Sources of Parallelism in Defeasible Argumentation!
Alejandro J. Garcia? Guillermo R. Simari

Grupo de Investigacién en Inteligencia Artificial (GIIA)

Instituto de Ciencias e Ingenieria de la Computacién (ICIC)
Departamento de Ciencias de la Computacién,
UNIVERSIDAD NACIONAL DEL SUR
Av.Alem 1253 — (8000) Bahia Blanca, ARGENTINA. FAX: (54) (91) 595136

e-mail: ccgarcia@criba.edu.ar grs@criba.edu.ar

KEYWORDS: Defeasible Reasoning, Argumentation, Parallelism.

Abstract

In a defeasible argumentation formalism, an argument is used as a defeasi-
ble reason for supporting conclusions. A conclusion ¢ will be considered valid
only when the argument that supports it becomes a justification. Building
a justification involves the construction of a non-defeated argument A for q.
In order to establish that A is a non-defeated argument, the system looks
for counterarguments that could be defeaters for A. Since defeaters are argu-
ments, there may exist defeaters for the defeaters, and so on, thus requiring a
complete dialectical analysis. The language of Defeasible Logic Programming
(an extension of logic programming) provides a knowledge representation lan-
guage for defeasible argumentation.

In Logic Programming, different kinds of parallelism have been studied,
OR-parallelism, independent and dependent AND-parallelism, and also unifi-
cation parallelism. All of these types of parallelism are at the language level.

In this work we introduce different kinds of parallelism that could be ex-
ploited at different levels in a defeasible argumentation system. At the lan-
guage level, all types of parallelism identified for logic programming can be
used. Besides, several arguments for a conclusion g can be constructed in par-
allel. Once an argument A for ¢ is found, defeaters for A could be searched
in parallel. Finally several argumentation lines in the dialectical analysis be-
tween arguments and defeaters, could be explored in parallel.

1 This work was partially supported by the Secretarfa de Ciencia y Técnica, Universidad Nacional
del Sur.

2Fellow of Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Reptiblica
Argentina



Sources of Parallelism in Defeasible Argumentation

1 Introduction

In this work, implicitly exploitable parallelism for a defeasible argumentation sys-
tem will be studied. We will use the defeasible argumentation formalism developed
in [24, 22, 7], and the knowledge representation language of Defeasible Logic Pro-
gramming [5].

In a defeasible argumentation formalism [24, 4, 19], an argument is used as a
defeasible reason for supporting conclusions. A conclusion ¢ will be considered valid
only when the argument that supports it becomes a justification. Building a jus-
tification [7], involves the construction of a non-defeated argument A for ¢q. In
order to establish that A is a non-defeated argument, the system looks for counter-
arguments that could be defeaters for A. Since defeaters are arguments, there may
exist defeaters for the defeaters, and so on, thus requiring a complete dialectical anal-
ysis. In [5], an extension of logic programming called Defeasible Logic Programming
(DLP) was defined. DLP uses defeasible argumentation for capturing common sense
reasoning features that are difficult to express in conventional logic programming.

In Logic Programming, different kinds of parallelism have been studied [11],
OR-parallelism, independent and dependent AND-parallelism, and also unification
parallelism. Since DLP is an extension of logic programming, these four kinds of
parallelism can be exploited. However, there are new sources of parallelism that can
be implicitly exploited in a defeasible argumentation system: (1) several arguments
for a conclusion ¢ can be constructed in parallel, (2) once an argument A for ¢ is
found, defeaters for A can be searched in parallel, and (3) several argumentation
lines in the dialectical analysis between arguments and defeaters, can be explored
in parallel.

2 Building Arguments in Parallel

We present here a knowledge representation language for defeasible argumentation
as an extension of Logic Programming. The language has two different negations:
strong negation, which is represented by the symbol “~” used for representing con-
tradictory knowledge; and weak negation (negation as failure), represented by the
symbol “not” used for representing incomplete information.

Two types of program clauses are used for representing defeasible and non-
defeasible rules:

o cxtended program clauses ® (EPC): | <= q1,...,qn.

e defeasible program clauses * (DPC): I =< q1,...,qn.

3We use this terminology following [8]. However, the system presented here, can accommodate
inconsistency whereas the language reported in [8] cannot.

