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On the Logic of Theory Change: 
Wr 

Contraction Without Recovery 

1 Introduction 

The postulate of Recovery, among the six postulates for theory contraction, formu­

lated and studied by Alchourrón, Gardenfors and Makinson [AM82, AGM85, AM85, 

Mak87, Gar88] has been the one that more controversies provoked [Mak87, HAN91, 

see]. 

There are clearly cases in wich the recovery postulate seems to be contrary to 

intution1 , 

There are two important issues: 

1 Basically, proposed counter-examples cave in into the following case: 

Let a theory K, and let x, y E K. Supp ose we wish to eliminate x and y; so we proceed 

to contract by their disjunction, namely x Vy. If later on Im informed that either x or 

y are actually true, without being told which one is true, 1 shall expand my knowledge, 

beliefs by x Vy. After performing the expansion as sanctioned by the ACM model, the 

resulting set will resto re both x and y, contrary to what is expected. 
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1. It is very hard to find a reasonable contraction function without recovery ap­

plicable to theories; existing works has concentratedin developing contraction 

function over knowledge bases; i.e. the finite case. 

2. When dealing with standard AGM functions, the Levi and Harper identities 

allow for the interdefinibility of contraction and revision functions. As a direct 

consequence, we can take any of the two functions as primitive. However, there 

is no identity relating contractions functions that lack recovery with revision 

functions. 

Contraction functions without recovery have been dubbed withdrawal functions 

[Mak87] 

This paper do es not attempt to indulge in the polemic about the recovery pos­

tulate,so we deliberately avoid thjs discussion. The purpose of this note is to define 

a sensible withdrawal function over theories and to establish the connection with 

classical AGM revision functions. The connection is given through satisfaction of an 

identity along the lines of the Harper identity. 

In section 2 we present the AG M model. In section 3 we develop a contraction 

function for theories that do not satisfy the recovery postulate. In section 4 we relate 

this contraction function with the classical AGM revision function. 

2 The AGM Model [AGM85, Gar88] 

In this model an individual's beliefs of a rational agent are represented by a be­

lief set K, closed under logical con sequen ce en, where en satisfies the following 
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properties: K S; Cn(K) for any set K of propositions, Cn(Cn(K)) S; Cn(K) and 

Cn(K) S; Cn(H) if K S; H . We assume that Cn includes classicallogical con se­

quences, satisfies the rule of introduction of disjunction into premises and is compacto 

A theory is understood to be any set K of proposition closed under Cn; Cn(K) = 

K. 

Formally, we define the expansion function + from K x L 2 to K, such that (K;t) 

denotes the expansion of K by x and is defined by (K;t) = Cn(K U {x}). 

The six basic postulates for contraction are: 

(Ki) K; is a theory whenever K is a theory. (closure) 

(Ki) K; ~ K (inclusion) 

(Ki) If x ~ K, then K; = K (vacuity) 

(K¡) If If x, then x ~ K; (success) 

(Ks) If ~- x ~ y then K; := K; (preservation) 

(Ka) K ~ (K;);t whenever K is a theory (recovery) 

A contraction function satisfies the following property: 

Prop. 1: Whenever K is a theory, if x E K, then K = (K;);t. 

In [AGM85, Gar88] we see that K; = nS(K ~ x), where K ~ x is the set of all 

inclusion-maximal subsets A of K such that x is not a logical consequence of A, S is 

a selection function, such that: S (K ~ x) is a non-empty subset of K .1 x, unless the 

latter is empty, in which case S(K ~ x) = {K}. 

2Where L is the set of aH the sentences oC the language 
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The six basic postulates for revision are: 

(K i ) K; is a theory. (closure) 

(K2) x E K; (success) 

(Ká) K; ~ Ki" (inclusion) 

(K4) If --,x ~ K then Ki" ~ K; (vacuity) 

(Ks) K; = Kl. iff 1- --,x (consistency) 

(Ks) If f- x +-+ y then K; = K; (preservation) 

2.1 Relation between Contraction and Revision: 

We have seen that contraction and revisionare defined by two different sets of 

postulates. These postulates are independent in the sense that the postula tes of 

revision do not refer to contraction and vice versa. However it's possible define the 

revision function in terms of contraction function, and vice versa, by means of the 

formulas of Levi and Harper respectively: 

Der. Levi( -)= (K::;,J;-

Der. Harper(*)= K n K~x 

Theorem 1 : Let K be a belief set and ,_e an operator for K that satisfies 

the contraction-postulates (Ki) - (Ksl Then Levi( -) is an operator for K that 

satisfies the revision-postulates (Ki) - (Ka) . 
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Theorem 2: Let K be a belief set and '*' an operator for K that satisfies the 

revision-postll1ates (Ki) - (Ka). Then Harper(*) is an operator for K that satisfies 

the contraction-postulates (K1) - (K6l 

In [Mak87], Makinson incorporate the following resll1ts 

Theorem 3: Let K be a belief set and ',_e an operator for K that satisfies the 

contraction-postulates (K1) - (K6). Then Harper(Levi(-)) =-. 

