
APCM: An Auto-Parallellism Computational Model
Increasing the performance of MPI applications in multi-core environments

André Luiz Lima da Costa, Josemar Rodrigues de Souza

Supercomputing Center for Industrial Innovation

(Centro de Supercomputação para Inovação Industrial) – CSII

SENAI CIMATEC

Salvador, Brazil

andrelc@fieb.org.br, josemar@fieb.org.br

Abstract—Given the availability of computer clusters

based on multi-core processors, the hybrid programming

model has become an important ally of high-performance

computing users in improving the performance of their

parallel applications. However, creating hybrid applications is

a complex task because it requires developers to be familiar

with two distinct parallel programming models. Against this

background, this article introduces APCM, an auto-parallelism

computational model. APCM’s goal is to create hybrid

parallel applications, i.e., OpenMP (memory programming)

and a message-passing interface (MPI), from MPI

applications. This goal is achieved in a simple, automated

manner that is transparent for the user while increasing

application performance. In the article’s conclusion, we

present consistent results that attest the efficacy of the

proposed model.
Keywords—parallel programming; hybrid model; MPI;

OpenMP; auto-parallelism

I. INTRODUCTION

There are two main reasons why hybrid programming
models have been drawing increasing attention from
programmers and researchers in the last few years: (a) a
bundled message-processing interface (MPI) [1] and OpenMP
(memory programming) [2] is an established commercial
product supplied by several compiler vendors that facilitates
the integration of these two platforms and improves their joint
performance; and (b) supercomputers are better suited to
running hybrid applications because they now consist of a
number of multi-core machines, which increases their
processing power [3].

Several studies [3][4][5][6] demonstrate the benefits of
choosing the hybrid programming model, which uses the
advantages of both programming models to provide the desired
application performance increase compared with non-hybrid
parallel applications. However, to parallelize an application
that uses two distinct concepts, such as MPI (distributed
memory programming) and OpenMP (shared memory
programming), is difficult because the developer must have a
command of both programming models to obtain satisfactory
results from the hybrid version.

In this context, the present study aims to present a
computational model capable of increasing the performance of
parallel algorithms using a web application, which promotes
automated parallelism using OpenMP to an already parallel
algorithm previously written in C using MPI. Thus, this study
creates a new hybrid algorithm (MPI + OpenMP) in a
transparent manner for the developer and facilitates the
increased performance of the application, which has a simple
and intuitive interface that does not require the MPI developer
to know OpenMP to create the hybrid algorithm.

II. RELATED STUDIES

During the elaboration of this study, several studies that
refer to automated code-generation were found, of which
[7][8][9][10] were conspicuous because they possessed an
overarching goal: transforming a serial algorithm into a new,
parallel version. As in the present article, most of these studies
start from a C program and add parallelism using OpenMP.
The difference between these studies and the model presented
here is that instead of starting from a serial program, this model
starts from an already parallel algorithm based on MPI and
yields a new, hybrid version after adding OpenMP to it.
Several important points were observed in the analysis of these
previous studies, which are common to them all. These points
were used as benchmarks for the present study:

• A focus on the parallelization of loops because
these segments result in less complexity when
introducing parallelism in the algorithm;

• Using OpenMP to achieve parallelism because it
is a simpler language than, e.g., MPI, PVM and
open computing language (OpenCL);

• Steps taken to achieve parallelism, as observed in
the related works, are: parallelizable loop
identification, OpenMP directive configuration
and parallel code insertion.

III. APCM

A. The Model

The goal of the auto-parallelism computational model
(APCM) is to increase the performance of parallel applications
that use MPI in multi-core environments. This goal is achieved

JCS&T Vol. 13 No. 3 December 2013

167

through the automated creation of shared memory parallelism
using the OpenMP standard library. APCM transforms MPI
algorithms into a hybrid version using MPI and OpenMP. In
addition to exploiting the parallelism of dividing work among
the machines in the cluster, the new algorithm can exploit the
parallelism provided by OpenMP, which divides the work sent
to each node among its respective cores.

