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Abstract

As most real-world problems are dynamic, it is not sufficicnt te “solve” the problem for the some (cur-
rent] static scenaria, but it is also necessary to modify the enrrent solution dne to varions changes in the
environment (e.g., machine breakdowns, sickuess ol employees, ele). Thus it is lmportaut Lo investigale
propertics of adaptive algorithms which de not reguire re-start cvery time a change is recorded.

In this paper such non-stationary problers (i.e., problems, which change in time) are considered.
We deseribe different types of changes in the environment. A new model for non-stationary problems
and a classification of these prohlems by the type of changes is proposed.

We apply evolutlonary algorithms Lo non-stationary problems. We extend evolutionary algorithm
by two mechanisms dedicated to non-stationary eptimization: redundant genetic memory structures
and a diversity maintenance technique — random immigrants mechanism. We report on experiments
with cvolutionary optimization employing these two mechanisms (separately and together); the results
of experiments are discussed and some observations are made.

1 Introduction

Most oplimizatlion algorithms assume stalic objective funclion; they scarch [or a near-oplimum solulion
with respect to some fixed measure (or set of measures), whether it is maximization of profits, minimization
of a.completion time for some tasks, minimization of production costs, etc. However, real-world applications
operate in dynamic environments, where it is often necessary to modify the current solution due to various
changes in the environment (e.g., machine breakdowns, sickness of employees, ete). Thus it is important to
investigate properties ol adaplive algorithms which do not require re-start every lime a change is recorded.

Let ug consider an electric company. Periods of work and rest in the industry {c.g., day and night
periods, periods of five days of work and two days of rest, summer holidays, heating during the winter) mixed
with some occasional changes (like special days of the year, e.g., Christmas holidays), natural anomalies
(early frost, long summer, floods, etc.) and unpredictable events (e.g., breakdowns) make demands of
cnergy varying in tme, Fortunalely power system in every counlry hag an over-supply of the produced
cnergy with respect to the demand bul anyway the system of power control needs a [lexible oplimizalion
algorithm to control and manage energy sources efficiently.

Let us consider a typical factory. When the list of tasks and the list of resources, which are necessary
to realize these tasks, change in time, the optimization of task schedule is in fact a real-time optimization
with a varying optimization function and a varying set of constraints.

Let us consider also a navigalion problem. Navigalion is a simullancous path-planning and movement
tor the goal along the path. For non-slationary environmenls once optimized path could be useless il an
unexpected object (e.g., unknown obstacle) is detected in the environment.

We can generalize these three examples to a class of optimization tasks of the same type: these are non-
stationary problems which change in time. We are inlerested in solving these problems with evolutionary
computation techniques. 1t would be interesting to investigate, which extensions of evolutionary algorithms
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are useful in these scenarios. In this paper we discuss the nature of non-stationary problems especially
from the point of view of evolutionary search process,

The paper is organized as [ollows. Section 2 deflines a model of a stationary /non-stationary problem.
sSection 3 presents a briel review ol existing approaches to non-stationary problem optimizalion. Seclion
4 gives a detailed description of methods for non-stationary problem optimization. To create a non-trivial
demanding environments, a particular test-case generator was proposed: it is described in Section 3. The
structure of evolutionary algorithm and its parameters are discussed in Section €, together with the issue
of evaluating the experimental results. Sections 7 and 8 report on results of various experiments, whereas
section 9 concludes the paper.

2 The model

Most real-world optimization problems can be modeled by specitying the variables of the problem together
with their domains, the objective Tunction to be optimized, and a set of constraints the solution must
satisfy. We assume that the problem has n decision variables, ¥ = (#,...,%,). There is also an additional
discrete variable £, which plays the role ol time (note, that time is conlinnous, however, any changes are
usually recorded in discrete intervals).

Thus, a model MM of a problem {? can be expressed as:

M(P) = (D, F.C)
where:

e D — domain of the variables of the problem. It iz a (n 4+ 1)-dimensional search-space:
D = [Jai(t). rilt))
i=1

where a; € {(g:(t). ri(t)) for 1 < ¢ < n {{g;(t), r;(t)) is a range for the -th variable at time ).
e F— an cvaluation [unction (implied by the problem), possibly extended by the time dimension:

F=fled) : D— R

e  — =scl of constraints:

€ = el 1) 5ol B Lo v o B

let us discuss these components in more detail. Note that domainsg are usually divided into two
categories: (1) continuous and (2) discrete domains. If hoth types of variables are present in the the
problem, we deal with so-called mixed programming problem. There are two forms of changes of the
domain during the search process:

1. the intervalg [or domain variables can change, and

2. the number of dimensions of the search space can change — some variables may disappear or a new
variables can be introduced.



Changes of the number of dimensiong and changes of intervals for domain variables usually require a
re-start of the search procedure, Note that a change of interval seems to be just a change in a constraint,
however, there 1s an important dillerence: il a solution is represented as a binary string, such a change may
imply a change in the length of binary string {due to precision requirement). In this paper we assume that
the domains are constant in time, i.e., {4} = g; and r;{t) = r.

The model discussged above represents bolh stalionary and non-stalionary problems, The dillerence is
in the role of time in the evaluation function and constrainta. If the variable of fime # is present in the
formula of evaluation function, i.e., F' = f(#,¢) or in constraint inequalities (i.e., ¢; = ¢;(Z.t) for some i),
then the model represents a non-stationary problem, otherwise we deal with a stationary one.

Note that all problems represenled in the model can be divided [urther into six calegories, sinee there
arce lwo calegories of objeclive [unction and three categories of the gel of constraints:

e the objective function may or may not depend on the time variable ¢, and

e the set of constraints € can be empty, non-empty and time independent, and non-empty and time
dependent.

Table 1 provides a classification of all possible cases. Note that the first and the second class of problems
are the stationary caseg, i.e., they represent gituations where the problem do not have any time context,
These two classes have been investigated heavily in the EA community during the last twenty years.

Table 1: Classilication of changes in a process. The symbol @ denotes the case where the sel of constraints
is emptly; static — there are no changeg in time; var — there are some changes in time

No. ‘ objeclive funclion ‘ constrainls ‘

1 static 1]

2 slalic stalice
3 static nar
4 var @

5 var static
O var var

In 1973 De Jong [R] studied uselulness of evolulionary technigues to live dillerent evaluation [unclions
which belonged to the first class of problems (i.e., the objective function is constant; the set of constraints

is empty). Since that time a large group of researchers continued studying properties of evolutionary
algorithms, proposed new operators of selection and variability, new population maintenance techniques,
and other extensions of basic evolutionary algorithm for many different but stationary problems from the
lirsl class of problems. For the second class ol problems many constraini-handling methods (e.g., methods
based on preserving leasibilily of solutions, penalty [unctions, repair algorithms, specialized operators, ete.)
were proposed [26]. Clearly, the largest effort of the researchers of evolutionary computation community
has been focused exclusively on these two clasges of problems.

However, ag discussed in Introduction, most real-world applications operate in dynamic environments,
which are modeled by classes 3-6. Most rescarchers who investigated the use ol cvolulionary algorithms
[or non-slationary problems (sce Seclion 3) concentraled on class 4, whereas other classes beller represent
real world problems. In this paper we discuss test cases from classes 3 and 4.



3 Evolutionary approaches to non-stationary problem optimization

Extensions of evolutionary algorithm to consider changes which may occur during the search process and
tor track the optimum elliciently in spite of this changes have been studied by several researchers over the
last few years. These exlengions can be grouped into three general categories:

o Maintenance of the population diversity level. The presence of many potential solutions during the
evolulionary search scems Lo be a uselul [eature in oplimizalion in changing cnvironments, As long
as some level of the population diversity is uphold we could expect the algorithm to adapt easier
to changes. Hence maintaining diversity of the population could increase search performance of the
algorithm.

Among many maintaining population diversity techniques we can select:

sharing and crowding techniques [16, 4],

techniques based on the concepts ol temperature and entropy [27, 28],

techniques based on the concept of the age of individuals [11],

a random immigrants mechanism [3, 17],

a mechanism of variable range local search around the current locations [39].

a Adaptation and self-adaptation mechanism. Dynamical adjustment of the algorithm to the non-statio-
nary environment is a feature of the efficient optimization. So adaptive and self-adaptive techniques
constitute significant extensions of evolutionary algorithms [1, 3, 9].

o Redundancy of genetic material. One of the most important abilitics in adaplation to changes is
reasoning [rom previous expericnees. 5o it might be worthwhile Lo investigale memory structures as
possible extensions to evolutionary algorithms.