4Given the similarity in use and syntax, we use the term ‘clause’ for this construction, even
though it is not properly a clause, but a meta relation between the head and body of the rule.



[13ee)]

In both kinds of clauses [ is a literal (i.e., a predicate “p” or a negated predicate
“~p”), and each ¢; (0 <1i < n) is a literal or a literal preceded by the symbol not.
Thus, strong negation is allowed in the consequent of a clause, and negation as failure
over literals is allowed in the antecedent. If n = 0, an EPC becomes “I < true.” (or
simply “.”) and is called a fact, whereas a DPC becomes “/ — true.”, and is called
a presumption.

We will use the usual PROLOG typographic conventions for program clauses,
except that for an EPC we will write “head <- body.” rather than “head :- body.”;
and “head -< body.” for a defeasible clause. An EPC is used to represent sound (i.e.,
non-defeasible) information such as: bird(X) <- penguin(X). which expresses that
“all penguins are birds”, whereas a DPC is used to represent defeasible knowledge
such as: fly(X) -< bird(X). which expresses that “presumably, a bird can fly” or
“usually, a bird can fly.”

Since the knowledge representation language is an extension of the language of
Logic Programming, a finite set of EPCs and DPCs, will be called a defeasible logic
program (DLP). Given a DLP P, a defeasible derivation for a literal [ is the finite set
of EPC and DPC obtained by backward chaining from q as in a PROLOG program,
using the clauses in the order specified by the bLP. When a defeasible derivation
for a literal “~p” is started, the symbol “~” is considered as part of the name of
the predicate p.

Example 2.1 : Here follows a DLP that will be referred to in other examples:

fly(X) -< bird(X). bird(X) <- chicken(X).
~fly(X) -< chicken(X). bird(X) <- duck(X).
fly(X) -< chicken(X),scared(X). bird(X) <- penguin(X).
chicken(koko) -< true. ~fly(X) <- penguin(X).
penguin(tweety) -< true. penguin(chilly) .

duck (mark) . scared (koko) .
chicken(pipi). duck(tim) .

Using this DLP, there are defeasible derivations for each of the following literals:
“~vfly(tweety)”, “fly(tweety)”, “fly(koko)” and “~fly(koko).” O

As Example 2.1 shows, the notion of defeasible derivation does not forbid infer-
ring two complementary literals from a given DLP P. However, the defeasible argu-
mentation formalism uses a dialectical analysis of arguments and counter-arguments
in order to justify the conclusions. This will be the subject of the next section, but
first we will show how to obtain defeasible derivations in parallel.

2.1 Parallel Defeasible Derivations

The knowledge representation language defined above is an extension of the lan-
guage of logic programming. Therefore, all sources of parallelism identified for logic
programming can be exploited for defeasible derivations.

As pointed by Gopal Gupta et al. in [11], there are many proposals for extend-
ing a logic programming language with explicit constructs for concurrency, as Delta



Prolog, CS-Prolog, Shared prolog, Parlog, GHC, and Concurrent Prolog. However,
parallel execution of logic programs can also be done implicitly, ¢.e., the parallelism
can be exploited by the evaluator at run-time itself. In this work, we will con-
sider only the approaches that exploit parallelism from logic program implicitly,
i.e., without intervention of the programmer.

Four main forms of parallelism (implicitly exploitable) can be identified in logic
programs [10]:

1. Unification parallelism.

2. Or-parallelism.

3. Independent And-parallelism.
4. Dependent And-parallelism.

Unification parallelism arises when different argument terms (also subterms) can
be unified in parallel. Or-parallelism arises when a subgoal can unify with heads of
more that one clause, then the subgoals in the bodies of these clauses can be executed
in parallel. And-parallelism arises when multiple subgoals in a query or in the body
of a clause are executed in parallel. When the runtime bindings for the variables
in these subgoals have non-intersecting sets of variables (i.e., are independent),
then parallel execution of such subgoals gives rise to independent and-parallelism.
Dependent and-parallelism arises when two or more subgoals have a common variable
and are executed in parallel.

Gopal Gupta points in [10] that these four kinds of parallelism are orthogonal
to each other, i.e., each one can be exploited without affecting the exploitation of
the other. Thus, it is possible to exploit the four of them simultaneously. However,
no efficient parallel system has been built yet that achieves this, and such an effi-
cient parallel system that exploits maximal parallelism remains the ultimate goal of
researchers in parallel logic programming.

