

Engineering Accessible Web Applications.
An Aspect-Oriented Approach

Author: Adriana E. Martín
1Department of Exact Sciences, Caleta Olivia, University of Patagonia Austral (UNPA-UACO), Santa Cruz, Argentina
2GIISCo Research Group, Departamento de Ciencias de la Computación, Universidad Nacional del Comahue, Buenos

Aires 1400, Neuquén, Argentina
e-mail: adrianaelba.martin@gmail.com

Supervisor: Dr. Alejandra Cechich
GIISCo Research Group, Departamento de Ciencias de la Computación, Universidad Nacional del Comahue, Buenos

Aires 1400, Neuquén, Argentina
e-mail: acechich@uncoma.edu.ar

Co-Supervisor: Dr. Gustavo Rossi
LIFIA, Facultad de Informática, Universidad Nacional de La Plata and Conicet, La Plata, Argentina

e-mail: gustavo@sol.info.unlp.edu.ar

Universidad Nacional de La Plata
Facultad de Informática

Thesis submitted in fulfillment of the requirements for the
Doctor degree in Informatics Science

Thesis defended on June 5, 2012

ABSTRACT
Every day more and more users with different abilities and/or temporally or permanent disabilities
are accessing the Web, and many of them have difficulties in reaching the desired information.
However, the development of this kind of software is complicated for several reasons. Though some
of them are technological, the majority are related with the need to compose different and, many
times, unrelated design concerns which may be functional as in the case of most of the
application’s requirements, or non-functional such as Accessibility. Even though, there is a huge
number of tools and proposals to help developers assess Accessibility of Web applications, looking
from the designer perspective, there is no such a similar situation. In this thesis, we present a novel
approach to conceive, design and develop Accessible Web applications using concepts from
Aspect-Orientation. In order to accomplish our goal, we provide some modeling techniques that we
explicitly developed for handling the non-functional, generic and crosscutting characteristics of
Accessibility. Specifically, we have enriched the UID technique with integration points to record
Accessibility concerns that will be taken into account when designing the user interface. Then, by
instantiating the SIG template with association tables, we work on an abstract interface model with
Accessibility softgoals to obtain a concrete and accessible interface model for the Web application
being developed. We explain deeply our ideas and point out the advantages of a clear separation of
concerns throughout the development life-cycle. Thus, our proposal is based on recognized design
techniques, which we embedded in a software tool to facilitate the transfer of the approach to the
industry.
1. INTRODUCTION
Since 1999, when the W3C1 introduced the “Web Content Accessibility Guidelines 1.0” (WCAG
1.0) [18] as a set of guiding principles, the fact that Accessibility is a main topic in Web design
upon which the success of a Web application depends, has become a landmark statement. However,
developing accessible Web applications is usually hard for several reasons.
Firstly, there is a significant knowledge gap between developers and Accessibility specialists. Most
developers do not have the necessary skills or training in designing and coding for Accessibility,
and most Accessibility specialists have, in turn, limited developing practice. Thus, although there

1 The World Wide Web Consortium at http://www.w3.org/

 PAGINA - 803 -

are many available tools and published sources of information on Web Application Accessibility,
existing Web Accessibility guidelines and principles (and therefore, experts on these guidelines) do
not address additional design issues that may typically arise when developing complex Web
applications. To make matters worse, there is little evidence of design approaches dealing with
Accessibility from the beginning of the design process. In most cases, Accessibility is regarded as a
programming issue or even dealt with when the Web application is already fully developed and,
consequently, the process of making this application accessible involves significant redesign and
recoding, which might be out of the scope of the project and/or hardly affordable. As we will show
next, the main problem with Accessibility is that it is a non-functional software concern, which
affects (“crosscuts”) other application concerns. Moreover, Accessibility is a generic concern that
may comprise dozens of specialized concerns and, therefore, many requirements associated with
these. For example, at the application-level, Accessibility can be specialized according to the kind
of Accessibility support given to the user, where specific requirements related to the user’s layout
and the user’s technology supports are considered. As another example, at the meta-level,
Accessibility can be specialized according to meta-features like compliance design and content
order concerns. Finally, and as an example of the model-level, Accessibility can also comprise
different concerns according to the methodological phase for the development of the Web
application, where the Accessibility efforts are focalized.
In this work we introduce our design approach, which proposes to include Accessibility concerns
systematically within a methodology for Web application development. Firstly, to find out how
Accessibility concerns should be introduced in the development life cycle, we analyzed how
mature Model-Driven Web Engineering (WE) methods, such as UWE [7], OOHDM [14] or OOWS
[6], face this cycle. We realized that all of them comprise several activities to focus on some
specific design concerns; however, since OOHDM fulfill many of our expectations, we decided to
join our modeling approach to this particular WE method. Secondly, since designing accessible
Web applications involves the analysis of different interests, we proposed to use Aspect-Oriented
Software Development (AOSD2) design principles to support the construction of accessible user
interfaces. The fact that we choose Aspect-Orientation to develop our proposal ensures handling
naturally the non-functional, generic and “crosscutting” 3 characteristics of the Accessibility
concern. As a motivating example and to introduce properly the ideas behind our modeling
approach, let us suppose a typical login Web page whose purpose is aiming a student’s
identification at his/her university system, such as the SIU Guarani student registration system that
is used by a number of Argentine universities. Figure 1 shows the page for the student’s login that
provides a user interface composed of HyperText Markup Language (HTML) elements, such as
labels and text fields. To help to an accessible interaction experience these HTML elements must
fulfill some Accessibility requirements, which crosscut the same software artifact (the Web page
for student’s login). For example, at the presentation level an HTML label element is a basic layout
Accessibility requirement for many other HTML elements. Since a Web page for student’s login
requires at least two text field elements (for student’s ID and password respectively), the presence
and positioning of their respective label elements must be tested. So, to propitiate an accessible
interaction experience on behalf of the student, these layout requirements must “crosscut” the same
software artifact (the Web page) more than once, accordingly to the number of text field elements
included in the presentation. Clearly this kind of behavior perfectly fits the “scattering” and
“tangling” problems4, which motivate the main AOSD principles.