One of the earliest forms of memory (although not used for non-stationary optimization) was Tabu
Search strategy [13, 14]. Also a considerable number of ideas to incorporate past experience was
propoged in connection with evolutionary algorithms; we can classify them into several types [37]:

— numerical memory — where the modification of algorithm parameters is performed using ex-
perience of previous generations [33, 30, 31, 36, 37, 12]. This type of memory has a form of
additional numerical parameters. Theyv are updated every generation using the results of the
previous scarch. Their inlluence on the search process is realized by modilication ol the behavior
ol gearch operalors: mulation or crossover.

— symbolic memory — where the algorithm gradually learns from the individuals in the populations
and thus constructs beliels about the relevance of schemas (Machine Learning theory is exploited)
[38]. The symbolic lype ol memory encodes some knowledge in its structures which have a form
of rules used to guide search operators.

— exact memory — where existing struclures are enhanced by additional genes, chromosomes
(diploidy) or groups ol chromosomes {polyploidy) [6, 7, 15, 18, 24, 23, 27, 32, 33, 34, 41, 43].
The memory is utilized during the search process and bhetween the search tasks as well. Change
of the current active chromosome of the individual by the data from memory is controlled by
gome dominance functions which behavior depends on the type of stored data (chromosomes or
just single genes), the structure of memory (linear, hierarchical, etc.) and a form of access — it
is commaon for the whole population, an individual or a single gene only.



4 Tested extensions of the evolutionary algorithm

In our research we extended the evolutionary algorithm by three different mechanisms improving efficiency

of evolutionary search: random immigrants mechanism, sharing,

'dIld IIemory slruclures.
The mechanigm of random immigrants [5, 17] works on the entire population. In case of a change in
evaluation function, a large part of population is replaced by randomly generated individuals. The number

o replaced individuals in the population is controlled by the parameter called replacernent rale.

An algorithm with sharing changes the evaluation function formula. The fitness of an individual &
eguals:

fi{&) = Fla)/ fs(#)

where f(#) is an original evaluation [unction and:

£(2) = Y sh(dist(. 7))

7

where dist{, ) — an Buclidean distance belween 27 and ¢ points and:

1— (%)x if dist(Z.9) < 0.

shidist(¥,3)) = _
() otherwise

o and &, are the constants — parameters of equation.

There are various techniques based on memory structures, which may vary on (1) memory content,
(2) process of remembering, and (3) process of recalling. In this paper we report on results for one set of
choices made for these categories; we discuss them in turn.

o Memory structure and content. An individual consgists of an active chromosome, which represents a
solution, and a memory buffer, which may contain several chromosomes inherited from the individual’s
ancestors. The size of the memory buffer is constant during the time of evolutionary process.

® Process of remembering. Individuals of the [irst generalion have ecmply memory buflers. Then, cach
time after a new individual is generated, if it is included in the next generation of population, the active
chromosome of its parent (or a better parent — in case there are two parents) is added to its memory buffer.
In addition, it will inherit the chromosomes in the memory buffer of its parent or better parent. Thus,
what is remembered (i.e., the content of memory buffers) increases as the generation number increases.
When the memaory buller is [ull the chromosome Lo delete iz selected Lo make room for a new one, Fach
memory butfer is a IF11°0 queue such that when it is full, the oldest chromasome is deleted to make room
for a new one.

e Process of recalling. In our implementations memory is recalled every time the change appears in the
environment. Note that this is the ime when all individuals in the current population are re-evalualed
(to take into account the effect of the change). During this re-evaluation process, the chromosomes in
the memory butfer of an individual are re-evaluated together with its active chromosaome. After the re-
evaluation, the best chromosome from the memory (if it ig better than the active chromosome of the
individual), replaces the active chromosome, which in turn is placed in the memory.

5 Testing environment

It is important to creale a non-trivial demanding environment which could be a good test-bed lor the
experimenis. The proposed tesl-case generator creales such a scarch space which can be used [or various
experiments.



The general idea is to divide the search space D into a number of disjoint subspaces Dy and to define
a unimodal function fi for every Di. Thus the objective function G is defined on D as follows:

G(f) = fk(f) iff ¥ € Dy,.

The number of subspaces Dy, corresponds to the total number of local optima of function G. This allows
to create demanding and complex problems easy to control.
The search space is defined as

D= IEI[O7 1),

where n is a number of dimensions. The domain of each of n variables is divided into w disjoint and equal
sized segments of the length % Thus the total number of cubes in the search space is equal w™. For
two-dimensional search space it is a patchy landscape displayed in Figure 1 on the left.

1

V=[3,2

Figure 1: An example search space — a patchy landscape with n = 2 and w = 4. One cube is selected (on
the left). An evaluation function of a single cube for 2-dimensional search space (on the right).

Every cube (i.e., subspace Dy) in the space is identified by the vector Vo [v1, -+, v, Where v; identifies
position of the cube by the i-th dimension (of course, 0 < v; < w — 1 for ¢ =1,2,...,n). The boundaries
of a cube defined by a vector [vy,---,v,] are [g;, r;) for the i-th dimension, where:

v; v+ 1
4= — ri=——.
w w

The selected cube in Figure 1 is identified by a vector [3,2] and its lower and upper boundaries for both
dimensions are:

[N )

n=33l=1 rp=3=07

For every cube of the space an evaluation function is defined:

fo(ar, o an) =ap [J(ri — @) (2 — ;)
=1
)Qn

with maximum in the middle point of the cube V (Figure 1 on the right) equal to ap (3

A n-dimensional matrix H, (with w elements along each dimension) defines the values of ay. For
example for a given 2-dimensional environment (n = 2) with w = 4 we considered the following matrix H,:

1 1 11
1 1 11
1 1 11
1 1 11



Thig environment has 16 global optimum points of the same height as all 16 cubes in the matrix has the
same value (values @ are equal to cach other). Then the environment created by the test-case generator

ia prasenied in Figure 2 on the lelt.
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Ligure 2: An evaluation function of an example environment in 2-dimensional search space (on the left).
An example set of non-stationary cubes in the 2-dimensional environment (cubes marked by clreles) (on
the right).

To converl the search space into a non-stationary one, il is sullicient o change some values az in Lhe

¥
matrix £, in time. The list of subspaces D; with changing values iz a sequence. For the above sample
environment, let us consider a list of cubes which create a contour, called a path of changes (Iigure 2 on
the tight). The values in the matrix will change (every © generations): the values which are on the path
of change, would rotate clockwise.

Such a time-dependent matrix {,(¢) together with a path of changes allows to model many types of
changes. Tor example, Lo experiment with a “mouse nnder the carpet” scenario, the values gz for these
non=stationary cubeg are listed in boldlace; an index represenis Lhe pogition of the cube in the list:

1 17 1 1
1g |1 I 15
2, 1 1 14
1 12 13 1

Alter 7 generalions, there is a anti-clockwise rotation of path of change values; this would resull in the
lollowing values:

1 17 16 1
1g 1 1 15
1, 1 1 14
1 2o 153 1

After the following 7 generations, there is another change. T'hese changes cause a movement of optimum
coordinates in the environment: from the cube [0, 1] after 7 generations they moved to the cube [0, 2], then
wa cube [1,3] and so on. Aller cight such changes (as they are 8 subspaces listed on the path ol change).
each of them of 7 generations, the values in the search space return to the original ones. This completes
one cycle of changes.

The Torm ol changes deseribed above is just one of many possibilitics ollered by the Lest-case generator.
We can propose different paths of changes (their topology and length) as well as the sequence o values (on
the path and cutside the path). Modifications can have periodical or non-periodical nature. Additionally



we can mixed periodical changes on the path with random changes which would happen outside the path.
The results of these experiments are discussed in the full version of the paper.

6 Description of AMIGA and estimation criteria

For empirical research an evolutionary algorithm called AMIGA (IndividuAl Memory alded Genetic Algorithm)
was implemented:

s Individual representation: chromosomes are Gray coded bit strings.

o Initial population: il is a randomly zelecled group of individuals. In case of changes ol the evalualion
function the population is neither re-initialized nor repaired. It is re-evaluated only.

e Operators: two classic operators were applied in the algorithm. T"hey were 1-point crossover and bit-flip
mutation.

e Selection: a tournament selection with a tournament size of 2 was applied. Applied selection was of a
generational type with elitism.

e Parameters: a set of parameters defined the algorithm. Some of them were static and did not change over

time. I"hese were:

— number ol bits per dimension in the individual: ny,q = 12,
— crossover and mutation probabilities: p. = 0.9 and p,, = 0.04,

=

population size: N = 80.