These four kinds of parallelism can be exploited in DLPs when making defeasible
derivations. And also many of the implementations developed for logic programming
can be applied directly to DLPs. However, as we will show in the next sections
there are new sources of parallelism that can be implicitly exploited in a defeasible
argumentation system.

2.2 Arguments

Given a DLP, the defeasible derivation notion does not forbid inferring two comple-
mentary literals (see Example 2.1). Therefore, in order to allow only one of two
complementary goals to be accepted as a sensible possibility, we need a criterion for
choosing between the two. In defeasible argumentation, answers to queries must be
supported by arguments. Let P be a DLP; then, we will distinguish the subset S of
EPC in P, and the subset D of DPC in P.

Definition 2.1 (Argument) An argument A for a query h, also denoted (A, h),
is a subset of ground instances of DPCs of D, such that: (1) There exists a defeasible
derivation for h from S U A, (2) S U A is consistent, and (3) A is minimal with
respect to set inclusion.



Definition 2.2 (Consistency) A set of program clauses A is consistent if there is
no defeasible derivation for any pair of complementary literals (with respect to strong
negation “~”). Conversely, a set of program clauses A is inconsistent if there are
defeasible derivations for a pair of complementary literals.

Given a DLP P, the set S must be consistent, although the set D, and hence
P itself (i.e., S U D) may be inconsistent. It is only in this form that a DLP may
contain potentially inconsistent information.

Example 2.2 : Consider the DLP of example 2.1.
The query “ -< ~fly(koko).” has the argument:

A — ~fly(koko) -< chicken(koko).
L= chicken(koko) -< true.

whereas, the query “ -< fly(koko).” has two arguments:
A, — fly(koko) -< bird(koko).
27 ]| chicken(koko) -< true.

e — fly(koko) -< chicken(koko),scared(koko).
® 7] chicken(koko) -< true.

The query “ -< ~fly(tweety).” has the argument:

Ay = { penguin(tweety) -< true. }

43

but, there is no argument for “ -< fly(tweety).” because its defeasible derivation
is inconsistent with respect to S. O

2.3 Parallel Consistency Checking

In order to obtain an argument for a literal h, the consistency checking will be done
simultaneously with the defeasible derivation. Every time the body of a program
clause P is derived, it will be tested whether the head h of P (with its current variable
bindings) is consistent. A head h will be inconsistent when its complement h ° can
be derived with S U A. On the other hand, if a head h is certified as consistent,
then will be remembered as a temporary fact. These temporary facts will be used for
avoiding re-derivation of goals, and for checking consistency of the following derived
sub-queries. We call them temporary facts, because they are erased once the main
query is resolved. This approach was developed for the implementation of Defeasible
Logic Programming, and we refer the interested reader to [6, 5] for the details of
this implementation.

A defeasible derivation is carried out in a top-down fashion, whereas consistency-
checking and the generation of temporary facts are done in a bottom-up manner.
Thus, the consistency of a literal [ is checked once the literal [ has been derived. This
is necessary because the goal being checked for consistency must be instantiated.

5The symbol “ ~ * will be used to denote the complement of a literal with respect to strong
negation (i.e., T = ~a, and ~a = a).



Indeed, if consistency of a goal were checked before the goal is proved, it could
be instantiated with wrong terms and this would lead to unexpected results. For
instance, in Example 2.1, if the query “ -< £f1y(X).” is submitted, and consistency
is checked before the variable X is instantiated, then there is no consistent defeasible
derivation for any instance, because the strict derivation for “~fly(chilly)” would
invalidate them. However, there is a consistent defeasible derivation with X = koko
and X = mark.

Our implementation for consistency checking consists of adding an extra query
at the end of every clause. The added query is the complement of the head of the
clause. For example the EPC p(X) <« q(X) is transformed to p(X) < qX) #~p(X),
and the DPC ~r(X) — ~s(X) is transformed to ~r(X) — ~s(X) #r(X). The symbol
“#” must be read as “ and cannot be strongly proved that”.

Since consistency checking is done trying to derive grounded goals, i.e., goals
with no free variables, then independent and-parallelism between the consistency
check and the derivation of the rest of the argument can be performed in an easily
controlled way.

