
Analysis of suitable languages to teach Procedural Programming at the
Universidad Nacional del Noroeste de la provincia de Buenos Aires

Germán L. Osella Massa

Claudia Russo
Mónica Sarobe

Sabrina Pompei

Escuela de Tecnología – Instituto de Investigación y Transferencia de Tecnología,
Universidad Nacional del Noroeste de la provincia de Buenos Aires (UNNOBA),

Roque Sáenz Peña 456 (Junín), Argentina.

ABSTRACT
Based on the need to update the language and tools used to
teach Procedural Programming during the first year of
computer science careers, a cross descriptive research was
conducted by assessing different programming languages.
The analysis involved a total of twelve languages with
different characteristics. A new methodology was
proposed based on the conclusions obtained from this
work. Teachers have considered this proposal highly
appropriate and its implementation was recommended for
the next year.
Keywords: Programming Languages, Comparison,
Methodology.

1. INTRODUCTION
Both the Escuela de Tecnología at UNNOBA and the staff
in charge of teaching Procedural Programming to first year
students in the Computer Science courses saw the need to
rethink the methodology that was being used. The use of
PASCAL as an introductory language to teach
fundamental concepts has given rise to an increasing
number of difficulties that are needed to be solved.
Some of these issues are related to technical difficulties
(i.e., compilers and IDE for obsolete platforms, lack of
modern support tools, etc.) whereas others are related to
the way in which students see this language. Therefore, it
was decided to conduct a study to compare a set of twelve
programming languages with the aim of identifying their
strengths and weaknesses as regards teaching procedural
programming. In the rest of this article, the reasons that
led to discard most of the languages assessed as a tool to
teach procedural programming will be mention and the
new methodology designed based on the chosen languages
will be analyzed. Finally, the results expected from the
change will be described.

2. ANALYZED AND DISCARDED LANGUAGES
The languages under analysis were C, C++, C#, D, Go,
Java, Javascript, Objective-C, Pascal, Python, Ruby and
Scala. They all have different characteristics: some of
them are procedural languages, others are object-oriented
and some are even multiparadigm ones. They can be
broken down into interpreted and compiled languages.
Some of them are quite new (Go was announced in 2009)
whereas others have made history (such as C). In this
section, the reasons why most of the languages were
discarded will be discussed.

Pascal
Although Pascal is a structured language designed to teach
the fundamentals of procedural programming, it

unfortunately has fallen into disuse (both in the industry
and in academia) and, as a result, there are no modern
support tools (development environments and debuggers)
or any active communities promoting it. Delphi [12] and
FreePascal [13] are exceptions which have found their
niches and are still being developed. Delphi, however, as it
is a commercial product, has certain constraints that make
it less attractive: it is not multiplatform, it requires
relatively new hardware to be usable and there is an
associated cost per use license. On the other hand,
FreePascal does not present any of these inconveniences
and the Lazarus project, which seeks to implement an
environment similar to Delphi, could be a convenient
development environment. However, students believe that
they will never use Pascal and they receive the same
message from senior students. This causes demotivation
and lack of interest in the language thus having a negative
impact on the teaching of the curricula. The use of a
language that the students consider more attractive, either
because of its commercial application or because of its
popularity, can boost interest in learning it and, in
consequence, all the topics involved in the courses.

C
C [1] is a relatively small and very popular system
programming language. It supports mostly all of the
procedural programming topics required, although
sometimes it turns out to be a very low level language,
causing concepts to become blurred by this. To mention an
example, concatenating two strings of characters becomes
an extremely complex and prone to error task, involving
pointers, dynamic memory allocation and tests to avoid
memory overflows. C makes it necessary to understand
how memory is managed both by the operating system and
the program. It allow to write code with errors that
sometimes are very hard to detect and may cause the
program to terminate unexpectedly. Therefore, C was
discarded. It is probably more suitable to learn it along
with an assembly language (where the distance between
both of them would be relatively small and the concepts
would be more related).

