Generic Parsing Combinators

Pablo E. Martinez Lopez*

Dpto. de Ingenieria e Investigaciones Tecnoldgicas, Universidad Nacional de La Matanza
Florencio Varela 1903, (1754) San Justo, Buenos Aires, Repiblica Argentina.
URL: http://wuw.unlm.edu.ar/

Abstract

Parsing combinators are a well known technique to the functional programming com-
munity. Several definitions of them were proposed, and each one has its own advantages.
From the programmer point of view, this wide range of possibilities implies that she needs
to mantain several different modules, with several different namespaces, but all aimed to
solve the same problem.

Type classes and constructor classes were introduced in Functional Programming as a
mean to provide overloading, that is, sharing of names between functions of different types.
Several design decisions can be made when implementing class systems. In particular, multi-
parameter type classes is a difficult feature to add, and its addition makes sense only if extra
expressiveness is achieved with them.

This paper proposes the use of the class system, extended with multi-parameter type
classes, to unify the definition of parsing combinators. The advantage is that different
solutions can share their interfaces, thus simplifying the programmer’s activity. She uses
this common interface, and the actual implementation is decided only changing the type
signature. Moreover, this use of the class system is an example of the usefulness of multi-

parameter type classes.

Keywords: Functional Programming, Parsing Combinators,

Monads, Multi-parameter Type Classes

*The author is also member of LIFTA, UNLP, C.C.11 Correo Central, (1900) La Plata, Buenos Aires, Republica

Argentina

Generic Parsing Combinators

1 Introduction

Parsing combinators are a well known technique for functional programmers. It is an attempt
to solve the parsing problem — obtaining a structure from a elementary description of it, usually
in text format — by means of combinators. Combinators are functions that take solutions to
sub-problems and combines them into a solution for the problem, thus capturing very well the
idea of modular programming. Several implementations of parsing combinators were proposed
[Hut93, Fok95, Wad95, R5j95, HM96], each one with its own features, but providing a particular
implementation of combinators, usually with different names. In general, each solution starts
defining a type to represent parsers, and then gives the definition for atomic parsers and standard
combinators in terms of the base type operations. The choice of names for the different parsers
and combinators varies from one proposal to another one, but the intention behind them is very
similar, when not the same. In [HM96], a monadic generalization in the definition of components
is proposed, but this proposal is still based in the provision of a base type for parsers. From
the programmer point of view, this wide range of possibilities implies that she needs to mantain
several different modules, with several different namespaces, but all aimed to solve the same
problem.

Type classes and constructor classes [WB89, Jon95b]| were introduced in Functional Pro-
gramming as a mean to provide overloading, that is sharing of names between functions of
different types. At present the class system is an experimental feature, and thus different de-
sign decisions were made in different languages. For example, Haskell [PH196] imposes several
restrictions to the declaration and use of classes, in order to mantain soundness and decidability
— something that Haskell’s constructor classes do not have, precisely because of some of these
restrictions. On the other hand, Gofer [Jon95a] allows several extensions to the system, but
interactions with other aspects of the language have resulted in a type system that is unsound
and undecidable. An extensive analysis of design decisions for the class system and a suggestion
of a good choice of them is developed in [JJM97]. In particular, multi-parameter type classes is
a difficult feature to add, and its addition makes sense only if extra expressiveness is achieved
with them, as it is stated in that work. Using the class system of Haskell, it is possible to
express, for example, the sharing of the monadic operation names between different monads.
But for parsing combinators it is not the case: the expressive power of the Haskell class system
is not enough.

This paper proposes the use of the class system, extended with multi-parameter type classes,
to unify the definition of parsing combinators. Based on the monadic unification of combinators
given in [HM96], a class Parser is given to provide the overloading of the primitive parsers and
non-monadic combinators. The advantage is that different solutions can share their interfaces,

thus simplifying the programmer’s activity. She uses this common interface, and the actual

implementation is decided only changing the type signature. For each of the parsing combinator
proposals, an instance of the Parser class is given. Also, the special features of each proposal
are captured in subclasses of the Parser class.

Moreover, the Parser class is a good example of the usefulness of multi-parameter type
classes, and thus it shows that this feature is worth to add in the class system.