2 Aspect-Oriented Software Development (AOSD) focuses on the identification, specification and representation of “crosscutting” concerns and their
modularization into separate functional units as well as their automated composition into a working system.
3 “Crosscutting” is a term used for certain type of functionality whose behavior causes code spreading and intermixing through layer and tiers of an
application which is affected in a loss of modularity in their classes. Quality requirements (such as Accessibility) are examples of this common
functionality that is usually described as “crosscutting concerns” and should be centralized in one location in the code where possible.
4 “Scattering” and “Tangling” symptoms are typical cases of “crosscutting concerns” and they often go together, even though they are different
concepts. A concern is “scattered” over a class if it is spread out rather than localized while a concern is “tangled” when there is code pertaining to
the two concerns intermixed in the same class (usually in a same method).

 PAGINA - 804 -

17

As a motivating example and to introduce properly the ideas behind our modeling

approach, let us suppose a typical login Web page whose purpose is aiming a student’s

identification at his/her university system, such as the SIU Guarani student registration

system that is used by a number of Argentine universities8. Figure 1.1 shows the page

for the student’s login that provides a user interface composed of HyperText Markup

Language (HTML) elements, such as labels and text fields. To help to an accessible

interaction experience these HTML elements must fulfill some Accessibility

requirements, which crosscut the same software artifact (the Web page for student’s

login). For example, and as we will see in detail later, at the presentation level an

HTML label element is a basic layout Accessibility requirement for many other HTML

elements.

Figure 1.1: A Student’s Login Web page example

Since a Web page for student’s login requires at least two text field elements (for

student’s ID and password respectively), the presence of their respective label elements

must be tested. So, to propitiate an accessible interaction experience on behalf of the

student, this layout requirement must crosscut the same software artifact (the Web page)

more than once, accordingly to the number of text field elements included in the

presentation. Additionally, it is highly important to consider the positioning of the label

8 For example the SIU Guarani registration system, as used by the National University of Córdoba at

http://www.psi.unc.edu.ar/sistemas/sistemas-de-informacion-academica/siu-guarani

Figure 1: A Student’s Login Web page example

Since these two Accessibility requirements (presence and positioning of the label elements), are
“scattered” in the Web page with a pair of label-text field HTML elements, the Web page is
“tangled” with these Accessibility requirements. It seems natural therefore to address Accessibility
using the Aspect-Oriented Software Development (AOSD) approach and, it is not just a
coincidence that during this work we refer to Accessibility as a “concern”. The term "concern"
from the AOSD perspective describes accurately the Accessibility features related to its nature. By
using the AOSD paradigm we can avoid typical problems of “crosscutting” concerns, such as those
shown in the previous Web page example. Our proposal applies these concepts by treating
Accessibility as a first-class concern in the context of the OOHDM [14] WE approach.
The main objective of this work is to define a WE approach (process and techniques) to conceive,
design and develop accessible Web applications using Aspect-Oriented concepts, which enable to
address Accessibility early from requirements and through design to implementation.
The rest of the work is structured as follows: in Section 2, we offer an overview of our proposal
describing the conceptual tools and model we envisage to deal with Accessibility concerns within a
WE approach; while in Section 3, we briefly introduce the comparison between related work,
focusing on the main contribution of ours. Finally, in Section 4 we conclude, present some further
work and some of the contributions related to this work.
2. OUR APPROACH IN A NUTSHELL
In the spirit of modern Web Engineering approaches, we propose a model-driven development
process in which the construction of a Web application consists of the specification of a set of
conceptual models, each addressing a different concern (such as navigation or interface). We
propose an iterative and incremental process, which uses, as input, a set of Web application’s
requirements as provided by any WE approach --e.g. a set of use cases, goals, etc. Our approach,
proposes two conceptual tools working together to enable an early capture of the Accessibility
concerns. These modeling techniques are the UID [17] with integration points and SIG [5] template
for Accessibility, with which the interaction between OOHDM models links and reinforces
Accessibility needs. Following, in Sections 2.1 and 2.2, we introduce these conceptual tools and
then, in Section 2.3, we put all the pieces together to give a brief overview of our Aspect-Oriented
approach for accessible design.
2.1 Accessibility through UIDs integration points
A User Interaction Diagram (UID) [17] is a diagrammatic modeling technique focusing exclusively
on the information exchange between the application and the user. UIDs can be used to enrich the
use cases models but they are also key graphical tools for linking requirements at later stages of a
WE development process to obtain conceptual, navigational and user interface diagrams. With the
traditional perspective given by techniques like [5] in mind, we introduce the concept of UIDs’s
integration points to model the Accessibility concerns of a user-system interaction. Particularly, we
define two kinds of UIDs integration points as follows: (i) User-UID Interaction (U-UI) integration