The termination-condition used was a fixed number of generations, which depends on the length of the
cycle of changes {for periodical type of changes). We tried to have at least 4 full cycles in every experiment.

When a problem is stationary (neither an evaluation function nor a set of constraints change in time) it
is relatively eagy to compare the results of various algorithms. However, when a problem is non-stationary,
the situalion is more complex, as it is necessary Lo measure not the linal result (which does not exist in the
conlinuous process of tracking the moving optimum}, but rather the scarch process itsell {e.g., its reactions
to different types of changes).

In evolutionary computation community some measures of obtained results have been proposed; these
measures exploited the iterational nature of the search process and the presence of continuously modified
and improved population of solutions. One of the first measures were on-line and off-line performance

proposed by De Jong in 1975 [8]:

e off-line performance — is the best value in the current population averaged over the entire rumn.
Il represents the elficiency of the algorithm in the given time of run.

e on-line perforinance — is the average of all evaluation of the entire run. It shows the impact of
the population on the focus of the search.

These two measures, although designed for static environments, were emploved in experiments with non-
stationary ones [2, 17, 39, 10].

Tn other publications authors visunally compared graphs of Lthe best objective funclion value measured
during the entire search process (or graphs of the mean value obtained from series of experiments) [1, 3,
5,4, 7, 1L, 15, 17, 28, 27, 28, 29, 10]. In some papers graphs of average values of all individuals or of the
worst individual in the population were also analyzed [5, 15, 7, 27, 28]. Both these methods were based on
the measures of ofl-line and on-line performance.



An interesting meagure baged on the ofl-line performance was an adaptation performance described in
[27]. It was evaluated according to the formula:

’T’H LN
1 fbcst (”

I'=:- :
."'r'ri:z;u = fup‘((ﬂ
where:
T — the length of the entire search process,
foesi(£) — the fitness of the best individual in the population at the time f,

Fapt(8) — the fitness of the optimum point in the search space at the time t.

This formula was later modified slightly to:

L8 fren(t) Lo il faese(8) = fopelt)

Trae = Jope (D) TV OB, frest () < o)

=

{f =

In [10] two benchmarks measuring relative closeness of the best found solution to the global optimum
were proposed: Optimality Op and Accuracy Ac. Optimality Op represents closeness of the value of the
best obtained solution f{#,) to the value of optimum f,,;. For maximization and minimization problems
we have following formulas regpectively:

7 J (o) = Jmi 5 Jmaz — (&0
Op”“l-f(;}:(]) = M Oj);)1i77,(3:0) = L()
.f’m ax T .fm'i'ri .f’m i .fm'i'rz

Accuracy Ac represents the relative closeness of a solution found to the global optimum solution #,,, and
it is defined with following formula:

Al = oot =20
Tmaz — Tmin

Although authors did not use these measures to non-stationary optimization evaluation, the closeness
tor the oplimum during the scarch process is an inleresting value which seerms Lo be helplul in comparisons
belween applicalions and easy to conlrol in experiments.

Another measure was based on the observation of the population distribution. In [28, 40] authors
controlled population entropy which is a measure of disorder in the population. l'orms of the entropy
evaluation depended on the demands of the applied algorithm. For example in [28] the entropy was
evaluated in a locus-wise manner i.e. it was evaluated separately for every locus in the individual in
comparison Lo locuses on that position in all ether individuals in the population.

l'or resulta estimations of non-stationary optimization process we proposed the following two measures:
Accuracy — Acc and Adaptability — Ada. They are based on a measure proposed by De Jong [8]: off-line
performance but evaluate difference between the value of the current best individual and the optimum
value instead of evaluation of the value of just the best individual.

e Accuracy — a difference between the value of the current hest individual in the population of the “just
hefore the change” generation and the optimum value, averaged over the entire run:

5

1 :
o= L3 ern )

e =1
o Adaptability — a difference between the value of the current best individual of each generation and the
oplimum value averaged over the enlire ran:

K =1

1 iig
Ada = e Z - ;}(07 Tii)

§=]



where: 7 — number of generations between changes when the environment was static; err; ; — a difference
between the value of the current best individual in the population of j7-th generation after the last change
(7 € [0,7=1]), and the optimum value [or the [itness landscape alter the é-th change (i € [0, K — 1]); K
— the number ol changes of the litness landscape during the run.

Clearly, the smaller the measured values are (for both Accuracy and Adaptability], the better the result
in. In particular, a value of 0 for Accuracy means that the algorithm found the optimum every time before
the landscape was changed (i.e.. 7 generations were sufficient to track the optimum). On the other hand,
a value of 0 for Adaptability means that the best individual in the population was at the optimum for all
generabions, i.c., Lthe oplimum was never lost by the algorithm.

These two measures are helpful in evaluating the quality of the search process. lor example, results
with low values for Accuracy and larger values for Adaptability can be interpreted that the algorithm loses
the optimum after a change is made, but the time interval between changes is long enough to recover.

7 Non-stationary evaluation function — results

In the following we discuss resulls ol experimenis performed lor environments where the evaluation funclion
landscape changes in time and the set of constraints is empty (class 4. see Table 1). These environments
were generated by the test-case generator described in previous section.
7.1 Selection of population diversity maintenance technique
Two population diversity maintenance approaches were selected to compete:

— evalualion [unction with sharing,

— random immigrants mechanism.

To compare these technignes, a series of experiments were performed for dillerent values of parameters
and two different environments with periodical changes of global optimum coordinates. 'T'he differences
hetween them were in the length of period of changes and the number of non-stationary cubes. 'I'he paths
of changes of the environments are presented in Figure 3.

&1,

®

L
"",‘@.““-“@‘,-'
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Figure 3: An environment no. 1 (on the left) and an environment no. 2 (on the right)

The matrices A4, of the environments no. 1 (on the lefl) and no. 2 (on the right) are presented in
Figure 4. Values ol non-stationary cells in the matrices are displayed with bold letters.

For every environment, we made two series of 50 experiments. In the first one, we used evaluation
[unction with sharing lor diflerent values of sharing [aclor &g, Because of regularitics in the landscape of
generated environments we made the value of &5 a linction of w — the number of cubes per dimension:

- 5 & 5
&L, (w) = Zeb

741

10



0.100 0.146 0.000 0.100
0.500 0.100 0.100 0.146
0.546 0.100 0.100 0.500
(a) (0.100 1.000 0.546 (.100

0.100 0.067 0.250 0.100
0.000 0.650 0.500 0.500
0.467 0.067 0.250 0.650
(b) 0.100 1.000 0.467 0.100

Figure 4: Matrices If; [or environments no. 1 (matrix a), and no. 2 (matrix b). Non-stationary values are
listed in boldlace.

Therelore [or experiments with environmenls crealed with lesi-case generator the shared [ilness value
of an individual was evaluated with a following value of sh(dist(Z,§)):
fisd (i L ¢ o N
1- (M'w) iff dist(Z,9) < ==

IS ah

shidist(¥, 7)) =
() otherwise

This way we could easily observe the efficiency of sharing respectively to the number of cubes being in
the range of sharing. IT.g., lor 5;171 = 1 an individual 15 evaluated in contexi ol all those individuals which
dist (&, y) < f Additionally we assumed thal [or all

are placed not [urther than the length of one cube
experiments e = 1.

The second group of experiments with random immigrants mechaniam was performed for ditferent
values of replacement rate. The environments were changed every © = 3 generations. The values in the list
were moved by one position anti-clockwise. As 8 values in the matrix of environment no. 1 are involved
in the path of change, one cycle consisted of 8 changes, so a single cycle took 40 generations. The matrix
ol environment no. 2 had 12 values in the path so a single cyele look 60 generations. The results of
experiments are presented as graphs in Iligures 5, 6, 7, and &

Comparing the graphs it can be seen that random immigrants mechanism gave better results than
sharing. There exist values of replacement rate for which the obtained Accuracy had smaller value than
the Accuracy [or any ol values ol sharing laclor.

We can also observe thal lor regular landscapes ol cvaluation [unction sharing is sensitive to the
digtances between local optima and to the shape of path of changes therefore some knowledge ahout
the distances hetween optima is necessary for tuning the d,, parameter.

