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 An automaton is an abstract model of a computer. Various types of automata have been developed to 

date to model computer systems and computing processes. Theory of automata includes the study of these 

automata along with their properties and applications. Theory of automata is often taught, learned and 

researched using tools known as automata simulators [1]. Automata simulators can be used to model large and 

complex automata, simulate them for any input string and study their properties. The automata simulators may 

be classified as language based automata simulators, visualization centric automata simulators and hardware 

automata simulators [2]. A language based automata simulator receives the definition of an automaton in a 

formal language, which may be notational, assembly-like, procedural or descriptive, and simulates it using some 

technique for processing formal languages. A visualization centric automata simulator receives the specification 

of an automaton in either a tabular or a diagrammatic form and visually simulates it. A hardware automata 

simulator is implemented fully or partially in hardware and simulates an automaton using actual hardware 
manipulations. 

 This dissertation formalizes a comprehensive approach based on compiler technology [3-5] to simulate 

some basic forms of automata viz., finite accepters, finite transducers, pushdown accepters and Turing machines. 

These basic forms of automata are known for their simplicity and generality, hence widely studied and used in 

research. An Automata Description Language has been defined for modeling these basic forms of automata. The 

language has three sublanguages viz., descriptive sublanguage, pseudo-assembly sublanguage and procedural 

sublanguage, implementing three paradigms of programming. The sublanguages have the same scope and can 

be used to define any automata howsoever large and complex. The language supports both deterministic and 

nondeterministic forms of automata. In this language, an automaton may be composed of one or more 

submachines that may be developed even by a third party. All automata modeled in the Automata Description 

Language are required to be compiled before they can be simulated or their properties can be studied, hence the 
name of the approach. 

 A reference compiler for the Automata Description Language has been developed. The compiler is a 

single-pass compiler comprising of lexical analysis, syntax analysis, semantic analysis and code generation 

phases, and bookkeeping and error handling modules. The compiler translates an automaton modeled in the 

Automata Description Language into an object program in an intermediate language, provided that the source 

program is correct. The same compiler can be used for all the three sublanguages of the Automata Description 

Language. 

 The object program generated by the compiler can be simulated for any input string by a suitably 

developed simulator. The simulator starts from the initial configuration of the automaton and try to reach an 

accepting configuration following the rules specified by the object program. Nondeterminism has been 

implemented in the simulator using backtracking. Whenever the simulator finds multiple possible paths for 
simulation, it pushes all but one of them onto a stack. Alternatively, when the simulator finds no path ahead it 

pops off a configuration from the stack. The backtracking mechanism works internally and without concerning 

the user. 

 A toolkit has been proposed and partially implemented to add utility to the Automata Description 

Language. The toolkit includes tools to analyze the properties of an automaton, convert one form of automata 

into another, minimize the number of internal states in an automaton, display a graphical representation of an 

automaton and generate the language accepted by an automaton. All these tools use the object programs 

generated by the compiler. 

 Some example automata have been modeled in the Automata Description Language. The contents of 

their object programs were analyzed and the time required to compile and simulate them were also noted. It was 

observed that the descriptive sublanguage is best suited for modeling small and simple automata. Alternatively, 

the procedural sublanguage is the most efficient for large and complex automata followed by the pseudo-
assembly sublanguage. 

 This study is expected to be helpful in further research on simulation of basic forms of automata and 

encourage the use of automata simulators in both academic and research environments. Additionally, the 

concepts used to implement nondeterminism in the Automata Description Language may also be used to 

develop nondeterministic general purpose procedural languages. 
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