The rest of this paper is organized as follows. In Sect. 2, the parsing problem is presented
with some detail, and following [Wad95] and [HM96], it is stated that parsers are monads. In
Sect. 3 the definition of the Parser class is given; for each proposal in the literature, an instance
of this class and some subclasses that captures special features are also given. Finally, some
conclusions and future work are presented in Sect. 4.

As, at present, only Gofer [Jon95a] allows multi-parameter type classes, the Gofer syntax

will be used for the definitions and examples.

2 Parsing and Combinators

The parsing problem consists in the construction of an elaborated representation for a structure
from an elementary description of it, usually in text format. A classical example of this problem
is the front end of a compiler for a programming language: given the source code, it must returns
the corresponding intermediate code. Usually, the compiler proceeds first with a lexicographical
analysis, transforming the source code (list of characters) into a list of reserved words, numerical
literals, identifiers, etc. (called tokens). The syntactical analysis is then performed using the list
of tokens as input. For that reason it is usual to generalize the problem, changing the elementary
description to a list of tokens whose type is abstracted away using parametric polimorphism.
In the same way, the type of the elaborated representation can take different forms depending
on the subject, and thus it is also abstracted away using parametric polimorphism.

The combinator technique provides the solution to a problem by providing three things:
a basic type to represent solutions to the problem, a number of basic elements representing
solutions to basic instances (also called atomic solutions), and a number of ways to combine
solutions to subproblems to get solutions to more complex problems. It is assumed that all the
solutions can be represented as combinations of smaller solutions. This technique is common in
functional programming, and was used not only for the parsing problem, but also for algebraic
representation of pictures [FJ95], for expressing music with functional notation [Hud96], and to
construct hypermedia documents [SMLR97]. The functional implementation of the combinator
technique provides functions to represent combination of solutions — these functions are called
combinators.

To implement parsing combinators, a basic type must be chosen. This type will represent
parsers, that is functions that transform an elementary description into one or more elaborated
representations. In all the implementations considered, this type is fixed at the beggining. In
[Hut93], [Wad95], and [HM96], the type of the elementary description is fixed to String, but
in [Fok95], [R6j95], the more general type [token] is considered. In all the cases, the type

of the elaborated representation is a polimorphic type variable. The type (AParser token a)

will represent the choosed type, being token the variable for tokens, and a the variable for
elaborated representations. This type captures not only the functional nature of parsers, but
also another characteristics, as the possibility to fail, the possibility to return more than one
representation for a given input, reporting positions of errors, etc. In the next section, the type
AParser will be replaced by a class Parser grouping all the possible implementations for this
type, and the type of combinators will change accordingly, using a variable parser that belongs
to that class.

The atomic solutions for the parsing problem are four simple parsers. They are a parser that
succeeds without consuming input, a parser that always fails, a parser to recognize and return
a single element, and a parser that conditionally recognizes an element. Some other simple
parsers can also be considered, but these four ones are common to all the works considered.

Different names were used for these basic parsers, but in this work it will be called:

return :: a -> AParser tok a

Zero :: AParser tok a

item :: AParser tok tok

satisfy :: (tok -> Bool) -> AParser tok tok

The argument of the return parser is the representation to return when succeeding. The
argument of the satisfy parser is the condition that the element must satisfy; if the first
element does not satisfy it, then the parser is equivalent to zero. In [R6j95], an interesting
basic parser is presented, eof, that succeeds only when there are no more tokens to recognize.
It is not presented in any other work, but it can be introduced in every one, and as it is usefull
and not expressible as combination of the others, it will be considered a basic one in this work.

The combinators for parsers implements sequencing, alternation and repetition. Also the
transformation of the returned representation is expressed as a combinator. As in the case of

basic parsers, many names were used, but in this work they will be called:

sequ :: AParser tok a -> AParser tok b -> AParser tok (a,b)
alt :: AParser tok a -> AParser tok a -> AParser tok a
many :: AParser tok a -> AParser tok [al

using :: AParser tok a -> (a -> b) -> AParser tok b

The combinators usually are more readable when used infix. For that reason, some of the

combinators have an equivalent operator — for example, (<*>) for sequ, and (<@) for using.
Using the atomic parsers and the combinators, other parsers and combinators can be defined.