2.4 Computing Arguments in Parallel

Or-parallelism could be exploited in a defeasible argumentation system in order to
obtain all the possible arguments for a given query. In a sequential system, when
a subgoal can be unified with heads of more than one clause, then more than one
argument could be obtained by backtracking. If or-parallelism is used, assuming
an unlimited number of processors, every solution could be computed in parallel
and backtracking would not be necessary. However, in practice a limited number of
processors will be available, so backtracking is needed.

Or-parallelism is related to breadth-first search and tends to be more complete
than PROLOG, because OR branches of the AND-OR tree are traversed concurrently.
Therefore, even solutions to the right of an infinite branch can be computed.

Example 2.3 : If the query “f1y(X)” is submitted to the program of Example 2.1
then the following arguments may be obtained (in parallel):

{ £1y(koko) « bird(koko) chicken(koko) -< true. }

{ £1y(koko) « chicken(koko),scared(koko) chicken(koko) -< true. }

{ fly(mark) < bird(mark) } d

{ fly(pipi) « bird(pipi) }

{ fly(tim) < bird(tim) }

It is interesting to note that, obtaining all possible consistent defeasible deriva-
tions for a given literal would help to obtain minimal arguments: every time a proper
argument is found, the superset is discarded.

3 Parallel Argumentation

An argument A is a consistent defeasible derivation that supports a literal h. How-
ever, there may exist arguments that disagree with A. Given an argument (A, h),



every inner literal will define a subargument that could be counter-argued. Formally,
an argument (B, q) is a sub-argument of (A, h) if B C A.

An argument (A, hy) counter-argues (As, ho) at a literal h, if there exists a
sub-argument (A, h) of (As, he) such that the set S U {hy,h} is inconsistent. The
literal A is called the counter-argument point, and (A, h) the disagreement subar-
gument. Thus, every argument has a set of potential counter-argument points that
could be ‘attacked’ by others arguments. Note that here there is also an underlying
consistency check procedure necessary to discover counter-arguments.

Example 3.1 : Continuing with Example 2.2, the argument A; is a counter-
argument for both A4, and Ajz (at £ly(koko)), and also Ay and Aj are counter-
arguments for A; (both at ~fly(koko)). Note that the argument .44 has no
counter-arguments. O

3.1 Finding Counter-arguments in Parallel

In order to find a counter-argument for a given argument 4, we need to find an argu-
ment C that disagree with some literal p in A. Let Co(.A) be the set of consequents
of EPC and DPC used for building A (excluding facts). Each element of Co(A) is a
potential counter-argument point. Actually, there could be more counter-argument
points that do not belong to Co(A), but this has been resolved using “inverted
EPCs” (see [6] for a complete description of this solution). Therefore, in order to
find a counter-argument for an argument A, we will see if there exist an argument
for the complement of an element of C'o(.A).

Thus, once the argument 4 as been built, we can compute the set Co(.A), and
then compute in parallel all the possible counter-arguments for A just trying to
build an argument for the complement of each element of Co(.A). Observe that the
derivation of each counter-argument will be independent of the others.

3.2 Defeaters and Justifications

In Defeasible Logic Programming a query q will succeed if the supporting argument
for it is not defeated; it then becomes a justification. In order to verify whether
an argument is non-defeated, its associated counter-arguments By, By, ... By are
examined, each of them being a potential (defeasible) reason for rejecting A. If any
B; is better than (or unrelated to) A, then B; is a candidate for defeating A. In this
work, we will use a formal criterion called specificity which allows to discriminate
between two conflicting arguments. However, the notion of defeating argument can
be formulated independently of which particular argument-comparison criterion is
used. Namely, if some B; is better (i.e., more specific, in our case) than A, then
B; is called a proper defeater for A; if neither argument is better than the other, a
blocking situation occurs, and we will say that B, is a blocking defeater for A.

Definition 3.1 (Defeating argument) An argument (A, hy) defeats an argu-
ment (Asg, he) at literal h, if and only if there exists a sub-argument (A, h) of (Asg, hs)
such that (Ay, hi) counter-argues (Aa, ho) at h, and either:



(1) (Ay, hy) is strictly more specific than (A, h) (then (A;, hy) is a proper defeater
of (Aa, ha)); or

(2) (A1, h1) is unrelated by specificity to (A, h) (then (Ai, hy) is a blocking defeater
Of <./42, hg))

As defined above, a defeater B for A is a counter-argument that attacks a sub-
argument C of A, provided that C is not better than B. Therefore, defeaters for A
can be searched in parallel, computing counter-arguments in parallel, and using the
comparison criterion once every counter-argument is obtained.