Because the process of creating the new hybrid algorithm
does not require much processing power, APCM was
implemented as a web tool, more specifically as a service
available in the cloud, where researchers from around the
world can use it without having to download, install and
configure anything in their clusters, as is the case in the studies
cited under “Related Studies”.

Fig. 1. APCM use flow.

Figure 1 illustrates how users interact with APCM. Users
access the model through a web application, which is available
on the Internet, whereby they upload the MPI application that
they want to modify. Then, the web application sends the
application to be converted into a new, hybrid algorithm that
once completed is sent back to the user, ready to be executed in
multi-core environments. Thus, parallelism is transparently
achieved without the user being required to know OpenMP,
which enables the user to focus only on the MPI programming.

During the transformation process of an MPI algorithm into
a hybrid algorithm, APCM performs several well-defined steps
that have been validated in similar projects. Figure 2 shows the
flow of the 5 macro-steps undertaken by APCM. Each step is
started only after the previous step is completed.

Fig. 2. Steps taken to implement parallelism

The details of each step leading to parallel code generation,
as shown in Figure 2, are as follows:

• Identify all loops: This is the first step, during
which the application sweeps the entire submitted
algorithm, mapping all for loops. This step is
highly important because parallelism will be
inserted into iterative loops, which are the sections
of the algorithm in which automated parallelism
exploitation is achieved at a lower complexity cost
and the sections usually preferred when
parallelization is performed manually;

• Analyze which loops are parallelizable: After
identifying the loops, the application checks which
of them can be parallelized. Thus, it checks
whether the loop contains any variables that

depend on previous iterations, whether it executes
any MPI command (e.g., MPI_Bcast(),
MPI_Send(), MPI_Recv()) or if a loop is
contained in another loop;

• Identify the OMP directives of each loop: In
this step, the application identifies which OpenMP
configuration is best for each parallelizable loop in
the algorithm. Thus, it determines which clauses
of OpenMP (reduction, private, shared, schedule,
etc.) are best suited to each loop to extract the
maximum performance from each of them;

• Insert OMP directives: After identifying the
directives of each loop, the application inserts the
OpenMP code into the algorithm sent by the user
without changing any part of the originally
submitted code;

• Generate new hybrid algorithm: Finally, the
application generates the new, hybrid version of
the algorithm in a new file, which is available for
the user to download and use.

Because it is a model as opposed to a framework or
compiler, APCM assumes that the user will abide by certain
pre-requisites so that the algorithm is correctly converted and
that the hybrid version may potentially increase the
performance of the user’s application. The model requires the
following:

1. The algorithm must be written in the C
programming language, stored in a file with the .c
extension and have no syntax errors;

2. The parallel application should use only MPI;

3. The algorithm should use the concept of matrix
multiplication and the master/worker model.
APCM has only been validated for applications
with such a configuration, and its efficiency is not
guaranteed for algorithms that deviate from this
pattern;

4. It is strictly necessary that the curly braces (“{“)
be opened on the same line as the function to
which they pertain, never on the line below;

Fig. 3. Example of algorithm parallelization process.

Figure 3 shows a simplified example of a transformation
performed by APCM. Session (a) shows an algorithm written
in C, which satisfies all model requirements. Session (b) shows

JCS&T Vol. 13 No. 3 December 2013

168

the same algorithm as in (a) with the added OpenMP code and
no changes to the original algorithm.

B. The Application

APCM was implemented as a web application and written
in the PHP

1
programming language using the Bootstrap

2
front-

end framework. The application is available at
http://andrecosta.info/apcm/.

The application enables the user to obtain the hybrid code
in only two clicks, one to select the MPI algorithm and another
to generate parallelism.

Fig. 4. APCM application.