For example, a combinator that recognizes a structured surrounded by two fixed elements can

be defined using satisfy and sequ.

pack :: tok -> AParser tok tok -> tok
pack tl p t2 = satisfy (==t1) <*> p <*> satisfy (==t2)

The basic parsers and combinators presented does not form a monad. But an operation for
bind (>>=) can be defined and then the type of parsers becomes a monad, as it is stated, for
example, in [HMO96].

(>>=) :: AParser tok a -> (a->AParser tok b) -> AParser tok b

The operation succeed is the unit of the monad, and the operation (>>=) is the bind operation.
Moreover, the operation fail is a zero for parsers, and the operation alt is a plus, and thus
the parsers form a monad with zero and plus.

Using (>>=), some of the basic parsers and combinators can be defined in terms of the
others. For example, satisfy can be defined using item, and vice-versa. Also, sequ, many, and
using can be defined using (>>=). The only non-monadic operation that cannot be defined in
terms of monadic ones is item. Additional combinators can be defined using this combinators.
For example, different forms of sequential composition (differing in the results returned), a kind

of functional application for parsers, etc.

> (x>) :: Monad m=>->ma->mb->mb

>ma >> mb = ma >>= _ -> mb

> (<x) :: Monad m => ->ma->mb->ma

> ma <* mb = return const $> ma $> mb

> ($>), ap :: Monad m =>m (a ->b) >ma->mb
>mf $> ma = mf >>= \f -> ma >>= \a -> return (f a)
> ap = ($>)

In all the works studied, the type for parsers is functional, and then the way to use a parser
is functional application. But in order to generalize the type of parsers and view it as abstract,
there must exist a way to use a parser. That way will be represented by a function runparser,
that given a parser and a list of tokens will return the elaborated structure, plus the unconsumed
tokens.

The exact definition of the basic parsers and combinators (return, zero, (>>=), alt, and
item), and the type and definition of runparser depend completely on the type choosed to
represent parsers.

The problem with all the solutions is that different interfaces are needed for different imple-
mentations — usually function names are augmented with some prefix or sufflix indicating the
type. Type classes are an attempt to solve that problem, but for the case of parsers no good
class is known at present — perhaps due to the restrictions of the Haskell class system, that
prevent a good definition for it. In the next section, a class for parsers is defined, and then,
each particular type for parsers can be defined as instances of this class. In such way, there
is only one interface that all the implementations share, and thus the programmer’s activity is
much easier. The solution uses multi-parameter type classes in a complex way, thus showing

the usefulness of this feature.

3 Generic Parsing Combinators

Type classes and constructor classes [WB89, Jon95b] were introduced in Functional Program-

ming as a mean to provide overloading, that is sharing of names between functions of different

types. These sharing is obtained establishing that certain function names are overloaded, and
that a type must provide an implementation for the operation in order to share it. The class
declaration establishes the names and types for the functions that will be overloaded, and the
instance declaration establishes that a certain type belongs to the class, and also provides the
implementation for the overloaded functions.

One good example of the use of type classes is the definition of a class for monads, Monad,
in order to share the operations return and (>>=). Using those overloaded operations many
overloaded functions may be provided — for example many functions of the previous section —
to work with arbitrary monads. But in order to provide a class for parsers in the same way,
some extra expressiveness is needed. In the rest of the section, it is assumed the definition of
the classes Monad, MonadZero, and MonadPlus that appears in Haskell [PHT96], as well as the
definition of the derived combinators for monads presented in Sect. 2.

Multi-parameter type classes is a feature that allows groups of types to share a function
name. It is a difficult feature to add to the class system, because it does not interact very well
with other ones [JJM97].

The type Parser from the previous section is replaced by a type variable parser restricted
using multi-parameter type classes. Classes are used in order to define a unique interface for
parsers. The definition for the class Parser establishes that, in order to be a parser, a type

must be first a monad with zero and plus (as it is stated in Sect. 2).

class (MonadPlus m, MonadPlus (parser m tok)) =>
Parser parser m tok
where
item :: parser m tok tok
satisfy :: (tok -> Bool) -> parser m tok tok
eof :: parser m tok ()

>
>
>
>
>
>
>
> item = satisfy (const True)

> satisfy p = item >>= \tok ->
> if (p tok)

> then return tok
>

else zero

The constructor parser takes three arguments. The first one is a type constructor for a monad
with zero and plus, the second one is the type of tokens, and the third one is the type of the

results. The first argument is used in the definition of the function runparser.