The next definition characterizes specificity as defined in [16, 22] (adapted to fit
in this framework). Intuitively, this notion of specificity favors two aspects in an
argument: it favors an argument (1) with more information content and (2) with
shorter derivations. This notion is made formally precise in the next definition. We
use the symbol “j~ 7 to denote a defeasible derivation,i.e., P|~ h means that h has
a defeasible derivation from P. Let Sg be the maximal subset of S that does not
contain facts. Let F be the set of literals in P that have a defeasible derivation.

Definition 3.2 (Specificity)

An argument Ay for hy is strictly more specific than an argument As for he
(denoted (Ai, hi) = (A2, ha)) if and only if:

(1) For all G C F : if SqUGU Ai|~ hy and SgUG [~ hy, then ScUG U Asl~  hs.
(2) There exists G' C F such that S¢ UG U Ay |~ hy and S¢ UG’ [X hy and
ScUG'U A X hy.

Example 3.2 : Continuing with Example 2.2, argument A, is strictly more specific
than argument A, because A; does not use the EPC ‘bird(X) <- chicken(X).’ and
therefore is a more direct argument. However, argument Az is strictly more specific
than A;, because it contains more information. Then, A; is a proper defeater for
As, and Ajz is a proper defeater for A;. O

Since defeaters are arguments, there may exist defeaters for defeaters, and so on.
In order to obtain a justification for a given query, a dialectical analysis is needed.
The PROLOG program of Figure 1 shows the specification of this analysis (\+ stands
for PROLOG’s negation as failure).

justify(Q) :- find_argument(Q,A), \+ defeated(A).
defeated(A) :- find defeater(A,D), \+ defeated(D).

Figure 1: Justification specification

The specification of Figure 1 leads in a natural way to the use of trees to organize
our dialectical analysis. In order to accept an argument A as a justification for ¢, a
tree structure can be generated. The root of the tree will correspond to the argument
A and every inner node will represent a defeater (proper or blocking) of its father.
Leaves in this tree will correspond to non-defeated arguments. This structure is
called a dialectical tree.



Definition 3.3 (Marking of a dialectical tree) Let A be an argument for a lit-
eral h, and T 4 ., be its associated dialectical tree. Nodes in T 4, are recursively
marked as defeated or undefeated nodes (D-nodes and U-nodes respectively) as fol-
lows.

1. Leaves of T 4., are U-nodes.

2. Let (B,q) be an inner node of T 4., Then (B,q) will be an U-node iff every
child of (B,q) is a D-node. The node (B,q) will be a D-node iff it has at least
an U-node as a child.

Definition 3.4 (Justification) Let A be an argument for a literal h, and let T 4
be its associated dialectical tree. The argument A will be a justification for a literal

h if the root of T 4 4, ts a U-node.

In order to explain how the current (sequential) system decides if an argument
is a justification, it is useful to see a dialectical tree as a set of argumentation lines.
Let (Aj, hy) be an argument structure, and let 74, ,,, be its associated dialectical
tree. Every path A in 7 ,, ,,,, from the root (A;, hy) to a leaf (A, hy,), denoted A = |
(Ay, hy), (Aa, ha), ..., (An, hy)], constitutes an argumentation line for (A;, hy). In
each argumentation line, every argument (A4;, h;) defeats its predecessor (A;_1, h;_1).
The argument (Aj, hy) supports the main query hq, (As, ho) interferes the justifica-
tion of h; and so on. Therefore, an argumentation line can be split in two disjoint
sets: Ag of supporting arguments, and A\; of interfering arguments.

In the current (sequential) implementation, given a query q the system will first
try to generate an argument 4; for q. Then a dialectical tree will be generated
in depth-first order, considering (from left to right) every argumentation line in a
sequential order. First, the system will try to build a defeater A, for some counter-
argument point in A; (see Figure 2). If such defeater exists, then it will try to build
a defeater As for Ay, and so on, building in this form an argumentation line. In a
dialectical tree there are as many argumentation lines as leaves in the tree, and each
of them could finish in a supporting or an interfering argument. It is interesting
to note, that although the procedure of Figure 1 describes an exhaustive analysis,
pruning it is also described by the semantics of PROLOG’s negation as failure.