As shown in Figure 4, the application enables the user to
choose the best configuration from three options, with which
OpenMP will be embedded. Users without knowledge of
OpenMP can simply leave the default “Standard” option
selected. Users who with a certain degree of knowledge about
shared memory programming may find the other two options
useful. “Basic” uses only a minimal set of directives to
parallelize, and “Custom” enables the user to choose the
clauses that best suit the submitted algorithm.

Fig. 5. APCM application with Custom options active.

Selecting the “Custom” option, as shown in Figure 5,
enables the user to configure OpenMP according to his or her

1
PHP – Hypertext Preprocessor: http://php.net.

2
Bootstrap: http://twitter.github.io/bootstrap/.

needs. The clauses that can be configured in APCM are as
follows:

• Schedule: defines process scheduling among
threads. Options are: static, dynamic and guided;

• Private: defines private variables in iterative
loops. In APCM’s case, private variables are used
as loop iteration counters;

• Reduction: highlights in memory the variables
that are incremented or decremented in each loop
iteration;

• Default Shared: defines all variables as global as
default, with the exception of private variables;

• Number of threads: indicates the number of
threads to be created by OpenMP. If this field is
left blank, OpenMP will try to identify the number
of cores in the machine it is running and create
one thread for each core.

A series of tests was performed to arrive at the standard
configuration available in the APCM web application in which
the clauses available in the application were compared with
one another. Thus, eight algorithms with different OpenMP
configurations were prepared: basic configuration without
clauses and no definition of the number of threads (so-called
pure OMP), using only static scheduling, using only dynamic
scheduling, using only guided scheduling, using only private
defaults, using only reduction defaults, using only shared
defaults and, finally, using a different number of threads (in
this case, four). All of the algorithms had the same base, i.e., a
10,000 x 10,000 matrix multiplication application using MPI
on four processes in the master/worker model, the only
difference being their respective OpenMP directives.

TABLE I. OMP CLAUSE PERFORMANCE

! "#$%&#’()’* (+ , - .- &/0"’1"#&#’2/3’#"4(35#6’

! "#$%&’ () *$*&’ (+, &- . - (/ 0 1(

!"#$%##& $"’(%)*& $(’+%,"& +*+"%+)&

,**),(& +*)(%,$& $"$"%(*& +*(#%((&

,*)$-+#& +!(,%"+& ++!#%*+& +*’’%’’&

,!*,%+)& +#!*%*)& +++,%+)& +!+,%""&

,!+’%’)& +#()%#’& +++)%)’& +)"+%(#&

12&3$*. (4. - , ’ *&5#()6$2. - (7(*62. $- 8(

($$*%(*& $!"+%(,& +!$*%(’& ($*#%’(&

($+"%*!& $,+$%#(& ++*(%)#& (##*%+,&

($)’%$!& $,+"%$"& ++")%+"& (#(!%##&

()$*%$#& $$),%++& +)),%*+& (($#%*’&

((’$%!)& $+""%$+& +’#’%(#& ’+#)%+)&

The comparative tests were performed five times (Table I).
The highest and lowest values were excluded, and the
remaining three were averaged. Thus, a consistent result was
obtained. Tests were performed in the multi-core cluster of the
Computational Modeling Laboratory (Laboratório de
Modelagem Computacional) of SENAI CIMATEC (Serviço

JCS&T Vol. 13 No. 3 December 2013

169

Nacional de Aprendizagem Industrial, Centro Integrado de
Manufatura e Tecnologia – Integrated/Unified Center for
Manufacture and Technology, National Service of Industrial
Qualification), which consists of the following configuration:
eight HP ProLiant DL120 G6 Intel Xeon Quad-core X3440
2.53 GHZ HyperThreading processors, 8 GB RAM, 2 TB
storage and a Linux kernel 2.6 X86 64 GNU Ubuntu 10.10
operating system, which were interconnected by a D-Link Des-
1024D 10/100 Fast Ethernet switch. Because the tests were
comparative, the deficient communication between the nodes,
which resulted from the low switch speed, did not hinder or
influence the results.

Fig. 6. Pure OpenMP x Schedule (dynamic, static and guided).

Figure 6 summarizes the results of the comparisons
between the Pure OMP algorithm and the versions using the
clauses schedule static, schedule dynamics and schedule
guided. Of the three options for schedule, the only option that
performed better than the pure version of OpenMP was the
dynamic clause.

Fig. 7. Pure OpenMP x Private.

Using the private clause in the algorithm being tested
increased its processing time compared with Pure OMP (Figure
7).

Fig. 8. Pure OpenMP x Reduction.

The comparison between Pure OMP and the algorithm
version using the reduction OpenMP clause is shown in Figure
8. Using this clause decreases execution time and consequently
improves the application performance.

Fig. 9. Pure OpenMP x Shared.

Figure 9 shows the loss of performance by the algorithm
using the shared clause as standard for loop variables. Pure
OMP obtained better execution times.

Fig. 10. Pure OpenMP x 4 Threads.

In conclusion, Figure 10 shows the comparison between
Pure OMP using eight threads with the version of the algorithm
configured to use only four threads, where again the basic
version of OpenMP demonstrates the best performance. The
option with four threads was used because the nodes in the
computer clusters are quad-cores, i.e., they have four physical
cores. However, these processors are built with
HyperThreading technology, which simulates twice as many
cores. Thus, the processors possess four virtual cores, and for
this reason, Pure OpenMP used eight threads as default.

From the results here presented, it may be concluded that
for the algorithm for matrix multiplication that was tested,
which used a master/worker implementation with MPI, the
OpenMP configuration that provides best performance is the
configuration with the reduction and schedule(dynamic) in its
compiler directives. Based on these results, this configuration
was chosen as “Standard” for APCM because it was deemed to
be the best option for users with no knowledge of OpenMP.

IV. ANALYSIS OF RESULTS

To analyze the efficiency of APCM, we compare the
average execution times of the pure MPI version with those of
the hybrid version generated by this model. Tests were run on
up to eight machines, always with one MPI process per node,
in the same multi-core cluster from SENAI CIMATEC and

JCS&T Vol. 13 No. 3 December 2013

170

using the same matrix multiplication algorithm from the
previous tests, with a 10,000 x 10,000 matrix.

TABLE II. APCM PERFORMANCE

789./5’: ".#/(3’; ’<$."’= <>’: ".#/(3’

125’ . 88(

95, #*(

: 3. 2$; . (<&%. (=) . ’ 5#- 8>(?%@253. %. #*(

=A>(B"C2&- (1, 2. (0 1?(

!& +)!(-$’& ,!,*,-!$& ,!-$!&

,& ,)$(-’"& !*(+(-+"& ,$-#!&

$& !(#)-)!& (,$+-)!& ,+-+*&

+& !+$)-’’&)+’*-’(& ,#-,*&

)& !,!)-+#& ++,(-"(& ,(-+)&

#& !*,)-$#& $(,(-!*& ,(-)!&

(& ",,-("& $,+$-,*& ,’-+)&

’& ’)"-#,& ,’#’-,)& ,"-"(&

Table II shows the average times of each version per
number of parallel processes, with the percent performance
gain of the hybrid version in relation to the original version.
These data indicate the increase in performance through the use
of APCM. Averaging the performance gain for different
numbers of processes, we arrive at an average gain of 26,82%.
That is, using APCM with its standard configuration yielded a
27% performance increase over the original MPI application,
which is an impressive figure for high-performance computing
applications.

Fig. 11. Comparison of Results of Pure MPI x Hybrid.

Fig. 12. Comparison of Results of Pure MPI x Hybrid.

Figures 11 and 12 show the advantage of opting for a
shared memory programming model (OpenMP) in addition to
the distributed memory programming model (MPI) in multi-
core clusters, as initially presented by [3][4][5][6], where the

processing time of the hybrid algorithm is shorter than the MPI
version; i.e., it performs better.

Fig. 13. Performance gain using APCM.

The performance gain obtained through APCM tends to
increase with the number of nodes in which the application
runs (Figure 12), which means that the solution, in addition to
being efficient, is also scalable.

V. FINAL REMARKS

Based on what was presented in the preceding sections of
this article, the goals originally set for the auto-parallelism
computational model have been achieved, given that using
APCM made possible a 27% increase in an application’s
performance.

To achieve this outcome, the model presented here was
implemented through a web application that in an automated
process that is transparent for the user implements shared
memory parallelism, which creates a hybrid algorithm on top
of the MPI algorithm submitted by the user.

The results analyzed herein were obtained from a matrix
multiplication application in a multi-core cluster, which
satisfied all model requirements. It is uncertain whether such
performance gain will be achieved in MPI applications using
the model in a scenario other than the one presented.

In conclusion, APCM has proved to be an effective tool for
the optimization of parallel algorithms and thus relevant in the
field of high-performance computing.

REFERENCES

[1] MPI. Message Passing Interface Forum. 1994. Available from:

<www.mpi-forum.org>. Accessed on: 12 Apr 2013.

[2] OPENMPI. Open Source High Performance Computing. Available
from: <www.open-mpi.org>. Accessed on: 12 Apr 2013.

[3] Lusk, E., Chan, A. Early Experiments with the OpenMP/MPI Hybrid

Programming Model. IWOMP'08 Proceedings of the 4th international
conference on OpenMP in a new era of parallelism. p. 37-47. 2008.

ISBN:3-540-79560-X 978-3-540-79560-5.

[4] Osthoff, C., Grunmann, P., Boito, F., Kassick, R., Pilla, L., Navaux, P.,

Schepke, C., Panetta, J., Maillard, N., Dias, P. L. S., Walko, R.
Improving Performance on Atmospheric Models through a Hybrid

OpenMP/MPI Implementation. Parallel and Distributed Processing with
Applications (ISPA), 2011 IEEE 9th International Symposium on.

[5] Dong Li, Supinski, B.R., Schulz, M., Cameron, K., Nikolopoulos, D. S.

Hybrid MPI/OpenMP power-aware computing. Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on.

JCS&T Vol. 13 No. 3 December 2013

171

[6] Rabenseifner, R., Hager, G., Jost, G. Hybrid MPI/OpenMP Parallel

Programming on Clusters of Multi-Core SMP Nodes. Parallel,
Distributed and Network-based Processing, 2009 17th Euromicro

International Conference on.

[7] Torquati, M., Vanneschi, M., Amini, M., Guelton, S., Keryell, R.,

Lanore, V., Pasquier, F. X., Barreteau, M., Barrère, R., Petrisor, C. T.,
Lenormand, E., Cantini C., Stefani. F. An innovative compilation tool-

chain for embedded multi-core architectures. in Embedded World
Conference 2012. Nuremberg, Germany, 2/2012.

[8] Grosser, T., Zheng, H., Allor, R., Simburger, A., Groblinger, A.,

Pouchet, L. N. Polly – Polyhedral Optimization in LLVM. In Christophe

Alias and Cédric Bastoul, editors, Proceedings of the First International

Workshop on Polyhedral Compilation Techniques (IMPACT). INRIA
Grenoble Rhône-Alpes, April 2011.

[9] Ragheshi, A. A Framework for Automatic OpenMP Code Generation.
Dissertação de Mestrado. Department of Computer Science and

Engineering, Indian Institute of Technology, Madras. 2011.

[10] Dave, C., Bae, H, Min, S. J., Lee, S., Eigermann, R., Midkiff, S.. Cetus:
A Source-to-Source Compiler Infrastructure for Multicores. IEEE

Computer, vol. 42, no. 12, pp 36-42, Dec. 2009.

JCS&T Vol. 13 No. 3 December 2013

172