Objective-C
Objective-C [11] is a popular language on Apple
platforms: It is one of the basic languages in Mac OS X
(Macs) and iOS (iPhone, iPad and iPod). This language is
a hybrid of C and Smalltalk. It expands C language adding
classes and objects using the model proposed in Smalltalk,
with a similar syntax. The difference between the code
related to C and the code related to Smalltalk can be
clearly seen in the following code since the latter is written
in square brackets.

JCS&T Vol. 13 No. 1 April 2013

38

 1 #import <stdio.h>
 2 #import "Fraction.h"
 3
 4 int main(int argc, const char *argv[])
 5 {
 6 Fraction *f = [[Fraction alloc] init];
 7 [f setNumerator: 1 denominator: 3];
 8 printf("Fraction = %d\n", [f value]);
 9 [f release];
10 return 0;
11 }

Unfortunately, as there is no need to teach the contents
related to object oriented programming (the aim is to teach
procedural programming only) what is left is basically C,
which was rejected for the reasons discussed before.

C++
C++ [2], as an evolution of C, was considered the ideal
language to teach programming, since it allows more
advanced constructions to be used thus making it easier to
carry out many of the tasks that would require
considerable effort in C. Additionally, all the items added
to C++ are optional: classes may be used or not, operators
may be overloaded, and generic functions or classes may
be defined but are not mandatory, etc. The philosophy has
always been that if something is not used, no additional
cost is paid (in memory or speed) for the possibility of
using it. However, C++ is a huge language and it was not
designed to be used as a first programming language.
The fact that C++ supports C language almost entirely and
also adds more concepts such as classes, operators,
overload, name spaces, generic programming, templates
and so on, makes it a monstrous language. Explaining the
following trivial program to an inexperienced student is
not a simple task:

1 #include <iostream>
2 using namespace std;
3
4 int main()
5 {
6 cout << “Hello, world!” << endl;
7 return 0;
8 }

The first line requires an understanding of header files and
the preprocessor (both inherited from C). The second line
involves the concept of name spaces. Line 4 requires to
explain what a function is and why it is necessary to
return 0 in line 7. Line 6 involves so many concepts that it
is difficult to list them without leaving some of them out:
cout is an instance of the class std::ostream, “<<” is
an overloaded operator to work with “char *” and
explaining the mechanism behind “endl” will be a
nightmare for many people. One can obviously follow the
“Do not worry, you will understand it later” and
“for now, just type it and it will work” approach, but this is
not the best teaching strategy since it causes confusion and
frustration to students when something does not work as
expected. For all this, C++ was discarded.

Java and C#
Java [8] and C# [3] are two very similar languages of
widespread use. They are both, multiplatform, using a
virtual machine to run on different operating systems.
In the case of Java, Oracle provides virtual machines that
runs on Windows, Linux, Solaris and OS X.

In the case of C#, Microsoft provides the .NET platform
(for which C# compiles) which is for Windows only, but
there is a project called Mono [4], which seeks to develop
a .NET compatible platform (if possible) and provides
versions for Windows, Linux, Solaris and OS X, and even
making it possible to compile for iOS and Android. The
main disadvantage of these two languages is that they only
support the object-oriented programming paradigm and
they almost reject the procedural paradigm altogether. It is
not possible to define an independent function in any of
them; only methods can be defined in a class. This leads to
an overload of unnecessary structures in a program where
they only aim is to teach procedural programming, as seen
in the following examples of "Hello world” programs
written in Java and C# respectively.

1 package hola; Java
2 public class HelloWorld {
3 public static void main(String[] args)
4 {
5 System.out.println("¡Hola, mundo!");
6 }
7 }

1 using System; C#
2 namespace Hi {
3 public class HelloWorld {
4 public static void Main(string[] args)
5 {
6 Console.WriteLine("Hello, world!");
7 }
8 }
9 }

The definition of a class, a method for a class, visibility
modifiers for that method and the use of an instance
method and a class to be able to produce an output do not
contribute anything to the teaching of procedural
programming. In addition, Java lacks pointers and C#
supports them but their use is restricted. As a result, both
languages were discarded for the teaching of procedural
programming.

