
APCM: An Auto-Parallellism Computational Model
Increasing the performance of MPI applications in multi-core environments

André Luiz Lima da Costa, Josemar Rodrigues de Souza

Supercomputing Center for Industrial Innovation

(Centro de Supercomputação para Inovação Industrial) – CSII

SENAI CIMATEC

Salvador, Brazil

andrelc@fieb.org.br, josemar@fieb.org.br

Abstract—Given the availability of computer clusters 

based on multi-core processors, the hybrid programming 

model has become an important ally of high-performance 

computing users in improving the performance of their 

parallel applications. However, creating hybrid applications is 

a complex task because it requires developers to be familiar 

with two distinct parallel programming models. Against this 

background, this article introduces APCM, an auto-parallelism 

computational model. APCM’s goal is to create hybrid 

parallel applications, i.e., OpenMP (memory programming) 

and a message-passing interface (MPI), from MPI 

applications. This goal is achieved in a simple, automated 

manner that is transparent for the user while increasing

application performance. In the article’s conclusion, we 

present consistent results that attest the efficacy of the 

proposed model.
Keywords—parallel programming; hybrid model; MPI; 

OpenMP; auto-parallelism

I. INTRODUCTION

There are two main reasons why hybrid programming 
models have been drawing increasing attention from 
programmers and researchers in the last few years: (a) a
bundled message-processing interface (MPI) [1] and OpenMP 
(memory programming) [2] is an established commercial 
product supplied by several compiler vendors that facilitates
the integration of these two platforms and improves their joint 
performance; and (b) supercomputers are better suited to 
running hybrid applications because they now consist of a 
number of multi-core machines, which increases their 
processing power [3].

Several studies [3][4][5][6] demonstrate the benefits of 
choosing the hybrid programming model, which uses the 
advantages of both programming models to provide the desired 
application performance increase compared with non-hybrid 
parallel applications. However, to parallelize an application 
that uses two distinct concepts, such as MPI (distributed 
memory programming) and OpenMP (shared memory 
programming), is difficult because the developer must have a
command of both programming models to obtain satisfactory 
results from the hybrid version.

In this context, the present study aims to present a 
computational model capable of increasing the performance of 
parallel algorithms using a web application, which promotes 
automated parallelism using OpenMP to an already parallel 
algorithm previously written in C using MPI. Thus, this study 
creates a new hybrid algorithm (MPI + OpenMP) in a 
transparent manner for the developer and facilitates the 
increased performance of the application, which has a simple 
and intuitive interface that does not require the MPI developer 
to know OpenMP to create the hybrid algorithm.

II. RELATED STUDIES

During the elaboration of this study, several studies that 
refer to automated code-generation were found, of which 
[7][8][9][10] were conspicuous because they possessed an 
overarching goal: transforming a serial algorithm into a new, 
parallel version. As in the present article, most of these studies 
start from a C program and add parallelism using OpenMP. 
The difference between these studies and the model presented 
here is that instead of starting from a serial program, this model 
starts from an already parallel algorithm based on MPI and 
yields a new, hybrid version after adding OpenMP to it. 
Several important points were observed in the analysis of these 
previous studies, which are common to them all. These points
were used as benchmarks for the present study:

• A focus on the parallelization of loops because 
these segments result in less complexity when 
introducing parallelism in the algorithm;

• Using OpenMP to achieve parallelism because it
is a simpler language than, e.g., MPI, PVM and 
open computing language (OpenCL);

• Steps taken to achieve parallelism, as observed in 
the related works, are: parallelizable loop
identification, OpenMP directive configuration 
and parallel code insertion.

III. APCM

A. The Model

The goal of the auto-parallelism computational model
(APCM) is to increase the performance of parallel applications 
that use MPI in multi-core environments. This goal is achieved 
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through the automated creation of shared memory parallelism 
using the OpenMP standard library. APCM transforms MPI 
algorithms into a hybrid version using MPI and OpenMP. In 
addition to exploiting the parallelism of dividing work among 
the machines in the cluster, the new algorithm can exploit the 
parallelism provided by OpenMP, which divides the work sent 
to each node among its respective cores.

Because the process of creating the new hybrid algorithm 
does not require much processing power, APCM was 
implemented as a web tool, more specifically as a service 
available in the cloud, where researchers from around the 
world can use it without having to download, install and 
configure anything in their clusters, as is the case in the studies 
cited under “Related Studies”.

Fig. 1. APCM use flow.

Figure 1 illustrates how users interact with APCM. Users 
access the model through a web application, which is available
on the Internet, whereby they upload the MPI application that 
they want to modify. Then, the web application sends the 
application to be converted into a new, hybrid algorithm that
once completed is sent back to the user, ready to be executed in 
multi-core environments. Thus, parallelism is transparently 
achieved without the user being required to know OpenMP, 
which enables the user to focus only on the MPI programming.

During the transformation process of an MPI algorithm into 
a hybrid algorithm, APCM performs several well-defined steps
that have been validated in similar projects. Figure 2 shows the 
flow of the 5 macro-steps undertaken by APCM. Each step is 
started only after the previous step is completed.