Example 3.1 Consider Figure 2 (i), if an argumentation line ends with a supporting
argument As, then the defeater A, will be defeated (i.e., will be a D-node), and
therefore A; will be —up to this point— a U-node. Although there could be more
defeaters for A4, looking for them is useless because Ay is already defeated, hence,
the dialectical tree can be pruned on this node. Since the system performs an
exhaustive analysis, it will look for any other possible defeater A, for As, creating
a new argumentation line. Note that if an undefeated node is found for A3, the
label for 4; will change from U-node, to D-node.

Consider now Figure 2 (ii), if the argumentation line ends with an interfering
argument as A4, then the defeater A, will be undefeated (i.e., a U-node), and A,
will be defeated. Again, there could be more defeaters for A3, but looking for them
is also useless. Since the system is trying to prove that A; is a justification, the



/ /
A2 D A2 U
/ /
A3 U A3 D
/ \
A4 D A4 U
/
A5 U
(i) (ii)

Figure 2: Argumentation lines of different length

dialectical tree is pruned in Az, and any other defeater As" for A, will be sought,
creating a new argumentation line. O

Before analyzing a parallel implementation for the dialectical tree, we will intro-
duce some conditions in order to avoid infinite argumentation lines. A DLP is a finite
set of program clauses, and therefore there is a finite number of arguments that may
be involved in a dialectical tree. However, we need to impose conditions in order to
avoid cycles in this tree. In [22], a detailed analysis exposes different kinds of falla-
cies: reciprocal defeaters, contradictory argumentation, and circular argumentation.
These three situations are averted by requiring that all the argumentation lines of
a dialectical tree to be acceptable. Let P be a DLP, where § is the set of EPC. Let
A= [(Ag, ho), (A1, h1), ..., (A by, .., (A, hy)] be an argumentation line.

Definition 3.5 (Acceptable argumentation line) ) is an acceptable argumen-
tation line iff:

1. For every defeater (A;, h;) and every proper subargument (B,q) of (A;, hi),
(B, q) and (A;_1, h;_1) are concordant; that is, S U{q, h;_1} must be consistent.

2. The sets Ag of supporting arguments, and \; of interfering arguments, of A
must each be concordant sets of arguments (i.e., SUUX, A; is consistent).

3. No arqument (Ag, hy) in X is a subargument of an earlier argument (A;, h;) of
A (i <k).

3.3 Finding Justifications in Parallel

Consider the dialectical tree of Figure 3. The root node 4; is a D-node, because
there are two undefeated defeaters for it: Az and Aj. If depth-first search would be
used over this tree, then the search would be stopped in node A;5. However, in a
breadth-first search the process would be stopped in node As.

In the current (sequential) system the dialectical tree is explored in depth-first
order. However, as shown above, given an argument A, its defeaters can be com-
puted in parallel. Therefore, the dialectical tree can be computed in parallel, if
every time a node (argument) is obtained, its children (defeaters) are computed in
parallel. This parallel process gives to the search tree a breadth-first flavor.



Support A1(D)

/ /\ \
Interference A2(D) A3(U) A4(D) A5(U)
Support A6(D)/ A7>U) J&S(D) A9(I|J)
Interference A10|(U) A11(1§) \A12(U)
Support A13|(U)

Figure 3: A complete dialectical tree

If the dialectical tree is computed in parallel, then the control of the justification
process will be distributed over the nodes. Thus, the marking procedure of D-nodes
and U-nodes will be done by message passing between the nodes of the dialectical
tree. We will show next the interaction among the nodes, separating the construction
of the dialectical tree from the marking procedure of nodes.

a) Parallel construction of the dialectical tree. After constructing A, the
following actions will be carried out:

1. The set Co(A) of potential counter-argument points will be obtained.

2. For every [ € C'o(A) it will be called (in parallel) the construction of arguments
for [. These arguments (potential defeaters) will be the children of A.

3. If A receives from a child B the message that its derivation fails, then the
status of B will be dead.

4. If A receives from a child B (counter-argument) the message that its derivation
succeeds, then B will be compared with the disagreement sub-argument C of
A.

