based on the state monad and reader monad� In order to

de�ne that types as instances of the Parser class� some changes are needed� The state and

reader monads are re�de�ned to have the correct number and order of parameters� and the type

of parsers is generalized to provide features by means of a monad parameter� The StateMonad

class is the one de�ned in �Jon�	b��

� data StateM s m t a � SM �s �� m �a	s��

� instance Monad m �� Monad �StateM s m t� where

� return a � SM ��s �� return �a	s��

� �SM ms
� ��� f � SM ��s �� ms
 s ��� ��a	s
� ��

� let �SM ms�� � f a

� in ms� s


� �

� instance MonadZero m �� MonadZero �StateM s m t� where

� zero � SM ��s �� zero�

� instance MonadPlus m �� MonadPlus �StateM s m t� where

� �SM ms
� �alt� �SM ms�� � SM ��s �� ms
 s �alt� ms� s�

� instance Monad m �� StateMonad �StateM s m t� s where

� update f � SM ��s �� return �s	 f s��

The state monad StateM provides the monadic operations for the parser combinators� The type

parameter t is used in the de�nition of the instance for the Parser class� It is needed because

the state of the state monad for parsers is the list of tokens� and the type of tokens cannot be

recovered� The only operations that have to be de�ned are the non�monadic ones�

� instance StateMonad �StateM �t� m t� �t� ��

� Parser �StateM �t�� m t

� where



� item � update tail ��� �s ��

� case s of

� �x��� �� return x

� � �� zero

� eof � update id ��� �s ��

� case s of

� �� �� return ��

� ����� �� zero

� instance RunningParser �StateM �t�� m t a a where

� runparser �SM p� s � p s

The type of the parsers presented in �HM��� can be de�ned instantiating the state monad�

� type HutParser a � StateM String �� Char a

� type DetHutParser a � StateM String Maybe Char a

Instances of the DetParser and ForceableParser classes can be de�ned for these parsers�

The reader�monad�based parser combinators de�ned as instances of class Parser� and the

special features presented in �HM��� are still under development�

��� R�ojemo�s Implementation

The parser combinators presented in �R
oj�	� are based on continuations� This decision was

taken in order to make optimizations in the memory consumption of some combinators� �R
oj�	�

considers two kind of continuation for parsers� the failure continuation and the success continu�

ation� In this work that types where generalized to work with an arbitrary monad � in R
ojemo�s

work only a speci�c monad providing error reporting is used�

� type GParserFail m t a � m �a	�t��

� type GParserOK m t answer a � a �� �t� �� m �answer	�t��

The type of the intermediate structures and the type of the �nal ones are not necesarily the

same� in order to provide the type representing continuations and the bind for monads at the

same time� Parsers are then functions from a lists of tokens to the �nal answer� but represented

as continuations�

� data GRojParser answer m token a �

� GRP �GParserOK m token answer a ��

� GParserFail m token answer ��

� �token� �� m �answer	 �token��

� �

The monadic operations are easily de�ned� because of the monadic nature of continuations�



� instance Monad �GRojParser c m t� where

� return a � GRP ��ok � �� ok a�

� �GRP p
� ��� f �

� GRP ��ok fail �� p
 ��v �� let GRP p� � f v

� in p� ok fail

� � fail

� �

� instance MonadZero �GRojParser c m t� where

� zero � GRP ��� fail �� �� �� fail�

� instance MonadPlus �GRojParser c m t� where

� �GRP p
� �alt� �GRP p�� �

� GRP ��ok fail ��

� �ts �� p
 ok

� �p� ok fail ts�

� ts

� �

Then� to de�ne this type as an instance of the class Parser� the non�monadic operations should

be provided� In this case� it is easier to provide the implementation of satisfy�

� instance Parser �GRojParser c� m t where

� satisfy p � GRP ��ok fail ��

� �ts �� case ts of

� �� �� fail

� �t�ts�� �� if �p t�

� then ok t ts�

� else fail

� �

� eof � GRP ��ok fail ��

� �ts �� case ts of

� �� �� ok �� ��

� ����� �� fail

� �

The runparser function applies the function de�ning the parser to basic continuations and to

the input�

� instance RunningParser �GRojParser c� m t c c where

� runparser �GRP p� ts � p ��a �� �ts �� return �a	ts��

� zero

� ts



Finally� the type is instantiated to get concrete parser combinators� Indeed� in �R
oj�	� a more

involved monad reporting the position of errors is used� but that case is still under development�

� type RojParser tok ans a � GRojParser ans Maybe tok a

This type can be instantiated for classes DetParser and ForceableParser just accepting the

default de�nition for the operations�

The interesting feature added by the continuation based implementation of parser is the

ability to �cut� the failure continuation� thus removing a space�leak produced by that continua�

tion� To do that� a new combinator� cut� is de�ned� and some of the old ones are re�de�ned in

order to use the new one� In this work� cut is provided as an overloaded function� by means of

a subclass of Parser�

� class Parser parser m t �� CutableParser parser m t where

� cut �� parser m t a �� parser m t a

� cut � id

� ����� �� CutableParser parser m t ��

� parser m t �a��b� �� parser m t a �� parser m t b

� mf ��� ma � mf ��� �f ��

� cut �ma ��� �a �� return �f a��

� �
��� �� CutableParser parser m t ��

� parser m t a �� parser m t b �� parser m t a

� ma 
�� mb � ma ��� �a ��

� cut �mb ��� �� �� return a�

The types FunParser from Sect� ��� and HutParser from Sect� ��� can be de�ned as instances

of this class� accepting the default implementation � the id function� The type GRojParser can

be improved de�ning a good cut combinator�

� instance CutableParser �GRojParser c� m t where

� cut �GRP p� � GRP ��ok � �� p ok zero�

And then� the example of integers can be rede�ned using the optimized combinators� Only the

functions that change the de�nition are shown � the rest change only the type to re�ect the use

of CutableParsers�

� intP	 uintP �� CutableParser p m Char �� p m Char Int

� intP � �uintP �alt� signP ��� uintP� 
� eof

� uintP � return ��d ds �� digs�num �d�ds��

� �� digP

� ��� many digP

This function are now more e�cient when instantiated with GRojParsers� but remain the same

for the other cases�



� Conclusions

The construction of a class Parser was presented� in order to provide overloading of the parsing

combinators� In this way� the programmer can use the combinators without thinking in any

particular implementation� and only when using the parsers� a concrete instance type should be

provided �by means of explicit type signatures��

The de�nition uses multi�parameter type classes in a non�trivial way� showing that the

expressiveness of this feature makes worthwhile its inclusion in the system�

The work is not �nished� There are some features that need more study � beign error

reporting the most signi�cant� Also� other implementations of parsing combinators should be

expressed as instances of the class� and new features can be designed� Finally� the algebraic

structure de�ned by the proposed laws should be studied�

References

�FJ��� Sigborn Finne and Simon Peyton Jones� Pictures� A simple structured graphics model� In Proccedings

of the Glasgow Workshop on Functional Programming� Ullapool� �����

�Fok��� Jeroen Fokker� Functional parsers� In Johan Jeuring and Erik Meijer� editors� Advanced Functional

Programming� LNCS ���� pages ���	� Springer�Verlag� May �����

�HM��� Graham Hutton and Erik Meijer� Monadic parser combinators� Technical report� University of Not�

tingham� �����

�Hud��� Paul Hudak� Haskore music tutorial� In John Launchbury� Erik Meijer� and Tim Sheard� editors�

Advanced Functional Programming� LNCS ����� pages 	����� Springer�Verlag� August �����

�Hut�	� Graham Hutton� Higher�order functions for parsing� In Journal of Functional Programming� Vol� ��

University of Utretch� Cambridge University Press� January ���	�

�JJM��� Simon Peyton Jones� Mark P� Jones� and Erik Meijer� Type classes� An exploration of the design space�

URL� http���www�cse�ogi�edu� simonpj�multi�ps�gz� �����

�Jon��a� Mark Jones� Gofer ��	� release notes� Technical report� Yale University� �����

http���www�cs�nott�ac�uk����Department�Sta��mpj��

�Jon��b� Mark P� Jones� Functional programming with overloading and higher�order polymorphism� In Jo�

han Jeuring and Erik Meijer� editors� Advanced Functional Programming� LNCS ���� pages ����	��

Springer�Verlag� May �����

�PH���� John Peterson� Kevin Hammond� et al� Report on the programming language Haskell� a non�strict�

purely functional language� Version ��	� Technical report� Yale University� May �����

�R�oj��� Niklas R�ojemo� E�cient parsing combinators� In Garbage Collection� and Memory E�ciency� in Lazy

Functional Languages� G�oteborg� Sweden� May ����� Chalmers University of Technology� Department

of Computer Science� Part of the Ph�D� thesis�

�SMLR��� Ignacio Gallego Sagastume� Daniel H� Marcos� Pablo E� Mart��nez L�opez� and Walter Ariel Risi�

Expresando hypermedia en programaci�on funcional� Enviado para su consideraci�on al �do Congreso

Latinoamericano de Programaci�on Funcional� CLaPF���� �����



�Wad��� Philip Wadler� Monads for functional programming� In Johan Jeuring and Erik Meijer� editors� Ad	

vanced Functional Programming� LNCS ���� Springer�Verlag� May �����

�WB��� Philip Wadler and Stephen Blott� How to make ad�hoc polimorphism less ad�hoc� In �
�th Symposium

on Principles of Programming Languages� Austin� Texas� January ����� ACM Press�


