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Abstract etc. [1, 2]. These parameters are usually derived

or inferred from the implementation of capture-
Identification of individuals in marine species, es- recapture models. Capture-recapture models are
pecially in Cetacea, is a critical task in several based on the possibility of identifying a specific
biological and ecological endeavours. Most of the animal (individual) from one sampling occasion to
times this is performed through human-assisted another, considering the first time the animal was
matching within a set of pictures taken in different photographically registered as a “capture” and
campaigns during several years and spread around the subsequent times as “recaptures” [3]. Since
wide geographical regions. This requires that the the 1970s, researchers relied on natural marks or
scientists perform laborious tasks in searching other visual features to identify animals with non-
through archives of images, demanding a signif- invasive means. This picture-based identification
icant cognitive burden which may be prone to technique was developed for cetaceans or other
intra- and interobserver operational errors. On large marine fauna, mainly because handling other
the other hand, additional available information, recognition means (f.e., attaching straps or belts
in particular the metadata associated to every im- to the individuals) is expensive, difficult and inva-
age, is not fully taken advantage of. The present sive, being impractical as an identification mean
work presents the result of applying machine learn- in the field. On the other hand, taking pictures
ing techniques over the metadata of archives of (captures or recaptures) is relatively inexpensive
images as an aid in the process of manual identi- and less difficult, providing reliable information
fication. The method was tested on a database on which were the individuals present at a given
containing several pictures of 223 different Com- place and time, with the obvious disadvantage of
merson’s dolphins (Cephalorhynchus commersoni) depending on futher recaptures of the individual
taken over a span of seven years. A supervised and a proper identification in the picture archives.

classifier trained with identifications made by the
researchers was able to identify correctly above
90% of the individuals on the test set using only
the metadata present in the image files. This re-
duces significantly the number of images to be
manually compared, and therefore the time and
errors associated with the assisted identification

Recognition of an individual cetacean in pic-
tures is usually performed using different fea-
tures. For example, southern right whales (Eu-
balaena australis) may be identified using the cal-
losities patterns located in the upper part of the
whales’” head. Recognition of notches and scars in
the edge trail of the fluke is common for sperm

Process. whales (Physeter macrocephalus) and humpback
Keywords: machine learning,  photo- whales (Megaptra novaeangliae), and the shape
identification, cetaceans, Commerson’s dolphins and notches on the dorsal fin is used in the identi-

fication of the killer whales (Orcinus orca) or the

1  Marine Mammal Individual Iden- bottle-nose dolphins (Tursiops sp.) [4, 5, 6].

tification As mentioned above, human-assisted recogni-
tion of dolphins and whales using pictures is a

In Biology, Ecology, and other sciences, the ability difficult and time consuming task. For this rea-
to recognize individuals allows researchers to ob- son, some software products are available to as-
tain relevant information that is crucial for several sist researchers on this task, like DARWIN [7, 8].
scientific purposes, including population param- However, these products are neither effective in
eters estimation such as size, fertility, survival all cetacean species, nor useful among species in
and mortality rates, home ranges and movements, which the same type of feature is used to produce
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the individual recognition. In particular, they
require a quite accurate supervised landmarking,
including identifying the tip of the fin, and the
position of the notches to be able to compensate
for the perspective distortion in taking the picture,
an unrealistic requirement most of the times [7].

A major source of false negatives in individual
identification in these systems is produced due
to the unsuccessful application of 3D correction
before matching a given record with previously
identified individuals. This is a critical issue, be-
cause pixel-based matching (for instance, using
Euclid distance) is not robust under landmark
positioning differences, which are almost certain
to occur due to intra and intersubjective appreci-
ation errors. For this reason, the success of land-
marking over images as an identification means is
tied to the operators’ ability to produce accurate
lanmarkings consistently. For this and other rea-
sons, according to Stewman [9], landmarking is
not entirely reliable, and additional information is
required during the record registration to optimize
further identifications.

Even more difficult is identification in a Genus
of southern hemisphere dolphins that have some
species with rounded dorsal fins, because it
is not possible to pinpoint landmarks. The
Cephalorhynchus species, and particularly C. com-
mersonii, require for their individual recognition
to rely on the traditional method in which the
operator is trained to find matches manually. The
notches in the trailing edge of the dorsal fin, and
also color variation patterns, are used for iden-
tification. The notches are visible at different
angles, and therefore are more likely to be useful
in photo-identification. In contraposition, other
kind of scars and abnormalities in the coloration
patterns are used as ancillary features, since gen-
erally they allow to identify the animal from only
one side.

So far, no reference in the literature proposes
the use of the metadata associated to the imagery
as a filtering means to lighten and speed up the
matching task. The purpose of this presentation
is to show the preliminary results of a research
line aimed to automatize marine mammal photo-
identification. Apart from image-based techniques
as the ones mentioned above, the ancillary infor-
mation present in the photographic database is not
taken advantage of. In a series of studies carried
out in the Patagonian coast, a database of individ-
ually recognized Commerson’s dolphins had been
kept in the LAMAMA-CECIMAR-CONICET In-
stitute [10]. The information accrued includes not
only pictures but also a series of dolphins’ descrip-
tors [11] (see Fig. 1). In this work we show how
this information can be used in the context of
automated recognition of individuals, achieving
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an identification accuracy above 90% employing
only the images’ metadata. This alleviates the
cognitive burden of the researchers in applying the
capture-recapture model, and shows that meta-
data combined with image-based techniques may
derive new automated identification products that
go beyond the state-of-the-art in marine mammal
photo-identification.

(a) Subtle notch and large auxiliary mark visible only
from the left side.

(b) Multiple visible notches and subtle auxiliary mark on
the right side.

Figure 1: Individually identified Commerson’s
dolphins in the LAMAMA-CESIMAR-CONICET
data base. The red areas show notches in the trail
of the dorsal fin. These are considered primary
marks. The (often more subtle) auxiliary marks
are shown in green. Primary marks are feasible
to be recognized from both sides of the animal,
while auxiliary marks generally are visible from
only one side.

2 Materials and methods

The preparation and process data were done in
four stages following the methodology proposed
by Ferrary [12] and Witten [13] for data mining
procedures:

1. Define the goals and the information sources,
and collect the data.

2. Analyze and preprocess the data.

3. Build and train models.
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4. Perform validation tests.

In what follows of this Section we describe each
of these steps (see also [14]).

2.1 Data collection and analysis

As stated above assisting in the identification of
the dolphins can significantly reduce the opera-
tor’s time, by reducing the number of photographs
to browse. We propose the use of a classifica-
tion model that aids in the matching process us-
ing patterns present in the pictures’ metadata.
Also, we aim to determine how similar are the
marks of certain identified animals. The informa-
tion is persisted in 869 MSAccess™™ database
records that hold the data and pictures of a pop-
ulation of Commerson’s dolphins, spanning along
seven years, that have a total of 223 identified
dolphins. These records, together with additional
metadata used for photo-identification are used
as instances (examples). From these instances we
preselected only the specific attributes that may
be relevant in the photo-identification task (see
next subsection). Then the data was migrated to
MSExcel™ | where data wrangling procedures
were applied for data extraction and cleansing.
Finally, numerical values were asigned to nomi-
nal attributes, and to text attributes indicating
ordinal values.

2.2 Attribute
cleansing

selection and data

A set of attributes that a priori hold signifi-
cant information that could assist the photo-
identification task were initially preselected to
train the classifier:

e Side. The side of the animal where the pic-
ture was taken (“right” or “left”). The scars
and amount of coloration attributes clearly
depend on the this attribute for a given indi-
vidual.

e Quality. A quality index between 0 and 3 is
assigned, related to image quality features in-
cluding brightness and contrast, fin correctly
focused, fin vertically aligned, and presence
of water waves or drops obscuring the fin.

e Distinctiveness. A distinctiveness index be-
tween 0 and 3 is assigned given by the intrinsic
features of the fin, including how visible or
distinguishable are the notches and marks in
the edge of the fin.

e Scars: A numerical quantity that represents
the amount of recognizable scars observed in
the picture. This attribute is related to side,
quality and distinctiveness.
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e Coloration. A numerical quantity that rep-
resents the amount of recognizable abnormal
coloration spots observed in the picture. Also
related to side, quality and distinctiveness.

e Zones. Specific areas in which the notches
and marks may appear in the dorsal fin are
designated with numbers 1 to 7 (see Fig. 2).
This attribute takes a “true” value if the in-
dividual have notches or marks in this zone,
and “false” otherwise.

e Notches. A numerical quantity that repre-
sents the amount of recognizable notches or
marks in the edges of the fin. Not necessar-
ily equal to the sum of all “true” values in
the zone attributes since a notch may involve
more than one zone, and also in a zone more
than one notch may be located.

e Catalog Number. A unique id number for
each identified animal.

e “Big/large/extended”, “Medium?”,
“Small/little”. These attributes describe
the amount of marks with this size feature.

e “Little bit/mild/imperceptible”, “Tri-
angular”, “Rounded”, “Salience”.

These attributes describe the amount of
marks with this shape feature.

~ prr—— ~
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Figure 2: The seven zones in the dorsal fin.

The latter two attributes had to be carefully
checked in order to be meaningful. Natural lan-
guage attributes are prone to spelling and wording
errors, and therefore disambiguation was required.
Records which had incomplete information were
discarded. Also, only the records that were origi-
nally used for photo-identification were considered.

3 Results

3.1 Attribute selection and classifica-
tion methods

Four different supervised classification algorithms,
each pertaining to a different classification method,
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Table 1: Accuracy (in %) of the three different classifiers with different subsets of attributes.

Dataset Name Naive Bayes KStar trees J48
full set 46.83 49.13 43.41
full set - Z7 67.73 68.35 66.02
full set - Z7 - Q 66.68 68.35 65.40
full set - Z7- Q- R 66.62 67.43 64.57
full set - Z7-Q-R-T 66.84 67.92 64.76

were used:

Neural networks: Multilayer Perceptron

Bayesian classificators: NaiveBayes
e Decision trees: J48

e K-nearest neighbor algorithm: KStar

To avoid overfitting, the attributes were selected
using Info Gain Attribute Eval, Gain Ratio
Attribute Eval and Chi Squared Attribute
Eval in conjunction with the Ranker search
method, that ranked all attributes by their in-
dividual evaluations [15, 16]. In all trials, the
results showed that the attributes Rounded (R),
Triangular (T), Zone 7 (Z7) and Quality (Q) were
mostly weighless and therefore were discarded.
Also Cfs Subset Eval combined with Best First,
showed the same behavior for attributes Little
bit/mild/imperceptible (L) and Zone 4 (Z4). Re-
moving some attributes we improved the accuracy
of the classifier, with respect to the full set of
attributes. In Table 1 the obtained accuracy of
gradually subtracting these attributes can be ap-
preciated.

3.2 Model construction and validation

Once the dataset (instances and attributes) was
cleansed and filtered, a standard cross-validation
procedure training was first performed. The
dataset included 869 instances of 223 individuals.
It is worth to note that the amount of “recaptures”
of each individual is very uneven, ranging from 1 in
most cases up to 24 in one case. Thus, the classes
are unbalanced and therefore special consideration
must be taken during the model construction to
avoid biasing the classifier[17]. In our case, we
splitted the dataset into three groups, according
to the amount of recaptures of each individual
in ranges from 1 to 4, 5 to 12, and more than
12. In the first group, the amount of instances
per individual is too low to achieve a significant
accuracy. On the other hand, in the third group
the amount of individuals is too low (only eight),
with a large amount of recaptures. For this reason,
excluding these examples would avoid unbalanc-
ing the classes during learning without severely
limiting the amount of individuals identified. We
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additionally used a fourth group that comprised
individuals with 5 or more recaptures. Thus, in
Table 2, the results of classification tests aiming
to compare the results variation between the the 5
to 12 and more than 5 recaptures are shown. The
subsets that were considered to be adequate were:

e Subset between 5 to 12 recaptures with a
total of 373 instances of 54 individuals.

e Subset with greater than or equal to 5 re-
captures with a total of 515 instances of 62
individuals.