Theorem 4: Let K be a belief set and '*' an operator for K that satisfies the 

revision-postll1ates (Ki) - (Ka). Then Levi(Harper(*)) = *. 

3 How to construct a contraction function with-

out recovery 

We can ask firstly why a contraction functíon satisfies recovery. The answer ís the 

following: 

Obs. 1: If Xi E K and Xi rj. K;, then X -t Xi E K;. 

Definition 1: Let V x = {x -t Xi : Xi E K and Xi 9!:. K;} 

We see clearly that the contraction-function satisfies recovery because all the mem­

bers of V x are in K; and, if we want have not this property, ít ís necessary to elimínate 



2do. Workshop sobre Aspectos Teóricos de la. Inteligencia Artilicial 

from K;- sorne of the member of V x' 

Definition 2 wr: Let wr be a contraction function such that: 

Theorem 5: K;X" defined as Definition 2 satisfies (Ki) - (Ks) 

Theorem 6: K;r defined as Definition 2 does not satisfy (K6) iff x If Xj' 

4 Relation between 'w..r..' and '*' 

477 

As the Levi's and Harper's functions for the AGM model, we will define new 

functions to relate '~' and '*'. 

3Se l., (W) select an element of W; and this is equi.valent to select someone finite subset of W, 

because if two sentences are in W, their conjunction is in W too (the demonstration is trivial). If 

W = 0, then Selo;(W) = x. 

The selection function must satisfies: 

Prop. 2: SeI.,(W) == SeIlI (W) if 1- x <-+ y 
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Def. Levi'( wr)= (K:;); 

Theorem 7: Levi'(wr)=Levi(wr). 

Theorem 8: Let K be a belief set and '*' an operator for K that satisfies the 

revision-postulates (Ki) - (K6). Then Harper'(*) is an operator for K that satisfies 

the contraction-postulates (K1) - (Ks)' 

Theorem 9: Let K be a belief set and 'lY,t' an operator for K that satisfies the 

contraction-postulates (Ki) - (Ks)' Then Harper'(Levi'(wr)) = wr. 

Theorem 10: Let K be a belief set and '*' an operator for K that satisfies the 

revision-postulates (Ki) - (K6). Then Levi(Harper(*)) = *. 

5 Conclusions 

We have defined lY,t: a contraction function without recovery applicable to theories. 

We have obtained this function as a combination of two standard ACM contraction 

functions,so that we have preserved the full strength and elegance of the classícal 

ACM rnodel. We have presented LEV!' and HARPER', two identíties relating our 

withdrawal function with the classical ACM revision functíon and finnaly showing 

that they become reciprocally dual. 
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Appendix: Proofs 

Obs. 1: 

Suppose that Xi E K and Xi rt. K;; then K t= K;; then (by (Ki)) X E K; then 

(by (Ka)) Xi E (K;)t; henee X ~ Xi E K;. 

Theorem 5: 

(Ki) , (K2) are trivial. 

(Ki) If X rt. K, then K; = K, then W = 0, then K;'z = K;->x = K, henee 

K lYL = K x 

(K¡) is trivial, beeause if If x, then X rt. K;, henee x rt. K~ 

(K5'),w x = w y by Prop. 2. The rest is trivial. 

Theorem 6: 
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~) Suppose that K;,r satisfies (K6"), then K ~ (K;,r)t; Xj E K 4, then Xj E 

( ~)+ wr _ _ 
Kx x; then x -;-+ Xj E Kx ,then x -+ Xj E Kx-tx' and hence (by (K4 )) f- x -+ Xj' 

J 

it is x f- Xj. 

) wr 
~ Suppose that x f- Xj, then f- :1; -+ Xj, then K;-tx' = K, then K;- = K;, that 

'J 

satisfies (K6"). 

Theorem 7: 

First we show that f- x = x 1\ W-,X; w-,x = -'x -+ Xj = x V Xj.x = x 1\ (x V Xj). 

Theorem 8: 

K n K~x n K n K~wx 

4Is not true if W = 0, but in this case x j = x and the test is trivial. 
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Theorem 9: 

Harper'(Levi'(wr)) -- K n (K;)2:x n K n (K;'x)2:wx =(by Theorem 3) - -

Theorem 10: 
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