Scala
Scala [16] is a language designed to program in a concise,
elegant and secure way (it is secure because of its static
typing). It incorporates certain features of object-oriented
and functional languages and it can inter-operate with Java
in a transparent way. However, the procedural paradigm is
not one of its strong points. The most concise way to write
a "Hello world" is as follows:

1 object HolaMundo {
2 def main(args: Array[String]) {
3 println("Hello, world!")
4 }
5 }

As compared to the Java, the number of concepts
decreases notably and although it is a more compact code,
it is completely equivalent. In fact, if we were to choose
between Java and Scala as a base language, the latter
would be a very interesting option. Unfortunately, it is
clearly an object-oriented language (where it is impossible
to define a function other than an object or a class) making
it impossible to make use of it as a procedural language.

JCS&T Vol. 13 No. 1 April 2013

39

Go
Go [7] is a relatively new language (announced in 2009)
created and sponsored by a group of developers from
Google. It aims at being a simple language but adds
features such as automatic memory management (using
garbage collector) and concurrent programming support
(introducing the goroutines concept). It moves away from
the syntax and control structures proposed by C, and it
suggests simpler and more powerful alternatives.
It supports object-oriented programming but does not use
the classic class-based model that is common in other
programming languages.

1 package main
2 import "fmt"
3
4 func main() {
5 fmt.Println("Hello, world!")
6 }

The type system in Go uses the interface concept, where if
a type defines a certain set of methods, such type will
automatically implement a certain interface (whether or
not that was desired). However, it lacks generic types,
which can be a constraint. On the other hand, the
development tool support is poor and there is practically
no literature. Although this language has recently reached
its 1.0 version, which marks a certain level of stability, it is
still really new and not altogether mature to be used as a
base language.

Ruby
Ruby [15] is a very popular dynamic language frequently
used on web development. Unfortunately, it has certain
features that do not make it eligible as a procedural
language. Firstly, the fact that it is purely object-oriented
cannot be overlooked (for example, the suggested way to
iterate on a sequence is by using one of the variants of the
“each” method, on which a block will process each of the
elements in the sequence, just as in Smalltalk but far from
the way in which this is done in a procedural paradigm).
It also has many alternative ways of writing exactly the
same thing (there is if and unless, while and until)
all of them as control structures or statement modifier).
Some examples of Ruby, showing in each column variants
of exactly the same code are presented next. Having such
an expressive language allows expert programmers to
write a clear and natural code. However, inexperienced
programmers will be confused and doubtful about the right
way to write code.

if test then unless test then
 puts("Yes") puts("No")
end end

if test unless test
 puts("Yes") puts("No")
end end

puts("Yes") if test puts("No") unless test

Javascript
Javascript [9, 10] is the de facto language on the Internet.
Most current browsers (if not all of them) support it.
However, it has certain features that do not make it an
ideal language to start programming. In general, although
there are exceptions, it lacks input/output functions

(as it is intended to be run on a browser, the ability to read
and write files in an arbitrary manner entailed an
unnecessary risk). It also shares one of the problems of
Ruby; it is hard to disregard the fact that you are working
with objects. The type system has implicit conversions that
more than once catch programmers unprepared (expert and
novices alike). The result of the following expressions is
almost unpredictable if the rules governing conversions
among different types are really well known.

> 1 + 2 > 1 + "2"
3 "12"

> [] > [] + 1
[] "1"

> [1, 2] + 3 > {}
"1,23" {}

> {} + 2 > [] + []
2 ""

> {} + [] > [] + {}
0 "[object Object]"

> {} + {} Where [] is an empty array
NaN and {} is an object literal.

The greatest advantage that JavaScript could offer would
be its ubiquity and its almost immediate business
application. However, these two reasons are not enough to
choose it as a base language.

3. NEW METHODOLOGY PROPOSAL
At UNNOBA, the first contact that students have with
procedural programming is during the first term of the first
year in the Computer Sciences courses, when they take the
subject "Introducción a la Programación Imperativa".
They then take "Programación Imperativa" in the second
term. Based on this division, our proposal is to use
different languages in each subject, each of them with a
different approach.
First, the idea is to start with a very high level
programming language, which interferes as little as
possible with the teaching objectives when starting to
program (simple data types, clear control structures, basic
input/output) and which can help students acquire good
habits when writing code (consistent indentation,
documented code, use of test cases). Having an interactive
session to test code and obtain an immediate response also
turned out to be a very valuable feature: Interaction with
an interpreter provides an immediate response, helping the
student to experience with language and be able to form a
mental model to explain the obtained responses.
Compiled languages need a debugger to be able to carry
out a step-by-step trace and the necessary skills to be able
to use it. This discourages students from exploring it.
Python turned out to be a language which met all these
requirements and it will be used for students to learn the
fundamentals of procedural programming. In addition, it is
essential for students to be exposed to concepts that, due
to their nature, cannot be easily stated or are simple
impossible using Python: Compiled vs. interpreted
language, static type checking, pointers and, static vs.
dynamic memory management, just to mention a few.
To solve this problem, we resorted to another
programming language where the student can be in contact
with these concepts. In this case, the decision was harder.
Several languages that could meet these requirements to
different extents were assessed. Finally, the language
chosen was D, which clearly covers all these concepts and
more.

JCS&T Vol. 13 No. 1 April 2013

40

The features that led us to choose Python and D are
discussed in the following subsections.

Python
Python [14] is a clear and minimalist language which
seeks to embrace the “There should be one –and
preferably only one– obvious way to do it” motto. Using
indentation to define blocks forces students to acquire the
good habit of writing clear code. This habit is expected to
be transferred to other languages where blocks are written
using delimiters. Although Python is an object-oriented
language, it can easily hide it and appear as a completely
procedural language. In addition to being a very high-level
language, at first, students will need to handle only a
limited number of concepts. It is a strongly typed,
dynamic and interpreted language. Interactive sessions can
be run with helps such as online documentation and code
completion. The online documentation system is
applicable both on a built-in function of the language or on
one written by the students. Finally, test cases, known as
doctests, can be written in the documentation, using a
syntax that is identical to that of the interactive session.
The following function has documentation and test cases
contained in the same documentation.

>>> def factorial(n):
... """
... The factorial function, n!
...
... >>> factorial(1)
... 1
... >>> factorial(2)
... 2
... >>> factorial(3)
... 6
... >>> factorial(4)
... 24
... """
... if n > 1:
... return n * factorial(n - 1)
... else:
... return 1

D
D [5, 6] is compatible with a large subset of C (similar
syntax, compatible types, same control structures) and just
as C++, it increases C by incorporating object-oriented
and generic programming, but it does this in a simpler and
more organized way, learning from the mistakes made in
C++. It does not try to be absolutely compatible with C,
including associative maps and dynamic strings as
primitive types, automatic memory management (with
garbage collection) and a more robust type checking than
the ones provided by C. D incorporates some of the
concepts of the object-oriented and functional paradigms
but it does not turn its back to its procedural programming
roots. It supports assertions and test cases in a native
manner, as follows:

1 int add(int x, int y) {
2 return x + y;
3 }
4
5 unittest
6 {
7 assert(add(1, 2) == 3);
8 assert(add(-7, 3) == -4);
9 }

The code within the unittest block will be executed
only in a special test mode and it will be ignored in normal
execution. With this feature, it is easy to incorporate test
cases for the written code, just as in Python, thus fostering
the habit of testing programs this way. Another related
feature is programming by contract, using preconditions
and postconditions of a function:

 1 double func(double x)
 2 in {
 3 assert(x > 0);
 4 }
 5 out(result) {
 6 assert(result >=0 && result <= 1);
 7 }
 8 body {
 9 // func implementation...
10 }

The function func receives the x parameter which is a
floating point value, and returns another floating point
value. The code within the in block will verify that the
value of the x parameter is always higher than 0
(otherwise, it will fail), then the body of func will be
executed and finally, in the out block, the value returned
by the function (stored in result) will be verified to
check whether it is within the interval [0, 1].