On the other hand since d,p is the same for all individuals the results should be much better for regular
environments where digtance from the peak to every its neighbor peak is equal and should be some worge
when 1the peaks are nol equidistanl or when the distance is estimated incorrectly. These observations
indicate random immigrants mechanism as more eflicient and [lexible, and therelore more uselul for further
experiments and comparisons with redundant genetic material strategy.

7.2 Population behavior during experiments

Results of experiments presented below show that presence of memory can increase the algorithm’s efficiency
although this is not a slraight dependency. In some cazes enlargement ol memory bullers does not give
beller results, IL is very important what was remembered in the memory. The contenls depends ol the
length of time interval between changes, type of changes, ete.

11
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Figure 5: Results of experiments with sharing for environment no. | — Accuracy and Adaptability
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Figure 6: Hesults of experiments with random immigrants for environment no. 1 — Accuracy and Adapt-
ability

Below an influence of memory on behavior of individuals in the population is discussed. It is illugtrated
on the experiments for the covironment ne. 1 from previous section and for two types of evolutionary
algorithm extensions: random immigrants mechanism and redundant genetic material approach. Malrix
IT, in the experimental environment has the values ag in the environment no. 1in previous experiments:

0.100 0.146 0.000 0.100
0.500 0.100 0.100 0.148
0.546 0.100 0.100 0.500
(0.100 1.000 0.546 0.100

and was changad identically.

Trour versions of evolutionary algorithms are discussed for such an cnvironment: a pure evolution-
ary algorithm, evolutionary algorithm with a memory, evolulionary algorithm with random immigrants
mechanism, and evolutionary algorithm with memory and random immigrants mechanism.
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Figure 7: Results of experiments with sharing for environment no. 2 — Accuracy and Adaptability
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Figure 8: Hesults of experiments with random immigrants for environment no. 2 — Accuracy and Adapt-
ability

In the first case, an evolutionary algorithm was not coriched by any additional mechanisms dedicated
ta non-stationary environments, In the zccond case individuals were equipped with memory buffers of size
20, The moemory was emploved in case ol changes in the environment. Tho third cage included experimoents
with alternative extension of the algorithm. Tt was a diversity maintenance tochnique of random immigrants
mechanism. It was applied to the population just after the change in the environment. 85% of population
was exchanged average (random immigrants mechanism is controlled by a replucement rote which delines
the probability of change ol an individual invo randomly generated another ong). In the fourth case
algorithin was enriched by two mechanising: memory and the random immigrants mechanism. Aller the
change in the environment the memary was irst recalled. Nexi, active chromosomes in the individuals were
modified by random immigrants mechanism. A modified individual has an active chromosome changed but
the chromosome in the memory structures are left unchanged.

It is intercsting to cxamine the distribution of individuals in the population just after a change is made
in the landscape. Note that the positions of individuals after the change influence Adaptahility (or the
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number of generations in which the algorithn finds the optimiom or/and the closencss of the best individual
to the aptimim).

Figures 9-12 prosent typical snapshots (bwo snapshots per casel of the population just allor e change
{Lhose snapshots wore miade allor a Tow cveles of changes already wont (hrough). Tndividuals are visnalised
as gmall black diamonds. A triangle represents new coordinates of the optimum just after change.
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Fignre O Two views of Lhe populalion nsl aller the change fu the cavironmaenh noe 1 Tor Lhe alzorithm
without wemory and withonl random fmmigrants mochanism.

Figure 9 represeuis the case where alporithm was um extended by any addivional mechani=igs, TU can
be seen thatl Ue population is clustersd arouud the points which were oplitna belore Lle chauge, Sowetimes
they are clistered around two points becange only a part of popalation conld manage to migrate to the new
area ol space since Lhe previons change, On overy snapshol, here iz a anall subsel ol individunals distrib Led
in Lhe whaole space. This sel ol individuals has o vory signilicant role in looking for new coordivales of
global opliwum, They are exploiled iu searching throueh other areas ol space. The populalion on the lell
Lias better situation than the ous on the rlelit, One of individuals is gquite close 1o the new oplimung aul
it can attract the reet of the popolation to the new area of the search space. On the right hand picture,
there are no individualz arcund the new optimum.

Figure 10: Two views of the population jusl allen the chauge in (e envirowent no. 1 lor Lhe algorithin
with memary but withoot randam immigrants mechaniam.

Figure 10 represents the cage where the algorithm is equipped with memaory structures, llere the
population s also clugiered hut il i clustered around the new poiul of aptimmn while in Lhe previous case
— around the poiuts which were global oplima quile o lew changes aso. This is e resoll of presence of
some solutious in the memory @iructures which were collecled during the search process Ull now. They
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moztly repreacnt good solutions from previons pozitiong of optimom. It happens that aome positions are
not. representod in the memory. Then the other good local aptimum s recalled. Anyway the memary
always has sometlong (hotter or worse) 1o prompt and 10 e corrent values of individuals are worse thay
1he values of renembered ones then the population s moved (o new positions, This explains why in (le
snapehot on the left the population 1s not clustered around the current global optimum but around the
point which wag the optimum a few changes ago and now iz one of local optima only.

The ather diference i in Lhe absonce of Lhe small sel of iudividoals disiributed du Lhe search space
and Lhat moest of individonals are similar or ddenlical Lo cach olher. This low diversity ol population
decreasas polenliality of searching through the space. The whole responsibility awd Lope [or skipping Dy
the popilation to the other area of 3pace and finding the new pozition of aptimum is taken by the motation
poeratar which now has to hic this position or ar least close around it
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Figure 11: Two views of the population just aller the cliange in the environment uo, 1 lor the algoritlun
without memory bot with the random immigrants mechanizm.

Figure 11 represents a case whete 1he algmilhm waz equipped by the tandom irmmigranls ueciandsmn.
IIere the population couslsts of diverse individuals represenling solutions [roan all areas of searcl space bul
they have no information about nesw conrdinates of optimum. Random Iimmigrants mechanizm ia a2 goarl
mechanizim for amall changes where new canrdinates of aptimum are close to the previons ones ar where
ilie shape of cvalnation funciion 18 not very complex {e.g.. for envitenments with ane oplimurm only or witl
mrany local oplima bul withoul any complex changes doring Lhe search processi. Otherwize the individuals
which were nol wulated Jo uol represent auy sigoilicant inlormation and then we start the search ol a uew
optimim from serateh in fact.

The last case iz presented in the Mgure 120 Here the aloorithm waz extended by two mechanisma:
memmy and random imrigrants mechanisim, These swapshols a1e very similar Lo the ones presented in
tle Figure L1, Tle dillerence hetween the algorithins is visible much belter in the Figure 13 in graphs
a differcnen between the walne of the current best.

{r] and [ ghowing obtained rezults of Accuracy
individnal in the population of the “just heforn the o

Hoere pood iraits of botlh mechanisms made s well co aperaling pair. A part of populalion is clustered

innge™ generation and the aptimim value.

around the eoordinates ol e optirmurn taken from wemory. The rest ol thorn are distriboied in the whole
search space to speed up gearching in case when the remembered optimum s not a eurrent global optinun.

Obszervationg from the figures are confirmed by the wvalueg of Accuracy for these four experiments.
Graphs of a difference hetwoen the value of the current hest individoal in the population of the “just before
Lhe chauge” generalion and the optitnum value a1e preseuted in the Figume 13,

Y-axis repesenls the dillerence between Lhe value ol the current best individual and the current op-
timum valne (the amaller G2 the better) and X-axig & the number of change. There were 8 changos in
the cvele so we can see G full cveles of changes in the grapha. There are four grapha for fonr experiment

discnssed above:
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Fignre 12 Two views of the population just alier the change in ilie enviromnent. no. | for the algorith
with mernory and with vandom migrants mechamsm.

a — pure evolutionary algorithm (m- ri-),

b — cvolutionary aleorithm with memory {m4 -],

c — cvolutionary algorithin with randow imigranis mechanism (m vi4), and

d — cvolutionary algorithm with memory and random irnigranes mechanism (n+ ¥i—1.

Note that for better visihility of the results the geale on the Y -axds for the graphs {a) and (b) s «ditferent
than for the graphs (] and ().