 PAGINA - 805 -

point to propitiate an accessible communication and information exchange between the user and a
particular interaction of a UID interaction diagram; and (ii) User-UID Interaction’s component (U-
UIc) integration point to propitiate an accessible communication and information exchange
between the user and a particular UID interaction’s component of an UID interaction. These
integration points with different granularity provide two alternatives for evaluating Accessibility
during the interaction between the user and the system. For example, Figure 2 shows the resultant
UID, corresponding to a use case “Login a student given the student’s ID and password”
(introduced in Section 1 by Figure 1), by applying our integration points technique. Notice that all
the students (including those with disabilities) will need to interact with this online login Web page.
As we can see in the example shown in Figure 2, we define two integration points at UID
interaction <1> representing the student’s login user-system interaction to consider, from the
beginning, the Accessibility requirements that propitiate the access for all the students.

66

With the traditional perspective given by techniques like [11][12] in mind (depicted in

Section 3.4), we introduce the concept of UIDs’s integration points to model the

Accessibility concerns of a user-system interaction. Particularly, we define two kinds of

UIDs integration points as follows:

! User-UID Interaction (U-UI) integration point. This is an integration point for

Accessibility at UID interaction level --i.e. to propitiate an accessible

communication and information exchange between the user and a particular

interaction of a UID interaction diagram.

! User-UID Interaction’s component (U-UIc) integration point. This is an

integration point for Accessibility at UID interaction’s component level --i.e. to

propitiate an accessible communication and information exchange between the

user and a particular UID interaction’s component of an UID interaction.

These integration points with different granularity provide two alternatives for

evaluating Accessibility during the interaction between the user and the system. Then,

choosing the appropriate granularity and selecting a U-UI or U-UIc integration point

allow a better mapping of the elements composing the user interface design.

Figure 4.2: UID with Accessibility integration points: Login a Student given the Student’s ID

and Password

[VALIDSTUDENTINPUTDATA]

[INVALIDSTUDENTINPUTDATA]

Error in Input Data !!!

< 1 >

ID
Password

< 1.2 > IDForm

< 1.1 > KeyLockImage

SIU Guarani Registration System

Unidentified
Student

 Accessibility integration point
HTML image

 Accessibility integration point
HTML related controls

 UID < Enrolling a Student … >

Identified
Student

Figure 2: UID with Accessibility integration points: Login a Student given the Student’s ID and Password

Basically, the UID with the integration points notation prescribes the inclusion of a cloud for
every UID interaction or UID interaction’s component, which Accessibility is essential to the user’s

task completeness. The first cloud establishes the <1.1> integration point to propitiate that the
semantics of the KeyLockImage is correctly transmitted; while the second cloud establishes the

<1.2> integration point to propitiate an accessible IDForm for user identification.

67

Figure 4.2 shows the resultant UID, corresponding to the use case “Login a Student

given the Student’s ID and Password” (presented in Section 4.2), by applying our

integration points technique. Notice that all the students (including those with

disabilities) will need to interact with this online login Web page (introduced in Section

1.1 by Figure 1.1). As we can see in the example shown in Figure 4.2, we define two

integration points at UID interaction <1> representing the student’s login user-system

interaction to consider, from the beginning, the Accessibility requirements that enable

the access for all the students.

The development of the UID diagram with integration points at Step 2 is graphically

represented by (2.1) in Figure 4.1.

Figure 4.3: SIG Template for Accessibility

4.3.2 Applying the SIG Template

After specifying the Accessibility integration points of the UID diagrams at Step 2, we

develop a SIG diagram for WCAG 1.0 Accessibility requirements. To do so, we take

into consideration proposals from the user interface design literature [27][36] introduced

in Section 3.3 as follows.

We have already seen that the dialogue class is directly represented by UIDs since they

help in modeling the content and the sequence of the information exchange between the

user and the system during navigation. However, presentation and pragmatic classes are

Figure 3: SIG Template for Accessibility

2.2 Applying the SIG template for Accessibility
After specifying the Accessibility integration points of the UIDs diagrams, we propose to develop a
SIG diagram for WCAG [18] Accessibility requirements. Figure 3 shows our SIG template
conceptual tool that we introduced taking into consideration proposals from the non-functional
requirements [5] and user interface design literature [8] [14]. Figure 3 shows our SIG template
where the Accessibility softgoal denoted with the nomenclature Accessibility [UID integration
point] is the root of the tree. The kind of the UID integration point is highlighted into the root light
cloud and related to a particular UID interaction or UID interaction’s component number. From the

 PAGINA - 806 -

root node we identify two initial branches: (i) the user technology support, and (ii) the user layout
support. The user technology support represents the Accessibility softgoal concerns helping to
propitiate user’s browsing and interaction by improving the Accessibility of user’s current and
earlier assistive devices and technologies (PDAs, telephones, screen readers, etc.); meanwhile, the
user layout support represents the Accessibility softgoal concerns explicitly improving user’s
browsing and interaction focus on user’s interface issues. The Accessibility softgoal concerns supply
to their respective supports, prescribing on how to present and/or to logically organize the content
we wish to convey to the user. They also warn about the Accessibility barriers as a consequence of
an inappropriate choice of presentation and/or structural objects to user’s interaction with the
content. For example, returning to Figure 2, we establish the Accessibility softgoal for the
interaction’s components <1.1> KeyLockImage and <1.2> IDForm to propitiate accessible image
and text input fields for all the students by defining two User-UID Interaction’s components (U-UIc)
integration points for the login process at UID interaction <1>. Finally, to instantiate the SIG
template for specifying Accessibility concerns (shown in Figure 3) we work with the W3C-WAI
WCAG recommendations (1.0 or 2.0) [18]. To facilitate the instantiation process of the SIG
template we establish association tables for each of the following five groups of related HTML
elements: (i) the HTML control elements group; (ii) the HTML link and button group, (iii) the
HTML text and non-text group, (iv) the HTML structural elements group and, (v) the HTML frame
and style sheet elements group, respectively. Basically, these association tables have the tasks of
linking each abstract interface element present at a user interface model (ontology concepts from an
Abstract Widget Ontology [14]) with their respective concrete HTML elements, and with the
Accessibility concerns prescribed for those elements by the WCAG guidelines [18]. Before
proceeding, we must also clarify that we have extended the original Abstract Widget Ontology [14],
specifying that an abstract widget can be any of the following: (i) SimpleActivator, (ii)
ElementExhibitor, (iii) VariableCapture, (iv) LogicalStructuring or (v) ElementStyling. We refer the
reader to [9] for further details of our association tables and their relation with the extension
proposed for the Abstract Widget Ontology. Returning to the explanation, the first step to obtain the
association tables comes from a mapping between abstract interface widgets (ontology concepts
from Abstract Widget Ontology) and concrete interface widgets (HTML elements). While the
reason for HTML elements at the concrete interface model is completely clear, the purpose of the
widget ontology is to provide an abstract interface vocabulary to represent the various types of
functionality that can be played by interface widgets with respect to the activity carried out, or the
information exchanged between the user and the application. Given these conceptual tools, the
instantiation process of the SIG template is conducted as a refinement process over the SIG tree
using the abstract interface model and the association tables as a reference.
2.3 An Aspect-Oriented Approach for Accessible Design
The model we envisage to deal with Accessibility concerns within a Web engineering approach is
illustrated in Figure 4, whose columns indicate: (i) the overall process with their main activities (in
the middle), (ii) the conceptual tools and languages used (on the right) along with relations to the
stage of the process where they are required, and (iii) the artifacts provided as input by the WE
approach and/or delivered as output by our process (on the left). In order to ease reading, we need to
recall here some previous explanations. In Figure 4, most arrows indicate an input or output, except
for the UID and SIG diagrams as shown in Figure 4(2.1) and 4(2.2), where the arrows are
input/output. This is because there are situations in which these artifacts could be developed once
and then reused in different Web projects. For example, the Accessibility requirements of an image
or a basic data entry form can be modeled once, and later reuse in new projects that require these
interface elements. As highlighted in Figure 4(1), we propose a process that manages Web
application requirements looking for those that involve Accessibility needs. This is because it is at
the user’s interface level where Accessibility barriers finally show, so we are particularly interested
in discovering Accessibility requirements at the user interface design.
Then, as shown in Figure 4(2), we propose an early capture of Accessibility concrete concerns by
developing two kinds of diagrams: the UID with Accessibility integration points and the Softgoal

 PAGINA - 807 -

Interdependency Graph (SIG) template for WCAG Accessibility requirements [18], as shown in
Figure 4(2.1) and (2.2) respectively.

62

Figure 4.1: Overview of Our Approach

As highlighted in Figure 4.1 (1), this process manages Web application requirements

looking for those that involve Accessibility needs. This is because it is at the user’s

interface level where Accessibility barriers39 finally show, so we are particularly

interested in discovering Accessibility requirements at the user interface design. Then,

39 Probably, the best-known definition of a barrier is the one given by Giorgio Brajnik at

http://users.dimi.uniud.it/~giorgio.brajnik/projects/bw/bw.htmlhttp://www.omg.org/mda/One: “A barrier

is any condition that hinders the user's progress towards achievement of a goal, when the user is a

disabled person. A barrier is described in terms of: (i) the category of user and the type of disability, (ii)

the type of assistive technology being used, (iii) the failure mode, that is the activity/task that is hindered

and how it is hindered, and (iv) which features in the page raise the barrier.”