Fig. 2. Steps taken to implement parallelism

The details of each step leading to parallel code generation, 
as shown in Figure 2, are as follows:

• Identify all loops: This is the first step, during 
which the application sweeps the entire submitted 
algorithm, mapping all for loops. This step is 
highly important because parallelism will be 
inserted into iterative loops, which are the sections 
of the algorithm in which automated parallelism 
exploitation is achieved at a lower complexity cost 
and the sections usually preferred when 
parallelization is performed manually;

• Analyze which loops are parallelizable: After 
identifying the loops, the application checks which 
of them can be parallelized. Thus, it checks 
whether the loop contains any variables that 

depend on previous iterations, whether it executes 
any MPI command (e.g., MPI_Bcast(), 
MPI_Send(), MPI_Recv()) or if a loop is 
contained in another loop;

• Identify the OMP directives of each loop: In 
this step, the application identifies which OpenMP 
configuration is best for each parallelizable loop in 
the algorithm. Thus, it determines which clauses 
of OpenMP (reduction, private, shared, schedule,
etc.) are best suited to each loop to extract the 
maximum performance from each of them;

• Insert OMP directives: After identifying the 
directives of each loop, the application inserts the 
OpenMP code into the algorithm sent by the user 
without changing any part of the originally 
submitted code;

• Generate new hybrid algorithm: Finally, the 
application generates the new, hybrid version of 
the algorithm in a new file, which is available for 
the user to download and use.

Because it is a model as opposed to a framework or 
compiler, APCM assumes that the user will abide by certain
pre-requisites so that the algorithm is correctly converted and 
that the hybrid version may potentially increase the 
performance of the user’s application. The model requires the 
following:

1. The algorithm must be written in the C 
programming language, stored in a file with the .c 
extension and have no syntax errors;

2. The parallel application should use only MPI;

3. The algorithm should use the concept of matrix 
multiplication and the master/worker model. 
APCM has only been validated for applications 
with such a configuration, and its efficiency is not 
guaranteed for algorithms that deviate from this 
pattern;

4. It is strictly necessary that the curly braces (“{“) 
be opened on the same line as the function to 
which they pertain, never on the line below;

Fig. 3. Example of algorithm parallelization process.

Figure 3 shows a simplified example of a transformation 
performed by APCM. Session (a) shows an algorithm written 
in C, which satisfies all model requirements. Session (b) shows 
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the same algorithm as in (a) with the added OpenMP code and 
no changes to the original algorithm.

B. The Application

APCM was implemented as a web application and written 
in the PHP

1
programming language using the Bootstrap

2
front-

end framework. The application is available at 
http://andrecosta.info/apcm/.

The application enables the user to obtain the hybrid code 
in only two clicks, one to select the MPI algorithm and another 
to generate parallelism.

Fig. 4. APCM application.

As shown in Figure 4, the application enables the user to 
choose the best configuration from three options, with which 
OpenMP will be embedded. Users without knowledge of 
OpenMP can simply leave the default “Standard” option 
selected. Users who with a certain degree of knowledge about 
shared memory programming may find the other two options 
useful. “Basic” uses only a minimal set of directives to 
parallelize, and “Custom” enables the user to choose the 
clauses that best suit the submitted algorithm.

Fig. 5. APCM application with Custom options active.

Selecting the “Custom” option, as shown in Figure 5,
enables the user to configure OpenMP according to his or her 

1
PHP – Hypertext Preprocessor: http://php.net.

2
Bootstrap: http://twitter.github.io/bootstrap/.

needs. The clauses that can be configured in APCM are as 
follows:

• Schedule: defines process scheduling among 
threads. Options are: static, dynamic and guided;

• Private: defines private variables in iterative 
loops. In APCM’s case, private variables are used 
as loop iteration counters;

• Reduction: highlights in memory the variables 
that are incremented or decremented in each loop 
iteration;

• Default Shared: defines all variables as global as 
default, with the exception of private variables;

• Number of threads: indicates the number of 
threads to be created by OpenMP. If this field is 
left blank, OpenMP will try to identify the number 
of cores in the machine it is running and create 
one thread for each core.

A series of tests was performed to arrive at the standard 
configuration available in the APCM web application in which
the clauses available in the application were compared with 
one another. Thus, eight algorithms with different OpenMP 
configurations were prepared: basic configuration without 
clauses and no definition of the number of threads (so-called 
pure OMP), using only static scheduling, using only dynamic 
scheduling, using only guided scheduling, using only private 
defaults, using only reduction defaults, using only shared 
defaults and, finally, using a different number of threads (in 
this case, four). All of the algorithms had the same base, i.e., a
10,000 x 10,000 matrix multiplication application using MPI 
on four processes in the master/worker model, the only 
difference being their respective OpenMP directives.