If C is better than B, then the status of B will be dead.
Otherwise, if B is better than C then B will be a defeater for A, and A will
send a message to the child B for generating its own defeaters (children). In
the latter case the status of B will be potential defeater

The previous algorithm indicates how to build the dialectical tree. However, we
also need to mark every node in order to know whether the root node is a U-node.

b) Parallel marking procedure of a dialectical tree. In order to mark a node
as U-node or D-node, the following criterion is used:

1. If a node B (argument) has no defeaters then B sends a message to its father
indicating it is a U-node.

2. If a node A receives from one of its children B the message that B is a U-
node, then (as B defeats A): (1) the node A becomes a D-node, (2) A sends
a message to its father to inform that it is now a D-node, and (3) in order to
prune the dialectical tree, A sends a message to its children that are still alive,
to abort their dialectical process.



3. If a node A receives a message from one of its children B, indicating that B
becomes a D-node, then B status will be defeated defeater.

4. If every ‘potential’ defeater of A becomes a ‘defeated’ defeater, then A becomes
a U-node, and sends a message to its father indicating this.

Given a query h and an argument A for h, the dialectical process will finish when
the argument 4 becomes a U-node (i.e., a justification for h), or when at least a
defeater for A becomes a U-node and therefore A becomes a D-node.

If a query h has a justification, then it is considered ‘justified’, and the answer to
the query will be YES. Nevertheless, there are several reasons for an argument not to
be a justification: there may exist a non-defeated proper defeater, or a non-defeated
blocking defeater, or there may be no argument at all. Therefore, in a DLP there
are four possible answers for a query “— h”:

e YES, if there is a justification A for h.

e NO, if for each possible argument A for h, there exists at least one proper
defeater for A marked as U-node.

e UNDECIDED, if for each possible argument A for h, there are no proper de-
featers for A marked U-node, but there exists at least one blocking defeater
for A marked U-node.

e UNKNOWN, if there exists no argument for h.

4 Related Work

In this work we define a parallel argumentation system based in the defeasible ar-
gumentation formalism developed in [24, 22, 23, 5]. However, there are other for-
malisms for defeasible argumentation. In [4] P. Dung has proposed a very abstract
and general argument-based framework, where he completely abstracts from the no-
tions of argument and defeat. H. Prakken and G. Sartor [20, 21] have developed an
argumentation system inspired by legal reasoning. Like us, they use the language of
extended logic programming, but they introduce a dialectical proof theory for an ar-
gumentation framework that fits the abstract format developed by Dung, Kowalski
et al. [4, 2]. Later, Prakken [18] generalized the system to default logic’s language.
R. Kowalski and F. Toni [12] have outlined a formal theory of argumentation, in
which defeasibility is stated in terms of non-provability claims. Other related works
are those by Vreeswijk [25], Bondarenko [1], Pollock [15], Loui [13], and Nute [14].

The interested reader is referred to the following surveys in defeasible argumen-
tation: Prakken & Vreeswijk [17], and Chesnevar et al. [3]. A complete bibliography
of parallelism in logic programming can be found in [10] and [9]. Gupta et al. [11]
and [10] are good surveys of implementation of parallelism in logic programming.



5 Conclusions

Different sources of parallelism for a defeasible argumentation system were studied.
We considered only those forms of parallelism that could be exploited implicitly. We
showed that all types of parallelism identified for logic programming can be used
for obtaining consistent defeasible derivations. In particular, or-parallelism could be
exploited in order to obtain all the possible arguments for a given query.

Once an argument A for ¢ is found, defeaters for A can be sought in parallel.
Thus the dialectical tree can be computed in parallel, giving to the search process a
breadth-first flavor. A distributed process for finding justifications was developed.
This process builds the dialectical tree and marks every node as D-node or U-node.

Although much work in defeasible argumentation, and also in parallel logic pro-
gramming it is being pursued, to our knowledge, this work is the first approach to
parallel defeasible argumentation.

References

[1] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93:63-101, 1997.

2] A. Bondarenko, F. Toni, and R.A. Kowalski. An assumption-based framework
for non-monotonic reasoning. Proc. 2nd. International Workshop on Logic Pro-
gramming and Non-monotonic Reasoning, pages 171-189, 1993.