SUPPORTING TOOL

Figure 4: Overview of Our Approach

As we explained previously, we propose these conceptual tools basically to allow the representation
of Accessibility requirements while executing a user’s task.
As indicated in Figure 4(3), the Accessibility knowledge captured and organized by SIG diagrams at
early stages aids designers making decisions through the abstract interface model, as shown in
Figure 4(3.1), and then, as shown in Figure 4(4), toward its implementation through the concrete
interface model with the desired Accessibility properties (conformance to the WCAG
recommendations), as shown in Figure 4(4.1). The purpose here is to find out how WCAG
Accessibility requirements “crosscut” interface widgets required for an IDForm. Since, and as we
already explain in Section 1, applying the Accessibility concerns to be satisfied at the user interface
causes typical crosscutting problems --i.e., “scattering” and “tangling” symptoms, it is clear that
Aspect-Orientation is the natural approach to solve these crosscutting problems. The SIG diagrams
not only provide Accessibility technology and layout support respectively for any of the HTML
form components at the user interface, but also allow “aspects”5 to be modeled and instantiated
appropriately to avoid “scattering” and “tangling” symptoms. Finally, as highlighted in Figure 4(3),
we propose a supporting tool to assist developers to discovering crosscutting concerns and applying
aspects from the Accessibility knowledge capture at earlier stages. Basically, the type and the
characteristics covered by the tool can be described as those normally provided by a Computer-
Aided Software Engineering (CASE) tool.
3. MAIN CONTRIBUTIONS OF OUR WORK
In order to discuss and specify the contributions to the field of accessible design, we have developed
an evaluation framework to carry out the comparison and evaluation between related work and ours.
We highlight that we have studied and applied all related work to the same cases, to which we have
applied ours.

5 An aspect is a module that can localize the implementation of a crosscutting concern; the aspectual decomposition modularizes “scattering”
problems --i.e. one concern in many modules, and “tangling problems” --i.e. one module, many concerns.

 PAGINA - 808 -

123

6. COMPARING OUR PROPOSAL

6.1 Comparison Criteria
In order to compare and discuss the main characteristics of the different approaches, we

developed an evaluation framework, as Figure 6.1 shows, which is divided into three

main criteria: Accessibility, Design and Other criteria. Each of these topics deals with

different issues of the approaches in order to describe them and analyze their strengths

and weaknesses when developing an accessible Web site and from a Web engineering

perspective. Following, we explain the meaning of the three main criteria through their

set of topics.

Figure 6.1: Evaluation Framework

Accessibility criteria. We propose these criteria to assess the degree of commitment

with Accessibility by evaluating three topics: purpose, assessment and treatment.

We analyze the purpose earliest and in the context of the Accessibility criterion,

because the main focus of our evaluation is on the support given to Accessibility during

a Web site development process. Here we evaluate the degree of commitment to

Accessibility by considering only two possible scores --i.e. “medium” and “high”,

because we have already selected approaches with a certain relation with Web

Paradigm

 Main
Other

Technique

No
Yes -- Description Support

 Textual Medium
 High

Purpose
Statement Commitment

Textual Medium

High

Assessment

WCAG 1.0 or/and 2.0
Generic
Other
Not specified

Treatment
Description Completeness

Textual Partial
 Full

ACCESSIBILITY
CRITERIA

Model
Description Completeness

Textual Partial
 Full

DESIGN
CRITERIA

Supporting tool

No
Yes -- Characteristics

Background approaches
Name Purpose

 Textual

OTHER
CRITERIA

EVALUATION FRAMEWORK

within MDSD?

Figure 5: Evaluation Framework

As shown in Figure 5, our evaluation framework is divided into the following three main criteria: (i)
Accessibility criteria, which assesses the degree of commitment with Accessibility by evaluating
three topics: purpose, assessment and treatment, (ii) Design criteria, which evaluates design issues
of the approaches under consideration by using three topics: paradigm, model and techniques and,
(iii) Other criteria, which considers two additional topics: background and supporting tool. For
brevity reasons, we refer the reader to [9] for further details of our evaluation framework and its
instantiation for the state-of-the-art to the field of accessible design. Following, in Sections 3.1, we
provide a synthesis of the comparison between related work and ours and then, in Section 3.2, we
focus on the contributions of our approach.

Figure 6: Scoring the Approaches for: (a) Accessibility Criteria, (b) Design Criteria and (c) Average by

Approaches/Criteria
3.1 Summary of the Comparison and Evaluation Deliverables
For the purpose of facilitating the evaluation process and understanding the results, we identify
each one of the approaches as follow: A1 [13], A2 [4], A3 [1][2][3], A4 [21], A5 [10][11] and Ours
[9]. Again, for the sake of brevity, we refer the reader to [9], which provides a comprehensive
description and implementation to cases of the approaches that comprise the state-of-the-art. Then,
we score the topics related to the Accessibility and Design criteria from 0 to 5, as follows: (i) the
scores “high” and “full” match to 5, while the scores “medium” and “partial” match to 2.5; (ii) at

136

Figure 6.3: Scoring the six approaches for the Design Criteria

To complete this summary, Figure 6.4 shows the average of scores for the six

approaches by Criteria. We should note that for the Other Criteria, we score only the

supporting tool topic by simply matching the options “yes” and “no” to 5 and 0,

respectively.

Figure 6.4: The average of scores for the six approaches by Criteria

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Technique (Support)

Model (Completeness)

Paradigm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Accessibility Criteria

Design Criteria

Other Criteria

(b)

135

crosscutting concerns and applying aspects at the abstract user interface model from

knowledge about Accessibility obtained in previous stages. Related to Ours, it is also

important to highlight that as we have already indicated in Chapter 4 and later, we have

showed with the case study in Chapter 5, there are cases in which we can develop

artifacts once and then reused them, as we required. The reuse capabilities of Ours is a

main advantage, because propitiates the supporting tool to have a design artifacts

repository. For example, and as we have showed in Figures 5.3, 5.4 and 5.5, the

Accessibility softgoal for the HTML image element can be modeled once and then

applied for the SIG instantiation any time is required.

Figure 6.2: Scoring the six approaches for the Accessibility Criteria

To summarize the results of the six approaches’ comparison, we score the topics related

to the Accessibility and Design criteria from 0 to 5, as follows: (i) the scores “high” and

“full” match to 5, while the scores “medium” and “partial” match to 2.5; (ii) at the

assessment topic, the option “WCAG 1.0 and 2.0” matches to 5, the option “WCAG

1.0” matches to 4, the option “generic” and “other” match to 2.5, and the option “not

specified” matches to 0; and finally (iii) at the paradigm topic, the option “main within

MDSD” matches to 5, while the option “other” matches to 2.5. Figures 6.2 and 6.3

show the scoring of the six approaches for the Accessibility and Design criteria,

respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Treatment (Completeness)

Assessment

Purpose (Commitment)

(a)

136

Figure 6.3: Scoring the six approaches for the Design Criteria

To complete this summary, Figure 6.4 shows the average of scores for the six

approaches by Criteria. We should note that for the Other Criteria, we score only the

supporting tool topic by simply matching the options “yes” and “no” to 5 and 0,

respectively.

Figure 6.4: The average of scores for the six approaches by Criteria

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Technique (Support)

Model (Completeness)

Paradigm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A1

A2

A3

A4

A5

Ours

Accessibility Criteria

Design Criteria

Other Criteria

(c)

 PAGINA - 809 -

the assessment topic, the option “WCAG 1.0 and 2.0” matches to 5, the option “WCAG 1.0”
matches to 4, the option “generic” and “other” match to 2.5, and the option “not specified” matches
to 0; and finally (iii) at the paradigm topic, the option “main within MDSD” matches to 5, while the
option “other” matches to 2.5. Figures 6.2 and 6.3 show the scoring of the six approaches for the
Accessibility and Design criteria, respectively. At this point, we must remember that the scoring
process is conducted after a comprehensive study and application to cases of all the approaches; the
complete comparison and evaluation. Figures 6(a) and 6(b) show briefly the result of the valuation
of the six approaches by Accessibility and Design criteria, respectively. To complete this summary,
Figure 6(c) shows the average of scores for the six approaches by Criteria. We should note that for
the Other Criteria, we score only the supporting tool topic by simply matching the options “yes”
and “no” to 5 and 0, respectively.
3.2 Focusing on Ours
As we already said, Ours [9] allows developers to produce accessible interfaces by moving from
abstract to concrete architectural views using Aspect-Orientation. This is a main advantage, since
allows developers to keep in mind a clear picture of how these architectural views relate each other
during the development process, while preserving their own properties: (i) the abstract view
ensures clean designs --i.e. free of crosscutting symptoms, which are separated and modeled as
aspects for their modularization; while (ii) the concrete view provides the implementation of these
designs, but as a consequence of the weaving process that takes place at the code level. Thus, Ours
uses Aspect-Orientation to propose a smooth and open transition between models (abstract and
concrete views), since this transition allows the independence of the way clean designs will be
implemented into accessible code. At this point, we want to state the situation about users having
alternatives when browsing; for example, as shown in Figure 1, the Web page offers the student
two optional links to look for help for the login process. We highlighted that browsing these pages
is optional and therefore, if the student follows these help links, his/her decision will produce a
different navigation path. As we said before, we focus on the UI models because, undoubtedly, is at
the UI where Accessibility barrier finally show, but notice that this is one of those cases in which
navigational issues can affect Accessibility. This is the reason why, to improve the user’s
experience when browsing to achieve the desired functionality, we have to consider the UI designs
for each alternative in the navigation path we have defined as important for the task’s functionality.
This means that if we provide the user with alternatives in the navigation path, they must be
explored and modeled before properly, because they can be relevant to Accessibility and therefore
to the success of the user’s task. This is an advantage of Ours, because although Ours is focused on
UI models, also allows to explore navigational models to avoid unexplored optional browsing that
can lead to user interfaces which were not considered initially. Basically, this is possible mainly
because of two reasons. In first place, the UID is the conceptual tool used by OOHDM to state
transformations between Web application requirements (use case model) and the conceptual,
navigational and interface models. As shown in Figure 7, this is the same principle that Ours
propitiates between Web applications requirements and accessible UI models. Ours uses two
conceptual tools (the UID with integration points and SIG template for Accessibility), with which
the interaction between OOHDM models links and reinforces Accessibility needs.

138

As Figure 6.5 shows, this is possible mainly because of two reasons. In first place, the

UID is the conceptual tool used by OOHDM to state transformations between Web

application requirements (use case model) and the conceptual, navigational and

interface models. As Figure 6.5 shows, this is the same principle that Ours propitiates

between Web applications requirements and accessible UI models. Ours uses two

conceptual tools (the UID with integration points and SIG template for Accessibility),

with which the interaction between OOHDM models links and reinforces Accessibility

needs.