> class Parser parser m tok =>
> RunningParser parser m tok a aux
> where

> runparser :: parser m tok aux -> [tok] -> m (a, [tok])

> parse :: RunningParser parser m tok a a =>
parser m tok a -> [tok] -> m (a, [tok])

> parse = runparser

The function runparser takes a parser and a list of tokens and returns a monad containing
the result and the unconsumed input. The monad parameter is used to change the features
added to a parser (for example, nondeterminism, error reporting, etc.). Aditionally, the function
runparser can change the result from the parser in some way, from type aux to type a. The
function parse is provided as a shorthand for the case when aux and a are the same.

In order to provide instances for the class parser, there must be provided at least the
functions eof and either item or satisfy (or both). If one of the latter two is ommited, the
default implementation is used.

It is assumed that an instance of class Parser satisfies at least the following rules:

-- parse (return a) ts = return (a, ts)

-- parse (p >>= f) ts = parse p ts >>= \(a, ts’) ->
- parse (f a) ts’

-- parse zero ts = zero

-- parse (p ‘alt‘ q) ts = parse p ts ‘alt‘ parse q ts
-- parse item [] = zero

-- parse item (t:ts) = return (t,ts)

-- parse eof [] = return ((),[])

-- parse eof (t:ts) = zero

These laws establishes the way in wich the monad parameter is used to add features to the basic
structure.

Before giving any instance of the class Parser, an example will be constructed, showing
that only the interface is needed to use parser combinators in the construction of parsers. But,
in order for the example to run, some instance will eventually be needed. The example must
convert a string representing an integer into the corresponding number. The BNF grammar

defining the syntax of the numbers is the following.

int uint | sign uint uint dig | dig uint

dig ::=0 | .. | 9 sign ::= + | -

Beggining with this grammar, and using the combinators, a parser is provided for every syn-
tactical cathegory. The parsers recognize the input, and transform the results to cooperate in

the construction of the number.

> intP, uintP :: Parser parser m Char => parser m Char Int
> intP = (uintP ‘alt‘ signP $> uintP) <* eof

> uintP = return (\d ds -> digs2num (d:ds))

> $> digP

> $> many digP

> digP :: Parser parser m Char => parser m Char Char

A\

digP = satisfy isDigit

> signP :: Parser parser m Char => parser m Char (Int->Int)
> signP = symbol ’+’ <@ const id

> ‘alt®

> symbol ’-’ <@ const negate

> digs2num = foldl g O where g n ¢ = n*10 + dig2num c

> dig2num ¢ = ord ¢ - ord ’0’

The function digs2num :: [Char] -> Int transforms a list of digits into a number (eg.
digs2num "231" = 231).

In order to use the parser for numbers, one specific instance of the class Parser must be
choosed. The selection is done using an explicit type signature. For example, taking the type

FokParser from Sect. 3.1, the following expression can be constructed:
parse (intP :: FokParser Char Int) "231"

The value of this expression is the list [(231,[]1)].

The definitions of parser combinators mentioned in the previous sections can be defined
now as instances of the Parser class. In some cases minor changes are needed in order to fulfill
some requirements of the class system — being the inability to work with type synonyms the
most remarkable. In the following subsections are shown the implementations from [Fok95],
[HM96], and [R6j95]. In each subsection appears not only the implementation of the common

operations, but also extensions and enhancements proposed for the particular implementations.

3.1 Fokker’s Implementation

The implementation proposed in [Fok95] — and also the one proposed in [Wad95] — is based on a
function that takes a list of tokens and returns a list of pairs — each pair containing a structure
described by a sub-list of tokens, and the remaining input. To represent these parsers, the type
AParser t ais defined as [t] -> [(a,[t])], and all the operations are defined accordingly.
In this case, the added feature is the possibility to return more than one structure as output,
represented by the list of pairs. The type FokParser is an instance of a more general type that,
instead of returning lists, returns a monadic value, thus allowing the change of features. This
type, FunParser, is defined as an algebraic type in order to instantiate it for the class Parser.
Instantiating the monadic value to other monads, different features can be obtained — in the

example, deterministic parsers, DetFokParser.