[3] C. I. Chesnevar, A. Maguitman, and R.P.Loui. Logical models of arguments.
submitted to ACM Computing Surveys, 1998.

[4] Phan M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning and logic programming and n-person games. Artificial

Intelligence, 77:321-357, 1995.

[5] Alejandro J. Garcia. Defeasible Logic Programming: Definition and Implemen-
tation (MSc Thesis). Departamento de Cs. de la Computacién, Universidad
Nacional del Sur, Bahia Blanca, Argentina, July 1997.

(6] Alejandro J. Garcia and Guillermo R. Simari. Una extensién de la maquina
abstracta de Warren para la argumentacién rebatible. In Proceedings of the I11
Congreso Argentino en Ciencias de la Computacion, October 1997.

[7] Alejandro J. Garcia, Guillermo R. Simari, and Carlos I. Chesnevar. An ar-
gumentative framework for reasoning with inconsistent and incomplete infor-
mation. In Workshop on Practical Reasoning and Rationality. 13th biennial
European Conference on Artificial Intelligence (ECAI-98), August 1998.

[8] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. War-
ren and P. Szeredi, editors, Proc. ICLP, pages 579-597. MIT Press, 1990.



[9]

[10]

[11]

18]

[19]

[20]

[21]

[22]

Steve Gregory. Parallel Logic Programming in PARLOG. The language and its
implementation. Addison-Wesley, 1987.

Gopal Gupta. Multiprocessor Fxecution of Logic Programs. Kluwer Academic
Publishers, 1994.

Gopal Gupta, Khayri, A.M. Ali, Manuel Hermenegildo, and Mats Carls-
son. Parallel execution of prolog programs: A survey. Technical re-
port, Department of Computer Science, New Mexico State University.
http://www.cs.nmsu.edu/lldap/pub_para/survey.html.

Robert A. Kowalski and Francesca Toni. Abstract argumentation. Artificial
Intelligence and Law, 4(3-4):275-296, 1996.

Ronald P. Loui, Jeff Norman, Joe Altepeter, Dan Pinkard, Dan Craven, Jessica
Lindsay, and Mark Foltz. Progress on room 5: A testbed for public interactive
semi-formal legal argumentation. In Proc. of the 6th. International Conference
on Artifcial Intelligence and Law, July 1997.

Donald Nute. Basic defeasible logic. In Luis Fari nas del Cerro, editor, Inten-
sitonal Logics for Programming. Claredon Press, Oxford, 1992.

John L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person.
Massachusetts Institute of Technology, 1995.

David L. Poole. On the Comparison of Theories: Preferring the Most Specific
Explanation. In Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, pages 144-147. IJCAI, 1985.

H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation (to
appear). In Gabbay, editor, Handbook of Philosophical Logic, second edition.
1998.

Henry Prakken. Logical Tools for Modelling Legal Argument. A Study of De-
feasible Reasoning in Law. Kluwer Law and Philosophy Library, 1997.

Henry Prakken. Dialectical proof theory for defeasible argumentation with
defeasible priorities (preliminary report). In Proceedings of the Jth Modelage
Workshop on Formal Models of Agents. Springer Lecture Notes on Al Springer
Verlag, Berlin, 1998.

Henry Prakken and Giovanni Sartor. A system for defeasible argumentation,
with defeasible priorities. In Proc. of the International Conference on Formal
Aspects of Practical Reasoning, Bonn, Germany. Springer Verlag, 1996.

Henry Prakken and Giovanni Sartor. Argument-based logic programming with
defeasible priorities. Journal of Applied Non-classical Logics, 7(25-75), 1997.

Guillermo R. Simari, Carlos I. Chesnievar, and Alejandro J. Garcia. The role of
dialectics in defeasible argumentation. In Anales de la XIV Conferencia Inter-
nacional de la Sociedad Chilena para Ciencias de la Computacion. Universidad
de Concepcién, Concepcién (Chile), November 1994.



[23] Guillermo R. Simari and Alejandro J. Garcia. A knowledge representacién
language for defeasible argumentation. In CLEI’95, Canela, Brasil, August
1995.

[24] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of De-
feasible Reasoning and its Implementation. Artificial Intelligence, 53:125-157,
1992.

[25] Gerard A.W. Vreeswijk. Abstract argumentation systems. Artificial Intelli-
gence, 90:225-279, 1997.