Figure 6.5: Ours within MDSD paradigm

In second place, since Ours is conceived within the MDSD paradigm, models are

related to each other and as a consequence of an iterative and incremental development

process. Thus, Ours allows: (i) going back from UI models to navigational models to

look for alternatives in the navigation path, (ii) assessing the need and relevance of

these alternatives to the functionality under develop, and (iii) going forward from

navigational models to UI models to check the Accessibility of the UI related to these

alternatives.

6.3.1 Migrating to WCAG 2.0

We have already given part of our motivation for applying WCAG 1.0 [45] instead of

WCAG 2.0 [46] in Section 3.6.

In first place, and to avoid linking the selection of the WCAG 1.0 only to issues related

to the adoption rate in the world, it seems appropriate to highlight that as we are

concerned with Accessibility, we have a few quibbles about the decision made on the

usefulness of certain checkpoints in the WCAG 2.0 document.

3

WEB APPLICATION REQUIREMENTS

CONCEPTUAL DESIGN NAVIGATIONAL DESIGN

USER INTERFACE DESIGN

ABSTRACT MODEL CONCRETE MODEL

UID with integration points + SIG template for Accessibility

1

2

Figure 7: Ours within MDSD paradigm

 PAGINA - 810 -

In second place, since Ours is conceived within the MDSD paradigm, models are related to each
other and as a consequence of an iterative and incremental development process. Thus, Ours
allows: (i) going back from UI models to navigational models to look for alternatives in the
navigation path, (ii) assessing the need and relevance of these alternatives to the functionality under
develop, and (iii) going forward from navigational models to UI models to check the Accessibility
of the UI related to these alternatives.
4. CONCLUSIONS AND FUTURE WORK: A SYNTHESIS
In this work, we presented a novel WE approach to conceive, design and develop accessible Web
applications using Aspect-Oriented concepts, which enabled us to address Accessibility early from
requirements and through design to implementation. First, Aspect-Orientation capabilities
constitute an important driver to efficiently capturing the orthogonal properties that are typical of
the Accessibility’s nature. Second, organizing these properties into a model-driven approach gives
us better visibility of the components at different levels --i.e. from its conceptualization to its
instantiation by particular Accessibility rules. In addition, we provided explicit analysis and design
techniques aiming at facilitating the capture of early Accessibility concerns. However, we must
take into account that the inclusion of new conceptual tools for treating Accessibility requires an
extra effort for developers to get familiar with them. In this sense, we are currently incorporating
our ideas into supporting tools to assist developers to design model-driven accessible Web
applications. Since our proposal is strongly linked to the model-driven paradigm, we should note
how this issue benefits/affects our proposal. It is a fact that applying "unified", model-driven
approaches brings the benefit of having full documentation and automatic application generation at
the expense of introducing some bureaucracy into the development process. Since our proposal
suggests the early treatment of the Accessibility concerns through models, we may still be
influenced by this reality and its disadvantages. Related to the project team and development
environment, we believe it is important to highlight the following issues: (i) although our approach
is completely documented and self-contained within a well-kwon WE approach, its application
requires a prior knowledge of the WCAG guidelines [18]; (ii) although our approach helps to
transfer Accessibility requirements, the engineering staff members should not be ruled by ad hoc
practices or used to apply approaches without design and documentation as an standard
discipline. These two issues demand changes in the development process that must be supported
by the organizations. However, our proposal propitiates the reuse of design artifacts, because
Accessibility concerns are quite independent from the Web application under development and
Accessibility “aspects” could be developed once and be reused in different Web projects.
Finally, we should further validate our proposal and to do so, we are currently following tree
different but related paths: (i) generalizing the use of our approach within some of the best known
WE approaches to provide accessibility support through Aspect-Orientation techniques (we are
already working and have some promising results embedding AO-WAD into UWE and OOWS
methods); (ii) improving the supporting tool’s functionality to propitiate industry adoption; and (iii)
analyzing deeply the impact of applying our proposal on quality attributes of the resulting system,
such as reuse, extensibility and modularity, and the developing effort required when using the
approach. We are currently carrying out some guided experiments in the area of Web-based
systems for academic domains and the petroleum industry.
4.1 Some of the Contributions Related to this Work
§ (WWWJ 2010) World Wide Web: Internet and Web Information Systems Journal

Engineering Accessible Web Applications. An Aspect-Oriented Approach. A. Martín, G. Rossi,
A. Cechich, S. Gordillo. World Wide Web: Internet and Web Information Systems Journal
ISBN: 978-1-59904-847-5 Vol 13(4); 419-440; DOI: 10.1007/s11280-010-0091-3

§ (W4A 2011) World Wide Web 8th International Cross-Disciplinary Conference on Web
Accessibility

 PAGINA - 811 -

Accessibility at Early Stages: Insights from the Designer Perspective. A. Martín, A. Cechich, G.
Rossi. Proceedings of 8th International Cross-Disciplinary Conference on Web Accessibility,
Hyderabad, India, 2011; ISBN: 978-1-4503-0476-4; ACM; DOI: 10.1145/1969289.1969302