> data FunParser m t a = FP ([t] -> m (a, [t]))

> instance Monad m => Monad (FunParser m t) where

> return a = FP (\ts -> return (a, ts))

> (FP p1) >>=f = FP (\ts -> pl ts >>= \(a,ts’) ->

> let FP p2 = f a

> in p2 ts’

>)

> instance MonadZero m => MonadZero (FunParser m t) where

> zero = FP (\ts -> zero)

> instance MonadPlus m => MonadPlus (FunParser m t) where
> (FP p1) ‘alt® (FP p2) = FP (\ts -> pl ts ‘alt® p2 ts)

> instance MonadPlus m => Parser FunParser m t where
> item = FP (\ts -> case ts of

> 0 -> zero

> (t:ts’) -> return (t,ts’)

>)

> eof = FP (\ts -> case ts of

> 0 -> return (), [1)

> (_:_) => zero

>)

> instance RunningParser FunParser m t a a where

> runparser (FP p) ts = p ts

> type FokParser t a = FunParser [] t a
> type DetFokParser t a = FunParser Maybe t a

The runparser function is simply the application of the function representing the parser to the
given input.

The class Parser does not distinguish between deterministic and non-deterministic parsers.
In order to do that, [Fok95] provides an operation that given any parser, returns a deterministic
one. This operation is called first, and in this work it is provided as an overloaded function,

to mantain generality, resulting in a subclass of Parser.

> class Parser parser m tok =>

> DetParser parser m tok
> where
> first :: parser m tok a -> parser m tok a

> first = id

> p ‘detalt® q = first (p ‘alt‘ q)

> greedy p = first (many p)

The combinators for alternative and repetition are re-defined to behave as deterministic, and a
change on the name distinguish these from the (possibly) non-deterministic ones. The operation
first has the identity function as default definition in order to simplify the instance declaration
for parsers that are already deterministic — but it also allows that an instance ignores the
deterministic requirement. For example, the types DetFokParser and FokParser can be defined

as instances of DetParser.

> instance DetParser FunParser Maybe t -- DetFokParser
> instance DetParser FunParser [] t where -- FokParser

> first (FP p) = FP (\ts -> case p ts of

> (] -> [

> (x:2) > [x]

>)

Another variation provided by [Fok95] and [Wad95] is a way to force a parser to succeed, even
when success is not assured. The programmer is responsible for using this operation correctly
— for example in the case of many combinator, that never fails. Again, a subclass of Parser is

provided to capture this enhancement.
class Parser parser m tok =>

ForceableParser parser m tok

>
>
> where
> force :: parser m tok a -> parser m tok a
>

force = id

> lazymany p = force $ (return (:) $> p $> lazymany p)
> ‘alt®
> (return [])

The types DetFokParser and FokParser can be defined as instances of ForceableParser.

> instance ForceableParser FunParser [] t where

> force (FP p) = FP (\ts -> let x = p ts

> hx = head x

> tx = tail x

> in (fst hx, snd hx):tx
>)

> instance ForceableParser FunParser Maybe t where

A\

force (FP p) = FP (\ts -> let x = p ts

> hx = fromJust x

> in Just (fst hx, snd hx)

These two force functions use explicit constructors for list and tuples to force the results to a

specific pattern —in such a way, the functions never fail.

3.2 Hutton’s Implementation

In [HM96] there are several implementation for parser combinators. The most simple one is
similar to the one proposed by [Fok95], save that only consider Char as the type for tokens
But the interesting ones are those based on the state monad and reader monad. In order to
define that types as instances of the Parser class, some changes are needed. The state and
reader monads are re-defined to have the correct number and order of parameters, and the type
of parsers is generalized to provide features by means of a monad parameter. The StateMonad
class is the one defined in [Jon95b].

> data StateM s mt a = SM (s -> m (a,s))

> instance Monad m => Monad (StateM s m t) where

> return a = SM (\s -> return (a,s))

> (SM ms1) >>=f = SM (\s -> ms1l s >>= \(a,sl) —>

> let (SM ms2) = f a

> in ms2 si

>)

> instance MonadZero m => MonadZero (StateM s m t) where

> zero = SM (\s -> zero)

A\

instance MonadPlus m => MonadPlus (StateM s m t) where

(SM ms1) ‘alt‘ (SM ms2) = SM (\s -> msl1 s ‘alt® ms2 s)

A\

> instance Monad m => StateMonad (StateM s m t) s where

> update £ = SM (\s -> return (s, f s))

The state monad StateM provides the monadic operations for the parser combinators. The type
parameter t is used in the definition of the instance for the Parser class. It is needed because
the state of the state monad for parsers is the list of tokens, and the type of tokens cannot be

recovered. The only operations that have to be defined are the non-monadic ones.