TABLE I. OMP CLAUSE PERFORMANCE
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The comparative tests were performed five times (Table I).
The highest and lowest values were excluded, and the 
remaining three were averaged. Thus, a consistent result was 
obtained. Tests were performed in the multi-core cluster of the 
Computational Modeling Laboratory (Laboratório de 
Modelagem Computacional) of SENAI CIMATEC (Serviço 
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Nacional de Aprendizagem Industrial, Centro Integrado de 
Manufatura e Tecnologia – Integrated/Unified Center for 
Manufacture and Technology, National Service of Industrial 
Qualification), which consists of the following configuration:
eight HP ProLiant DL120 G6 Intel Xeon Quad-core X3440 
2.53 GHZ HyperThreading processors, 8 GB RAM, 2 TB 
storage and a Linux kernel 2.6 X86 64 GNU Ubuntu 10.10
operating system, which were interconnected by a D-Link Des-
1024D 10/100 Fast Ethernet switch. Because the tests were 
comparative, the deficient communication between the nodes, 
which resulted from the low switch speed, did not hinder or 
influence the results.

Fig. 6. Pure OpenMP x Schedule (dynamic, static and guided).

Figure 6 summarizes the results of the comparisons 
between the Pure OMP algorithm and the versions using the 
clauses schedule static, schedule dynamics and schedule 
guided. Of the three options for schedule, the only option that
performed better than the pure version of OpenMP was the 
dynamic clause.

Fig. 7. Pure OpenMP x Private.

Using the private clause in the algorithm being tested 
increased its processing time compared with Pure OMP (Figure 
7).

Fig. 8. Pure OpenMP x Reduction.

The comparison between Pure OMP and the algorithm
version using the reduction OpenMP clause is shown in Figure 
8. Using this clause decreases execution time and consequently 
improves the application performance.

Fig. 9. Pure OpenMP x Shared.

Figure 9 shows the loss of performance by the algorithm 
using the shared clause as standard for loop variables. Pure 
OMP obtained better execution times.

Fig. 10. Pure OpenMP x 4 Threads.

In conclusion, Figure 10 shows the comparison between 
Pure OMP using eight threads with the version of the algorithm 
configured to use only four threads, where again the basic 
version of OpenMP demonstrates the best performance. The 
option with four threads was used because the nodes in the 
computer clusters are quad-cores, i.e., they have four physical 
cores. However, these processors are built with 
HyperThreading technology, which simulates twice as many 
cores. Thus, the processors possess four virtual cores, and for 
this reason, Pure OpenMP used eight threads as default.

From the results here presented, it may be concluded that 
for the algorithm for matrix multiplication that was tested, 
which used a master/worker implementation with MPI, the 
OpenMP configuration that provides best performance is the 
configuration with the reduction and schedule(dynamic) in its 
compiler directives. Based on these results, this configuration 
was chosen as “Standard” for APCM because it was deemed to 
be the best option for users with no knowledge of OpenMP.

IV. ANALYSIS OF RESULTS

To analyze the efficiency of APCM, we compare the 
average execution times of the pure MPI version with those of 
the hybrid version generated by this model. Tests were run on 
up to eight machines, always with one MPI process per node, 
in the same multi-core cluster from SENAI CIMATEC and 
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using the same matrix multiplication algorithm from the 
previous tests, with a 10,000 x 10,000 matrix.

TABLE II. APCM PERFORMANCE
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Table II shows the average times of each version per 
number of parallel processes, with the percent performance 
gain of the hybrid version in relation to the original version.
These data indicate the increase in performance through the use 
of APCM. Averaging the performance gain for different 
numbers of processes, we arrive at an average gain of 26,82%.
That is, using APCM with its standard configuration yielded a 
27% performance increase over the original MPI application, 
which is an impressive figure for high-performance computing 
applications.

Fig. 11. Comparison of Results of Pure MPI x Hybrid.

Fig. 12. Comparison of Results of Pure MPI x Hybrid.

Figures 11 and 12 show the advantage of opting for a 
shared memory programming model (OpenMP) in addition to 
the distributed memory programming model (MPI) in multi-
core clusters, as initially presented by [3][4][5][6], where the 

processing time of the hybrid algorithm is shorter than the MPI 
version; i.e., it performs better.

Fig. 13. Performance gain using APCM.

The performance gain obtained through APCM tends to 
increase with the number of nodes in which the application 
runs (Figure 12), which means that the solution, in addition to 
being efficient, is also scalable.

V. FINAL REMARKS

Based on what was presented in the preceding sections of 
this article, the goals originally set for the auto-parallelism 
computational model have been achieved, given that using 
APCM made possible a 27% increase in an application’s 
performance.

To achieve this outcome, the model presented here was 
implemented through a web application that in an automated 
process that is transparent for the user implements shared 
memory parallelism, which creates a hybrid algorithm on top 
of the MPI algorithm submitted by the user.

The results analyzed herein were obtained from a matrix 
multiplication application in a multi-core cluster, which 
satisfied all model requirements. It is uncertain whether such 
performance gain will be achieved in MPI applications using 
the model in a scenario other than the one presented.

In conclusion, APCM has proved to be an effective tool for 
the optimization of parallel algorithms and thus relevant in the 
field of high-performance computing.
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