In Lthe graph (al we have lols of peaks repregenting silualions where algorithin could not Tud (he new
coordinales of optirmum and the population clhistered around any olher local optirmum. In the graph (b)
theve s mmaller nuber of peaks than o graph (a). Memeory helped o lind wew coordinates ol optimu
bul vot [or every chause, Tn cases whers thie new coondinates wers ool remenbered Lhe metiory proaipled
ather aslutions better than the corrent values of individials but which were not clostered around the plobal
eptimirm, Inoche graph (o] the values are various. Por 2zome of the changes the algorichm finds an optimum
while [ the otliers does nol or hits somewhere around the aptimum only. There = no correlation belween
oblained values of the best individual and the coordinates of optimum poiul in the cvele. T the graph (d)
there i3 a long sequence of hits very close to optimum, 1t i3 the best graph of those four. The value of
Adaptabilily Tor Lhis Lype of algorithms is also Lhe best [see Table 2).

Table 2: Lxperimental results lor Lhe environment no. L lor [our versious ol evolutionary algorithen wol

for regtart stratesy — Accuracy and Adapfability
Aconracy | Adaplabilily
m- ri- 23.5058 32,0076
=4 1 160635 250545
m- ri | |.EA3S 110464
m- i DARTS T.1326
restarl B.a7T I3 1417

For com parizons the values of Accuracy and Adaptability evaluated as an average valoes from a gequenee
of 30 cxperiments are prosented in the Table 20 Tu the last row of the table, woe have values Tor an
experiment whoere aller ovory change the whole population was exchanged and the algomthm started 1eally
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Figure 13: Values of the difference between the best individual in the population and the value of optimum
solution just before the change in the environment. (a) algorithm without memory and without random
immigranis mechanism, (b) algorithm with memory but without randomn immigranis mechanism, (¢} al-
gorithm without memory but with random immigrants mechanism, (d) algorithm with memory and with

random immigrants mechanism. Scale on the Y-axis for the graphs (a) and (b) is different than for the
graphs {¢) and (d).

from scratch. The value of Accuracy in this row is worse than the value of Accuracy for experiments
with random immigrants mechanism. That means that the small unchanged part of population left from
gencrations before change hag good influence on the efficiency of the algorithm,

7.3 Results for different types of changes

In the experiments discussed below, we studied dependencies between type of changes and the efliciency
of a few strategics of evolutionary algorithms dedicated to non-stationary environments optimization. We
compared and analyzed results of experiments on gimilar environments with cyclic and non-cyclic changes.
All the resulig in tables in 1his subsection are the average values of 50 experiments. In cases with cyelic
Lype of changes cach experiment consisted ol at least 6 cyeles of changes, We made every experiment [or
four values of 7: 5, 10, 20 and 40 generations.

All enviranments were created by lest-case generator and wore based on 2-dimensional search space
which consisted of 16 cubes (4 by 4). The differences between environments were in the selection of set of

non-stationary cubes. Three different shapes of paths of changes were compared: (1) random (non-cyclic



changes), (2) circle (cyclic changes), and (3) line (cyelic changes).

In the firat of compared cases the shape of path was generated randomly at every change, i.e. the set
of non-stationary cubes was not constant but changed in time. Every change a new set of 8 cubes was
randomly selected, which was inilialised with 8 [ollowing values:

0.000 0,146 0500 0546 1.000 0.546 0500 0.146

In the rest of cubes the heights were set to the standard value which was ten times amaller than
the height of global optimum over the entire search apace. The number of non-stationary cubes in the
environment was not static but changed in time. It was at least 8 cubes (if the set of selected cubes was
the same as previous one) and at most 16 cubes (if the newly selected set was completely different than
the previeus one.

In the gecond environment, the path ol changes was lixed. During every change, the same sel ol cubes
ten limes smaller
than the height of global optimum. The path of changes is presented in the matrix in IYigure 14{a) where
values of non-stationary cells are displayed with bold letters. T'hese are initial values of the cells for time
t = (. They were moved anticlockwize by one position after every 7 generations (it iz the same environment
as in the previoug section).

waz madilied. Unmaodilied cubes had the same heighl which was — ag in previous case

(0.100 0.146 0.000 0.100
0.500 0.100 0.100 0.146
0.546 0.100 0.100 0.500
(a) 0.100 1.000 0.546 0.100

0.100 0.100 0.100 0.500
0.100 0.100 0.000 0.100
0.100 0.500 0.100 0.100
(b) 1.000 0.100 0.100  0.100

Figure 14: Malrices 11, [or compared environments no. 2 (malrix a), and no. 3 {malrix b). Non-stalionary
cubes are listed in holdlace.

The last environment also had a fixed path of changes. The main difference hetween the previous
environment and the current one was that the last cube in the path is not a neighbor of the first one —
the path is a segment. The optimum from the last cube in the top right hand corner was moved to the
bottom lelt hand corner. This was the case where the lenglh of jumps of oplimum was not constant. The
shape of the path and its initial values are presented in the matrix in Iigure 14(h).

l'or these three environments experiments were performed. We tested two types of algorithm extensions:
the first — with memory and the second — with memory and random immigrants mechanizsm. We
compared results for four sizes of the time interval between changes and for five sizes of the individual
memory buller. The replocement rale was 0.85.

Values ap for stationary cubes were selected to be equal to 0.1 because we wanted o loree the population
to active search through the search space for the global optimum instead of staying around one of quite
good stationary local optimum.

{A) Cyclic changes

In presented resulls (Tables 3, 4, 3, and 6 — environments no. 2 and 3) in most cases we can see
posilive impact of the presence of memory structures [or environments wilh cyelie type of changes. The
difference hetween the value of optimum and the value of the best individual in the population decreased
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Tahle 3: Experimental results for three environments for 7 = 5 — Accuracy and Adaptability

Accuracy
el e.2 .3
ri- i+ ri- ri+ ri- ri+
m= (0 || [2.2035 | 1.1032 || 23.5958 | 1.8435 || 16.8089 | 1.2657
m= 1 || 13.3311 | 5.0800 || 20.3702 | 4.5661 || 24.05680 | 4.4577
m=10 || 14.5487 | 3.0935 || 19.3711 | 2.4851 || 26.7077 | 3.0737
m=20 || 12.3776 | 2.7568 | 16.9635 | 2.4375 || 12,1999 | 1.1559
m=40 || 9.3754 | 2.4043 | 12.0400 | 1.6720 || 6.9340 | 0.5551

Adaptability
el e.2 e.d

ri- ri+ ri- ri+ ri- ri+

m=0 || 20.6059 | 14.1339 || 32.5576 | 14.0464 || 33.3517 | 13.9904
m=1 | 22,4394 | 13.8237 || 20.7868 | 12.3413 | 41.1585 | 13.9146
m=10 || 20.6657 | 9.7435 || 27.1076 | 7.6566 | 39.5565 | 10.9795
m=20 || 17.0614 | 7.5859 || 25.0845 | 7.1326 || 18.1399 | 4.7926
m=40 || 13.1688 | 6.3277 || 17.9237 | 5.2074 | 10.1615 | 2.3838

Table 1: Experimental rezults for three environments for 7 = 10 — Accuracy above and Adaptability below

Accuracy
el o2 c.3
ri- ri4 ri- ri+ ri- ri4
m= 0 | 9.1411 | 1.0683 || 7.1380 | 1.3284 || 9.7249 | 0.7337
m= 1 | 85526 | L.1044 || 7.5751 | 0.93532 || 99857 | 0.6&829
m=10 || 11.8247 | 1.1488 || 7.4025 | 0.6473 || 11.1865 | 0.7859
m=20 || 12.53128 | 0.943% || 5.8378 | 0.8665 | 9.1448 | 0.5011
m=40 || 10.7871 | 0.8738 || 5.9347 | 0.6986 | 2.4629 | 0.1135
Adaptability
el e.2 e.d
ri- i+ ri- ri+ ri- ri+

m= 0 || 20,1494 | 8.9553 || 19.35741 | 8.4935 | 35.6773 | 9.1151
m= 1 || 20.7621 | 8.0485 || 20.3126 | 7.6179 || 38.6913 | 9.3523
m=10 || 23.2790 | 7.5933 | 19.0505 | 5.8161 | 36.9165H | 8.6378
m=20 || 21.0737 | 6.1645 || 15.8290 | 5.8761 | 29.0826 | 6.8413
m=40 || 17.9509 | 5.3498 || 14.6871 | 49156 || 8.2435 | 2.8045

for experiments with larger memory buffer. Memory held good individuals collected there during the search
process, The larger the memory was, the better results were obtained. Simultaneous application of memory
and random immigrants mechanisin additionally improved obtained results.

In the obtained results two additional eflccls were obscerved:

— local worsening: An effect of results worsening appeared for environments with cyclic type of changes
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Table 5: Experimental results for three environments for 7 = 20 — Accuracy above and Adaptability below

Accuracy
ol e.2 e.3
ri- ri+ ri- rit+ ri- rit+
m=1{ || 8.7503 | 0.4112 || 0.9885 | 0.0310 || 1.6311 | 0.0209
m=1 | 82180 | 0.2371 || 1.3290 | 0.2132 || 1.2154 | 0.0232
m=10 || 7.6993 | 0.4157 | 1.4106 | 0.1027 || 2.3956 | 0.0152
m=20 || 8.2422 | 0.5027 || 1.2419 | 0.0137 || 0.9071 | 0.012%
m=40 || 83188 | 0.7726 || 1.0899 | 0.0596 || 1.2996 | 0.0130

Adaptability
el e.2 e.s

ri- ri+ ri- ri+ ri- ri+

m=0 || 18.3924 | 4.3193 || 12.0455 | 4.0082 || 21.8467 | 4.7305
m= 1 || 18.9217 | 4.0209 || 12.4993 | 3.9327 || 22.6649 | 4.9852
m=10 || 184058 | 1.3389 || 124713 | 3.5715 || 23.6661 | 5.1084
m=20 || 18.5685 | 3.0488 || 11.9974 | 3.4459 | 21.9957 | 5.0748
m=40 || 17.0796 | 3.8599 | 9.6934 | 2.9409 | 18.5041 | 4.4567

Table 6: Ixperimental rezults for three environments for 7 = 10 — Accuracy above and Adaptability below

Accuracy
el 0.2 c.3
I'i- ri4 ri- ri+ ri- ri+
m= 0 || 4.3399 | 0.288% || 0.0943 | 0.0000 || 0.0002 | 0.0000
m=1 || 3.6473 | 0.1927 || 0.0118 | 0.0004 || 0.0000 | 0.0000
m=10 || 5.1178 | 0.2886 || 0.0281 | 0.0000 || 0.0000 | 0.0000
m==20 || 3.4507 | 0.2889 || 0.0003 | 0.0000 || 0.0001 | 0.0000
m=40 || 4.3507 | 0.0961 || 0.0001 | 0.0000 || 0.0003 | 0.0000

Adaptability
e.l e.2 e.d
ri- ri+ ri- ri+ ri- ri+
m= () || 11.7376 | 2.2605 | 3.9614 | 19314 || 11.2836 | 2.3877
m= 1 13.1919 | 2.2180 || 6.6661 | 1.7968 || 11.3569 | 2.6079
m=10 || 13.3908 | 2,2810 || 5.6996 | 1.7700 || 11.2915 | 24717
m=20 || 13.0291 | 2.3220 || 5.5330 | 1.8055 || 11.5583 | 2.5264
m=40 || 12.7945 | 1.9874 || 5.9390 | 1.9267 | 10.9274 | 2.5222

where the memory huffer of a small size was applied (Tables 3, 4, and 5 — environment no. 3).
But the continuous increage of memory buffer size leaded to improvement of the results. The effect
of local worsening disappeared [or experiments with longer period of time between changes. Tt was
compensated by the exploring properties of evolutionary algorithm which had more time to find a
global optimum in spite of unfavorable starting distribution of individuals in the population.
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— long period between changes: It can be seen (Table 6) that for all environments 40 generations is
enough time to find an optimum for the algorithm with or without memory. The Accuracy is very
cloge Lo zero, ag Lthere is almost no dillerence belween the oplimum and the best individual in the
population.

{B) Non-cyclic changes

For non-cyclic changes random immigrants mechanism improved obtained results but memory struc-
tures worsened them {Tables 3, 4, 5, and 6 — environment no. 1).

This is a case where the memory should not be applied. The reason of this new worse behavior of
the algorithm is a particular properly of memory mechanisin. The memory can hold relerences Lo many
different points of space which were optima. in previous changes but not to all of them. When optimum
in moved to the position which is absent among remembered solutions memory s still frying to prompt
something. When the remembered position is better than the current one the individual is moved to that
point immediately even if it is not a global optimum but one from the set of local ones.

For environmen!l with non-cyclic changes there was also an improvement of results [or longer periods
between changes which means thal algorithm was still trying to [ind an optimnom during the given time of
static shape of environment.

8 Non-stationary constraints — results

All the experiments presented in this section were perlormed lor the class of environments where the
evaluation function landscape is static in time but the set of constraints exists and changes in time.

T'o introduce constraints into the problem we extended the definition of an environment by a set of
constraint inequalities:

¢ 20 =1 6

They divided the search space into feasible and infeasible regions. We wanted the regions to be changed
during the search process so we changed constraint inequalities, i.e., ¢; = ¢;(Z,t). Changes were performed
in the environment periodically: every 7 generations.

Our aim was 1o creale demanding environments with non-stationary comstraints where the global op-
tirnum coordinatles change in lime although the evaluation funclion is slatic. To achicve this we carelully
selected constraint inequalities formulag and values in matrices H, defining evaluation function landscape.
They were generated to modify the global optimum coordinates at every change. After every change a new
better feasible solution appeared or the current global optimum was turned into infeasible one. Addition-
ally Lo make the optimizaltion task more dillicull 1the current global oplimum was always situated on the
boundary ol the [easible region.

In our research we added some extensions to the evolutionary algorithm and observed how the exten-
siong can influence on the ohtained results. We made experiments with two types of extengions: random
immigrants mechanism and individual level memory structures.

We made experiments with cyclic and non-cyelic changes of the feasible part of the search gpace, All
of them were performed for a get of linear constraints,

In cyclic changes a single cyele congisted of several changes aller which the shape ol the [easible and
infeagible regions was the same as at the beginning. For example at the beginning of the search process
following changes of the feagible region of the search space decreased the size of this region. After some
changes the region was small and in the next changes started Lo inerease ils sive. When the [easible part
wag as al Lhe beginning one cyele ol changes was completed. We repeated the eveles of changes a lew {imes
in every experiment.
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Additionally we made some experiments with non-cyclic changes decreasing the size of the feagible
region of the search space. In that case only a half cycle of changes described above wag performed which
only decreased the size ol the [easible region.

The experiments and the resulls are discussed below, All the results in tables are the average values
of 30 experiments. In cases with cyclic type of changes one experiment consisted of at least 6 cycles of
changes. We made every experiment for four values of 7: 5, 10, 20 and 40 generations and for five different
sizes of memory buffer: 0, 1, 10, 20 and 10 entries.

8.1 Testing environments

We made experiments with four different environments with non-stationary set of constraints dividing the
search space into feasible and infeasible regions. Feasible regions in all experiments were represented by
CONVeX areas.

Fuvironment A is a simple case wilth only one constraining inequality where the [ull evele of changes
consists ol 10 steps. The size ol the [easible area changes [rom 1/8 (12,5%) 1o 7/8 (87,0%) ol the scarch
space. FEnvironment B is defined with two constraining inequalities and full cvele of changes consists of
14 steps 'T'he size of the feasible area changes from 15/128 (11,7%) to 123/128 (969%:) of the search space.
Environment C ig also defined with two constraining inequalities and full cycle of changes is the longest
and takes 16 steps. The size of the [easible arca changes [rom 49/256 (19,1%) to 123/128 (96%) of the
search space. Fnvironment D represents more dillicull case where Lthe [easible part of the secarch space is
represented by two digjoined regions. A full eycle of changes for the environment 1} consists of 14 steps
and the size of feasible area changes from 5/128 (3,9%) to 123/128 (96%) of the search space.

Madrices I, and congtraint inequalities for these environments are presented in Figures 13, 17, 19,
and 21, Example views ol the scarch space with marked leasible and inleasible reglons of the scarch space
are presented in IMigures 16, 18, 20, and 22.

The variable {7 in constrainl inequalities represents the nnmber ol change. For a given i-th generation
we can evaluate the number of last performed change with the following formula:

t— {t mod 7)
T

i =

where t is the current number of generation. All the experiments are based on 2-dimensional search space
consisted of 16 cubes (1 by 1).

2 1 1 8, —24+[{(t'mody)—4|
&y @ et

1 63 1 1 e 2 #1t

1 1 105 1

Figure 15: Malrix f{,; and constraint inequality [or environment A. Values ap of cells being global oplimums
for following changes of constraints are in boldface. Indices at these values indicate order of changes for
increasing feasible part of the search space.

Figures of values of a feasible part of the search space capacity ratio p and the gradient of change G (1)
[or experiments with environments A, B, C, and D are presented in Figure 23,

8.2 Results of experiments with cyclic changes

Resulls of experiments with cyelic changes ol the [easible part ol the scarch gpace presented in Tables 7,
R, and 9 show that memory structures can increase the algorithm’s efficiency but for small values of 7
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Figure 16: Two views with minimum and maximum size of the infeasible part of the search space of
environment A. The infeasible region is marked as a grey area. A current global optimum is represented
by a circle.

|(t'mod13)—6|+1

(%) rxg > a1 — 5

857, 1.00 1.00 2.00-
5.71, 2.865 1.00  1.00 ) (o1 6]
100 1.00 4.28; 7.14, ca(T) 1wy <y + P —

1.00 1.00 1.00 10.00; . - .
c(Z) = c1(Z) A e2(Z)

Figure 17: Matrix H, and constraint inequality for environment B. Values a; of cells being global optimums
for following changes of constraints are in boldface. Indices at these values indicate order of changes for
decreasing feasible part of the search space.

only. In every table results for 7 = 5 are better for algorithm with memory structures than for algorithm
without them. Although with increasing value of 7 the influence of memory changes and it rather decreases
the quality of obtained results (apart from the environment C where the improvement is observed for all
values of 7).

As in experiments with non-stationary evaluation function the results of experiments with random
immigrants mechanism were better than the results without it.

In table 10 with results of environment D with random immigrants mechanism it can be seen that one
of Accuracy results is extremely large. The reason of this was the situation where none of individuals was
feasible and an infeasible individual was evaluated as the best. This indicates that although the results of
the algorithm with random immigrants extension are better the risk of loosing feasible part of the search

Figure 18: Two views with minimum and maximum size of the infeasible part of the search space of
environment B. The infeasible region is marked as a grey area. A current global optimum is represented
by a circle.
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Figure 19: Matrix H, and constraint inequality for environment C. Values ay; of cells being global optimums
for following changes of constraints are in boldface. Indices at these values indicate order of changes for
decreasing feasible part of the search space.
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Figure 20: Two views with minimum and maximum size of the infeasible part of the search space of
environment C. The infeasible region is marked as a grey area. A current global optimum is represented
by a circle.

space is growing too. The algorithm could have some troubles especially when the feasible part has complex
shape as in the environment D where the feasible part consisted of two regions.

8.3 Results of experiments with non-cyclic changes

The results of experiments with changes decreasing the feasible part of the search space for the environment
B and C are presented in Tables 11 and 12.

As in previous experiments with cyclic changes obtained results showed that presence of memory can
increase the algorithm’s efficiency but for small values of 7 only. Additionally in both cases, we can see
an effect of local worsening. This effect is presented in experiments with small size of memory buffer,
when some valuable individuals are quickly forgotten. These are individuals which are diversified over the
entire search space and they were generated for the initial population. Instead of them other group of

By >y 4 Lmodiz)—el+1
2.86, 1.00 1.00 10.00; ci(¥) w2 > a1+ 20

5.71, 8.57s 1.00 1.00
1.00 1.00 7.145 4.28;
1.00 1.00 1.00 2.00;

L t'mod13)—6
cz(x).x2§$1—| 5 |

w

c(Z) = c1(Z) V e2(Z)

Figure 21: Matrix H, and constraint inequality for environment D. Values a of cells being global optimums
for following changes of constraints are in boldface. Indices at these values indicate order of changes for
increasing feasible part of the search space.
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Figure 22: Two views with minimum and maximum size of the infeasible part of the search space of
environment D. The infeasible region is marked as a grey area. A current global optimum is represented
by a circle.
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Figure 23: Values of a feasible part of the search space capacity ratio p (on the left), and of the gradient
of change G(t) (on the right) for experiments with environments A, B, C, and D.

individuals is remembered which is converged around lately found optima. Those optima are infeasible
when the memory is recalled because every change the feasible part of the search space is decreasing. Such
an recalled group of individuals certainly does not improve the algorithm.

The rest of results confirmed previous observation that both extensions are better than only one of
them.
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Table 7: Experimental results for environment A with cyclic changes — without {(upper tables) and with
(lower tables) random immigrants mechanism

Accuracy Adaptability

i ) 10 20 40 3 10 20 40
m= 0 | 21.1720 | 19.1523 | 17.1165 | 16.0686 || 25.5360 | 22.6059 | 30.2336 | 22.6825
m= 1 | 23.2413 | 185917 | 17.1412 | 15,7720 || 31.758%8 | 53.7640 | 26.8776 | 22.7757
m=10 | 21.9088 | 19.2049 | 18.1388 | 16.3769 || 23.8949 | 30.11423 | 22.2735 | 23.1781
m=20 | 21.2503 | 184504 | 17.9351 | 16.2385 || 22.9793 | 22.5333 | 22.0134 | 21.1899
m=40 | 18.0279 | 18.5105 | 18.7428 | 171618 || 40.7112 | 21.7120 | 22.6240 | 21.3980

Accuracy Adaplability
T ) 10 20 40 5 10 20 A0
m={) | 12,9722 | 7.9036 | 61823 | 6.2395 || 18.8547 | 13.5586 | 10.6246 | 8.7765
m=1 | 13.1297 | 8.8261 | 6.6658 | 7.0280 || 18.4213 | 13.7494 | 10.5950 | 9.4034
m=10 | 12.6739 | 8.9501 | 7.4465 | 6.8665 || 16.6713 | 13.35880 | 11.0038 | 9.1119
m=20 | 12,0111 | 94362 | 7.7167 | 0.6818 || 15.6170 | 13.7554 | 11.3908 | 9.2466
m=40 | 9.4184 | 8.8338 | 8.34H7 | 7.2639 || 12,5244 | 12.5166 | 11.5241 | 9.6738

Table 8 Experimental results for environment B with cyclic changes — without {(upper tables) and with
(lower Lables) random immigrants mechanism

Accuracy Adaptability

T 5 10 20 40 5 10 20 40
m= 0 | 7.4496 | 4.2754 | 4.0610 | 4.5950 || 11.3207 | 7.7606 | 7.1268 | 7.2998
m= 1 | 6.6610 | 3.9652 | 1.5315 | 50115 9.9375> | 7.4372 | T.3130 | T.6557
m=10 | 5.7606 | 4.1328 | 47764 | 5.0025 || 83011 | 6.7484 | 7.4557 | 7.7017

0
m=20 | 6.1377 | 4.6582 | 4.8754 | 5.1435 || 7.9273 | 6.6381 | 7.2656 | 7.67206
m=A0 | 54937 | 5.8597 | 1.7298 | 5.2519 || 6.9645 | 7.2683 | 6.9454 | 7.5965
Accuracy Adaptability
% 5 10 20 40 5 10 20 40
m= 0 | 7.7380 | 3.2530 | 2.1220 | 1.7090 || 11.2243 | 87111 | 5.82499 | 1.2685
m= 1 | 7.05394 | 3.2330 | 2.2026 | 1.8089 || 13.4167 | 8.3765 | 5.9718 | 4.2687
m=10 | 5.7453 | 3.3573 | 2.3455 | 1.8552 || 10.6468 | 7.5032 | 5.8047 | 4.2301
m=20 | 1.6891 | 3.1700 | 24481 | 2.0201 || 9.0455 | 7.2964 | 5.8159 | 1.3125
m=40 | 4.1220 | 2.4613 | 2.1828 | 1.9683 || 7.7490 | 5.8439 | 5.2849 | 4.2563

9 Summary

In this section we discussed experiments with non-stationary environments. We tested a low strategies which
include or exclude a diversity maintenance mechanism and a redundant genetic material. We made two
main groups of experiments:

e The cvaluation [unction landscape changed in time and the sel of conslraints was cmpty (the class
no. 4 from classification proposed in Section 2),
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Table 9: Experimental results for environment C with cyclic changes — without {(upper tables) and with
(lower tables) random immigrants mechanism