A problem that usually shows up when implementing a
data structure (a linked list or a stack, for example) is the
type of the values stored in this structures. In the case of
linked lists, an implementation defining the type of the
value stored in each node as int will not work to create a
list of strings or floats or anything else. In D, this is solved
using generic types (there are similar mechanisms in C++,
Java or C#). A generic definition for a node of a simple
linked list can be written as follows:

1 struct Node(T) {
2 T value;
3 Node *next;
4 }

The structure now has a parametric type T, that can be
instantiated as follows:

1 Nodo!int n1;
2 Nodo!double n2;
3 Nodo!string n3;

The three definitions above will result in three different
structures (n1, n2 and n3), each of them specialized with
the type indicated after the exclamation mark.
Functions and methods can also be written in this way,
making possible to implement truly generic algorithms.
D has other interesting features that are not discussed here
for the sake of brevity.

4. EXPECTED RESULTS
The new methodology to be implemented in 2013 is
expected to motivate students of the courses
"Introducción a la Programación Imperativa" and
"Programación Imperativa", bringing fresh air to the way
in which knowledge is acquired. Python is a very popular
language, with many practical uses ranging from the web
to desktop applications or games. In addition, there are
modern tools that are expected to make it easier for
students to learn the contents taught in each subject.

JCS&T Vol. 13 No. 1 April 2013

41

In particular, Online Python Tutor [17] is expected to be
together with Python’s interactive shell an invaluable tool
to understand the control flow of a program. D will be
used to apply the concepts that were formerly described on
paper or on a concrete language but with restrictions that
were artificial imposed.
All these changes will also have an impact on “Estructuras
de Datos”, a second year course which to take it, requires
the students to pass both "Introducción a la Programación
Imperativa" and "Programación Imperativa". Plans are
made to use D as the language where the structures and
algorithms will be studied and implemented in a really
generic manner.

5. REFERENCES
1. Kernighan, B., Ritchie, D.: The C Programming
Language. Prentice Hall; 2nd edition (1988)
2. Stroustrup, B.: The C++ Programming Language.
Addison-Wesley Professional; 3er ed. (2000)
3. C# Language Specification,
http://go.microsoft.com/fwlink/?LinkId=199552
4. Mono: Cross platform, open source .NET development
framework, http://www.mono-project.com/
5. D Programming Language – Official Website,
http://dlang.org/

6. Alexandrescu, A.: The D Programming Language.
Addison-Wesley Professional; 1st ed. (2010)
7. The Go Programming Language – Official Website,
http://golang.org/
8. Java official website at Oracle,
http://www.oracle.com/technetwork/java/index.html
9. Flanagan, D.: JavaScript: The Definitive Guide.
O'Reilly Media; 6th edition (2011)
10. Crockford, D.: JavaScript: The Good Parts. Yahoo
Press; 1st edition (2008)
11. The Objective-C Programming Language,
http://developer.apple.com/documentation/Cocoa/Concept
ual/ObjectiveC/
12. Embarcadero Delphi XE2,
http://www.embarcadero.com/products/delphi/
13. Free Pascal – Advanced open source Pascal compiler
for Pascal, http://www.freepascal.org/
14. Python Programming Language – Official Website,
http://www.python.org/
15. Ruby Programming Language – Official Website,
http://ruby-lang.org/
16. The Scala Programming Language – Official Website,
http://www.scala-lang.org/
17. Online Python Tutor,
http://www.onlinepythontutor.com/

JCS&T Vol. 13 No. 1 April 2013

42

http://go.microsoft.com/fwlink/?LinkId=199552
http://www.onlinepythontutor.com/
http://www.scala-lang.org/
http://ruby-lang.org/
http://www.python.org/
http://www.freepascal.org/
http://www.embarcadero.com/products/delphi/
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://www.oracle.com/technetwork/java/index.html
http://golang.org/
http://dlang.org/
http://www.mono-project.com/

	final5: Received: December 2012. Accepted: February 2013.