> instance StateMonad (StateM [t] m t) [t] =>
> Parser (StateM [t]) m t

> where

item = update tail >>= \s ->
case s of
(x:_) -> return x
- -> zero
eof = update id >>= \s ->
case s of

1 -> return ()

VvV V VvV V V V V V

(_:_) -> zero

> instance RunningParser (StateM [t]) m t a a where

> runparser (SM p) s = p s
The type of the parsers presented in [HM96] can be defined instantiating the state monad.

> type HutParser a = StateM String [] Char a
> type DetHutParser a = StateM String Maybe Char a

Instances of the DetParser and ForceableParser classes can be defined for these parsers.
The reader-monad-based parser combinators defined as instances of class Parser, and the

special features presented in [HM96] are still under development.

3.3 Rojemo’s Implementation

The parser combinators presented in [R6j95] are based on continuations. This decision was
taken in order to make optimizations in the memory consumption of some combinators. [R6j95]
considers two kind of continuation for parsers: the failure continuation and the success continu-
ation. In this work that types where generalized to work with an arbitrary monad — in Réjemo’s

work only a specific monad providing error reporting is used.

> type GParserFail m t a = m (a,[t])
> type GParser0OK m t answer a = a -> [t] -> m (answer, [t])

The type of the intermediate structures and the type of the final ones are not necesarily the
same, in order to provide the type representing continuations and the bind for monads at the
same time. Parsers are then functions from a lists of tokens to the final answer, but represented

as continuations.

> data GRojParser answer m token a =

> GRP (GParserOK m token answer a ->
> GParserFail m token answer ->
> [token] -> m (answer, [token])
>)

The monadic operations are easily defined, because of the monadic nature of continuations

> instance Monad (GRojParser c¢c m t) where
> return a = GRP (\ok _ -> ok a)

> (GRP p1) >>=f =

> GRP (\ok fail -> p1 (\v -> let GRP p2 = f v
> in p2 ok fail
>) fail

>

A\

instance MonadZero (GRojParser ¢ m t) where
> zero = GRP (_ fail -> _ -> fail)

> instance MonadPlus (GRojParser ¢ m t) where
> (GRP p1) ‘alt® (GRP p2) =

> GRP (\ok fail ->

> \ts -> pl ok

> (p2 ok fail ts)

> ts

>)

Then, to define this type as an instance of the class Parser, the non-monadic operations should

be provided. In this case, it is easier to provide the implementation of satisfy.

> instance Parser (GRojParser c) m t where

> satisfy p = GRP (\ok fail ->

> \ts -> case ts of

>] -> fail

> (t:ts’) => if (p t)

> then ok t ts’
> else fail
>)

> eof = GRP (\ok fail ->

> \ts -> case ts of

> [l -> ok () [

> (_:_) => fail

>)

The runparser function applies the function defining the parser to basic continuations and to

the input.

> instance RunningParser (GRojParser c) m t ¢ ¢ where
> runparser (GRP p) ts = p (A\a => \ts -> return (a,ts))
> Zero

> ts

Finally, the type is instantiated to get concrete parser combinators. Indeed, in [R6j95] a more

involved monad reporting the position of errors is used, but that case is still under development.
> type RojParser tok ans a = GRojParser ans Maybe tok a

This type can be instantiated for classes DetParser and ForceableParser just accepting the
default definition for the operations.

The interesting feature added by the continuation based implementation of parser is the
ability to ‘cut’ the failure continuation, thus removing a space-leak produced by that continua-
tion. To do that, a new combinator, cut, is defined, and some of the old ones are re-defined in
order to use the new one. In this work, cut is provided as an overloaded function, by means of

a subclass of Parser.

> class Parser parser m t => CutableParser parser m t where

> cut :: parser mt a -> parser m t a

> cut = id

> ($>!) :: CutableParser parser m t =>

> parser m t (a->b) -> parser m t a -> parser m t b
>mf $>! ma = mf >>= \f ->

> cut (ma >>= \a -> return (f a))

(<*!) :: CutableParser parser m t =>
parser m t a -> parser m t b -> parser m t a

ma <x! mb = ma >>= \a ->

vV V V V

cut (mb >>= _ -> return a)

The types FunParser from Sect. 3.1 and HutParser from Sect. 3.2 can be defined as instances
of this class, accepting the default implementation — the id function. The type GRojParser can

be improved defining a good cut combinator.