Accuracy Adaptability
T 3 10 20 40 3 10 20 40
m= 0 | 26.0563 | 20.0799 | 15.9908 | 11.5186 || 32.2006 | 26.2790 | 21.5202 | 17.0339
m= 1 | 27.3330 | 19.2586 | 15.9746 | 11.2060 || 33.3336 | 23.2621 | 21.4723 | 16.4425
m=10 | 24.7618 | 19.6083 | 15.3203 | 11.3702 || 29.9558 | 21.8508 | 20.1568 | 16.1371
m=20 | 23.62841 | 19.0728 | 151956 | 11.1010 || 28.3897 | 24.0946 | 20.0401 | 16.0839
m=40 | 23.7549 | 17.6008 | 15.4634 | 11.9392 || 28,0348 | 22.3615 | 20.2813 | 16.4780
Accuracy Adaptability
ok 5 10 20 40 5 10 20 A0
m={0 | 17.7691 | 10.1137 | 5.9728 | 4.3132 || 27.4256 | 184195 | 12.7544 | 9.4236
m=1 | 16.6335 | 10.4913 | 6.6507 | 3.6538 || 25,4761 | 17.8397 | 12.8481 | 8.5812
m=10 | 14.5487 | 9.5082 | 6.5060 | 4.5299 || 21.1519 | 16.0133 | 12.3183 | 9.2125
m=20 | 13.3011 | 9.1219 | 6.6091 | 1.5265 || 19.0526 | 14.8654 | 12.0144 | 9.1199
m=40 | 11.5403 | 8.5713 | 6.3925 | 4.9001 || 16.6594 | 13.7780 | 11.4563 | 9.0804

Table 10: Experimental results for environment 1Y with cyclic changes — without (upper tables) and with
(lower tables) random immigrants mechanism

Accuracy Adaptability
T ) 10 20 40 3 10 20 40
m= 0 | 21.8662 | 185187 | [1.8366 | 15.64%0 || 33.1504 | 37.8718& | 30.0428 | 27.2793
m= 1 | 22,4651 | 17.8735 | 15.9541 | 14.7989 || 40.0738 | 33.9599 | 24 4282 | 21.0398
m=10 | 20.8169 | 18.1240 | 16.6639 | 14.8439 || 1314890 | 28,0238 | 27.9650 | 19.5137
m==20 | 20.2965 | 18.5505 | 16.6420 | 11.3067 || 76.1384 | 37.8050 | 26.1793 | 17.8270
m=40 | 18.8820 | 19.1804 | 17.0707 | 14.6443 || 69.3086 | 32.7580 | 19.4330 | 19.1167
Accuracy Adaplability
T 5) 10 20 40 5 10 20 10
m=0 | 9.8023 | 5.0431 | 3.1259 | 23819 || 24.6873 | 32.0076 | 17.8759 | 11.7471
m=1 | 9.3574 | 4.8053 | 2.9487 | 2.4292 || 13.7163 | 26.5154 | 12.6240 | 11.0568
m=10 | 7.2801 | 4.5890 | 3.1629 | 2.5099 || 15.8527 | 18.0866 | 22.3021 | 11.6116
m=20 | 6.8510 | 4.0673 | 3.7115 | 29.8252 || 14.9644 | 15.3360 | 31.2635 | 35.5059
m=40 | 5.6726 | 4.3908 | 3.4b66 | 2.8493 || 184273 | 19.8187 | 16.2057 | 11.8980

e The evaluation [unclion landscape was slalic in time but the set ol constraints existed and changed
i time {the class no. 3).

Section 7 described experiments with non-stationary evaluation function. We compared the behavior of
population for the evolutionary algorithm with and without two different extensions dedicated to non-statio-
nary problem oplimization. We made experiments in one environmenl with eyclical changes ol oplimum
coordinates. The resulls given by Lwo proposed measures, Acenracy and Adaplabilily, and observations ol
individuals® distribution on the search space indicated that each of tested strategies controlled and improved
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Table 11: Experimental results for environment B with non-cyclic changes — without (upper tables) and
with (lower tables) random immigrants mechanism

Accuracy Adaptability

T 5 10 20 40 5 10 20 40
m=10 | 63178 | 3.1386 | 0.9861 | (0.1652 || 10.8471 | 8.8718 | 6.2803 | 3.5082
m=1 | 6.8960 | 3.6968 | 1.2465 | 0.4939 || 11.4571 | 9.9673 | 3.8690 | 3.9523
=10 | 6.0248 | 3.7881 | 1.4946 | 0.2330 || 10.3831 | 9.3391 | 6.13416 | 3.8501
m=20 | 6.2169 | A.1387 | [.2193 | 0.3683 | 9.9083 | 9.8351 | 7.1102 | 4.3121
m=40 | 5.6419 | 3.2686 | 2.6687 | 0.7304 || 9.8175 | 8.4998 | 6.3090 | 4.1014

Accuracy Adaplability
T 5 10 20 40 5 10 20 40
m=(} | 7.89641 | 2.7562 | 0.7139 | 0.6301 || 13.1268 | 8.9695 | 4.87H9 | 3.2122
m=1 | 7.4561 | 3.2197 | 1.6083 | 0.8639 || 12.6942 | 7.95375 | 3.6525 | 3.3344
m=10 | 6.1271 | 2.5709 | 0.9843 | 0.5742 || 10.4505 | 7.3667 | 3.0316 | 3.1608
m=20 | 58378 | 2.5063 | L.2512 | 0.2739 || 9.0887 | 6.5624 | 5.2143 | 3.0250
m=40 | 5.2874 | 2.6441 | 1.9176 | 0.8469 || 8.7712 | 6.6222 | 5.0837 | 3.4227

Table 12: Experimental results for environment ¢ with non-cyclic changes — without (upper tables} and
with (lower tables) random immigrants mechanism

Accuracy Adaptability
Tt ) 10 20 40 5] 10 20 40
m= 0 | 11.3863 | 83151 | 7.3330 | 3.1545 | 20.8555 | 15.1931 | 12,0690 | 7.5115
m= 1 | 15.8537 | 8.2427 | 6.3611 | 6.4486 || 22.0372 | 14.9632 | 11.5217 | 9.9522
m=10 | 14,4008 | 7.2456 | 7.1221 | 3.2806 || 20.2487 | 13.9904 | 11.7196 | 7.6266

m=20 | 13.6536

o

D991 | 53471 | 51406 || 19.4796 | 15.0338 | 9.6536 | 9.2481

m=40 | 10.8245 | 9.5401 | 6.3716 | 4.5104 || 15.9198 | 14.0723 | 10.3780 | 8.5031
Accuracy Adaplability
T ) 10 20 40 5 10 20 10

m= 0 | I8.8136 | 7.7115 | 3.6971 | 1.9020 || 28.6003 | 16.9907 | 11.7570 | 7.0057
m= 1 | 15.0837 | 8.0022 | 3.8054 | 2.7083 || 23.0277 | 15.3970 | 9.9306 | 7.3431
m=10 | 12.3109 | 5.7396 | 4.2164 | 1.1373 || 15.0849 | 13.0661 | L0.798] | 6.6793
m=20 | 11.5600 | 6.1781 | 2.9295 | 1.1769 || 17.9858 | 12.6995 | 8.8713 | 5.65H6
m=40 | 10.8352 | 52289 | 2.6689 | 1.7460 || 16.5785 | 10.9338 | 8.2416 | 5.9121

different aspects of evolutionary search process. l'or the type of changes considered here, the best choice
is a cooperation of both strategies.

Section 8 described experiments with non-stationary set of constraints (for cyclic and non-cyclic
changes). Experiments showed thal memory structures can improve the results bul for small values of
7 only. Asin experiments with non-stationary evaluation function the results of experiments with random
immigrants mechaniam were better than the results without it. T'his confirmed our previous observations

that the cooperation of both strategies represents the best approach. The experiments showed also that
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although the results of the algorithm with random immigrants extension are better, the risk of loosing
feasible part of the search space is growing too, especially when the feasible part has more complex shape.
MMenee tuning of replacement rate of random immigrants mechanism is often required.

One of the points of our research was also to demonstrate that environments created by the test-case
generator are sulliciently diverse and challenging, and might be appropriate lor [urther rescarch on non-
stationary optimizalion. With {his lest-case generalor we can experimentally compare propertics ol the
evolutionary algorithms and their extensions for many different types of changes, e.g.,

e [or dillerent numbers ol dimensions of the search space (controlled by parameter »),

e for different numbers of local optima in the environment (controlled by parameter w),

for different lengths and contours of the path of changes,

for different changing strategies of the matrix H,,

o [or dillerent lengths of time interval between changes (controlled by parameter 7)),

for cyclical and random types of parameters changes,
e cic.

We can also study dependencies between changed parameters, e.g.. whether a large number of local optima
or a long path of changes can be compensated by a large value of 7, large size of a memory bufler, or a
large replacement ralio.
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