§ (ICSEA 2010) 5th International Conference on Software Engineering Advances
Supporting an Aspect-Oriented Approach to Web Accessibility Design. A. Martín, R. Mazalú,
A. Cechich. In: Proceedings of 5th International Conference on Software Engineering
Advances, Nice, France, 2010; ISBN: 978-0-7695-4144-0; IEEE; 20-25; DOI:
10.1109/ICSEA.2010.10

REFERENCES
[1] Casteleyn, S., Fiala, Z., Houben, G-J., van der Sluijs, K. Considering Additional Adaptation Concerns in the

Design of Web Applications. AH (2006) doi:10.1007/11768012_28
[2] Casteleyn, S., Van Woensel, W., Houben, G-J. A Semantics-based Aspect-Oriented Approach to Adaptation in

Web Engineering. In HT (2007) doi.acm.org/10.1145/1286240.1286297
[3] Casteleyn, S., Van Woensel, W., van der Sluijs, K., Houben, G.J.: Aspect-Oriented Adaptation Specification in

Web Information Systems: a Semantics-based Approach. New Review of Hypermedia, Taylor and Francis
15(1), 39-91 (2009)

[4] Centeno, V., Kloos, C., Gaedke, M., Nussbaumer, M. Web Composition with WCAG in Mind. W4A (2005)
doi:10.1145/1061811.1061819

[5] Chung, L., Supakkul, S. Representing FRs and NFRs: A Goal-oriented and Use Case Driven Approach. SERA
(2004) doi:10.1007/11668855_3

[6] Fons, J., Pelechena, V., Pastor, O., Valderas, P., Torres, V. Applying the OOWS Model-Driven Approach for
Developing Web Applications. The Internet Movie Database Case Study. In: Rossi, G., Pastor, O., Schwabe, D.,
Olsina, L. (eds.) Web Engineering: Modelling and Implementing Web Applications. pp. 65-108. Springer-
Verlag, London (2008)

[7] Koch, N., Knapp, A., Zhang, G., Baumeister, H. UML-Based Web Engineering: An Approach Based on
Standards. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling and
Implementing Web Applications. pp. 157-191. Springer-Verlag, London (2008)

[8] Larson, J.: Interactive Software: Tools for Building Interactive User Interfaces. Prentice Hall, NJ (1992)
[9] Martín, A. Engineering Accessible Web Applications: An Aspect-Oriented Approach. PhD Thesis.

http://sedici.unlp.edu.ar/handle/10915/19685 (2012). SeDiCI repository (2012).
[10] Moreno, L., Martinez, P., Ruiz, B. A MDD Approach for Modelling Web Accessibility. IWWOST (2008)

doi:10.1.1.163.9478
[11] Moreno, L. AWA: Methodological Framework in the Accessibility Domain for Web Application Development.

PhD Thesis. http://www.sigaccess.org/community/theses_repository/phd/lourdes_moreno.php (2010). Accessed
April 15th 2010.

[12] Moreno, N., Romero, J., Vallecillo, A. An Overview of Model-Driven Web Engineering and the MDA. In:
Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling and Implementing Web
Applications. pp. 109-155. Springer-Verlag, London (2008)

[13] Plessers P., Casteleyn S. , Yesilada Y. , De Troyer O. , Stevens R. , Harper S. & Goble C. Accessibility: A Web
Engineering Approach. WWW (2005) doi:10.1145/1060745.1060799

[14] Rossi. G., Schwabe, D. Modelling and Implementing Web Applicactions with OOHDM. In: Rossi, G., Pastor,
O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling and Implementing Web Applications. pp. 109-
155. Springer-Verlag, London (2008)

[15] Section 508. Electronic and Information Technology Accessibility Standards
http://www.section508.gov/index.cfm?fuseAction=stdsdoc (2000-2010). Accessed 15 April 2010

[16] Stanca Law. Italian Legislation on Accessibility.
http://www.pubbliaccesso.it/biblioteca/documentazione/guidelines_study/index.htm (2004). Accessed 25
January 2010.

[17] Vilain, P., Schwabe, D., Sieckenius de Souza, C. A Diagrammatic Tool for Representing User Interaction in
UML. UML (2000) doi:10.1007/3-540-40011-7_10

[18] W3C: Web Content Accessibility Guidelines 1.0 and 2.0 (WCAG 1.0 and 2.0).
http://www.w3.org/WAI/intro/wcag (1999/2008). Accessed April 15th 2010.

[19] Woods, S. Websites for Visually Impaired Users. Thesis http://wise.vub.ac.be/Downloads/Theses/Woods-
thesis.pdf (2006-2007). Accessed April 15th 2009.

[20] Yesilada, Y., Harper, S., Goble, G. & Stevens, R. DANTE: Annotation and Transformation of Web Pages for
Visually Impaired Users. WWW (2004) doi.acm.org/10.1145/1013367.1013540

[21] Zimmermann, G. & Vanderheiden, G.: Accessible Design and Testing in the Application Development Process:
Considerations for an Integrated Approach. Universal Access in the Information Society 7(1-2), 117-128 (2008).

 PAGINA - 812 -