> instance CutableParser (GRojParser c) m t where
> cut (GRP p) = GRP (\ok _ -> p ok zero)

And then, the example of integers can be redefined using the optimized combinators. Only the
functions that change the definition are shown — the rest change only the type to reflect the use

of CutableParsers.

intP, uintP :: CutableParser p m Char => p m Char Int
intP = (uintP ‘alt® signP $>! uintP) <* eof

$> digP

>
>
> uintP = return (\d ds -> digs2num (d:ds))
>
> $>! many digP

This function are now more efficient when instantiated with GRojParsers, but remain the same

for the other cases.

4 Conclusions

The construction of a class Parser was presented, in order to provide overloading of the parsing
combinators. In this way, the programmer can use the combinators without thinking in any
particular implementation, and only when using the parsers, a concrete instance type should be
provided (by means of explicit type signatures).

The definition uses multi-parameter type classes in a non-trivial way, showing that the
expressiveness of this feature makes worthwhile its inclusion in the system.

The work is not finished. There are some features that need more study — beign error
reporting the most significant. Also, other implementations of parsing combinators should be
expressed as instances of the class, and new features can be designed. Finally, the algebraic

structure defined by the proposed laws should be studied.

References

[FJ95] Sigborn Finne and Simon Peyton Jones. Pictures: A simple structured graphics model. In Proccedings

of the Glasgow Workshop on Functional Programming, Ullapool, 1995.

[Fok95] Jeroen Fokker. Functional parsers. In Johan Jeuring and Erik Meijer, editors, Advanced Functional
Programming, LNCS 925, pages 1-23. Springer-Verlag, May 1995.

[HM96] Graham Hutton and Erik Meijer. Monadic parser combinators. Technical report, University of Not-
tingham, 1996.

[Hud96] Paul Hudak. Haskore music tutorial. In John Launchbury, Erik Meijer, and Tim Sheard, editors,
Advanced Functional Programming, LNCS 1129, pages 38—67. Springer-Verlag, August 1996.

[Hut93] Graham Hutton. Higher-order functions for parsing. In Journal of Functional Programming, Vol. 1.
University of Utretch, Cambridge University Press, January 1993.

[JIJM97] Simon Peyton Jones, Mark P. Jones, and Erik Meijer. Type classes: An exploration of the design space.
URL: http://www.cse.ogi.edu/ simonp]/multi.ps.gz, 1197.

[Jon95a] Mark Jones. Gofer 2.30 release notes. Technical report, Yale University, 1995.
http://www.cs.nott.ac.uk:80/Department /Staff/mpj/.

[Jon95b] Mark P. Jones. Functional programming with overloading and higher-order polymorphism. In Jo-
han Jeuring and Erik Meijer, editors, Advanced Functional Programming, LNCS 925, pages 97-136.
Springer-Verlag, May 1995.

[PH'96] John Peterson, Kevin Hammond, et al. Report on the programming language Haskell, a non-strict,
purely functional language. Version 1.3. Technical report, Yale University, May 1996.

[R0j95] Niklas Rojemo. Efficient parsing combinators. In Garbage Collection, and Memory Efficiency, in Lazy
Functional Languages, Goteborg, Sweden, May 1995. Chalmers University of Technology, Department
of Computer Science. Part of the Ph.D. thesis.

[SMLR97] Ignacio Gallego Sagastume, Daniel H. Marcos, Pablo E. Martinez Lépez, and Walter Ariel Risi.
Expresando hypermedia en programacion funcional. Enviado para su consideracion al 2do Congreso

Latinoamericano de Programacién Funcional, CLaPF’97, 1997.

[Wad95] Philip Wadler. Monads for functional programming. In Johan Jeuring and Erik Meijer, editors, Ad-
vanced Functional Programmang, LNCS 925. Springer-Verlag, May 1995.

[WB&9] Philip Wadler and Stephen Blott. How to make ad-hoc polimorphism less ad-hoc. In 16°th Symposium
on Principles of Programming Languages, Austin, Texas, January 1989. ACM Press.