To test whether the training set is statistically
meaningful, the ZeroR classifier was applied to
check the accuracy of the majority class. The
obtained result of 2.4862% correctly classified in-
stances was well above the 1.8% (fraclb4) ex-
pected by pure chance. For model construction,
each subset was split into training set and vali-
dation set. These split were made in two ways
90%-10% and 97%-3%. In all cases, the training
was performed using the cross-validation technique
with a k=10 (folds) with the same four learning
methods. The accuracies of the four methods are
shown in Table 3.

For both dataset and in both ways split training
set the accuracies were approximately the same,
varying between 61.12% and 68.31%, using differ-
ents classifiers.

3.3 Validation

Once the classifiers were trained with the filtered
training set, we tested them with the instances in
the validation set. This is the final intended use
of the system, since these examples act as if they
were new captures of already captured animals (see
Table 4). In this situation, the accuracy varied
between 56.86% and a 90% for different classifiers.
Nevertheless, the smaller the validation set, the
higher the classification percentage. For the 3%
validation set the figures ranged from 72.72% to
90%, while when using the 10% validation set these
values dropped to a range between 56.86% and
72.97%. There is no clear pattern on whether the
balanced group (5 to 12 recaptures) outperform
the more than 5 recaptures set. When considering
the 10% validation partition the best results are
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Table 2: Accuracy (in %) obtained with the four different classifiers with the complete dataset and the

balanced subsets.

Dataset Naive Bayes K Star J48  Multilayer Perceptron
Complete 46.69 49.14  43.34 41.64
5 to 12 67.73 68.35  66.02 63.47
>5 66.99 69.51  66.79 63.88

Table 3: Accurracy (in %) of the four classifiers with the two filtered training set.

Training split Dataset Naive Bayes KStar J48 Multilayer Perceptron
90% 5 to 12 66.66 65.77  63.98 62.5
>5 67.02 68.31  66.16 61.42
97% 5 to 12 66.02 67.4 62.98 62.7
>5 67.13 67.53  66.73 64.12

obtained for the 5 to 12 recaptures set, while
for the 3%validation partition, the best results
are obtained for the more than 5 recaptures set.
Anyway, the smaller the validation set, the better
the results.

4 Discussion and conclusion

We presented the result of applying machine learn-
ing techniques over the metadata of archives of
869 pictures taken of 223 different Commerson’s
dolphins images, as an aid in the process of manual
identification of individuals. The metadata con-
sisted of a set of manually taken annotations, one
record per picture, that described different aspects
of the animal’s fin and surrounding appearance,
together with ancillary information regarding the
place and time where the picture was taken. The
metadata was arranged as a set of attributes, and
incomplete or incorrect records were filtered out.
Attributes were further curated for schema con-
formance, mapping annotated values to numerical
or ordinal categories adequate for the automated
learning process. Finally, superfluous or noisy
attributes were filtered out.

Preliminary results showed that animals with
few pictures (below 5) were almost impossible
to identify with only this metadata. Therefore
the learning algorithm was focused only on ani-
mals with greater than or equal to 5 recaptures
records for each individual. A supervised classifier
was trained with the identifications provided by
the biologists. These results show that the sys-
tem may be quite helpful in the task of reducing
the supervised time and effort of identification
of new pictures, at least if there is a representa-
tive amount of priorly taken pictures of the same
individual.

As previously suspected, the results shown that
the smaller the validation set the higher the accu-
racy, and hence the correct identification of the
individuals. This gives an insight on the way this
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algorithm should be used for this particular pur-
pose. As new individuals are gathered in each pho-
tographic session [11], the number of photographs
to be analyzed after will be small (never exceeding
5% of the database photographs). Hence, the a
validation set of 3% is roughly reasonable to be
tested. Nevertheless, before each new identifica-
tion session, the algorithm should be re-trained, in
order to include the new photographed individuals.
The problem associated with the seldom captured
animals (less than four captures) is pending to be
resolved.

Current work around this project is focused on
enhancing the accuracy on seldomly recaptured
animals. Using metadata only, the semantics of
the manual annotation can be further mined us-
ing text mining to deliver a more fine-grained
set of nominal attributes regarding the descrip-
tion of the shapes and coloration of notches and
marks, using a convenient thesaurus. Also, we are
currently working on image analytics, using first
HaarCascade descriptors for ROI automatic detec-
tion (mainly of the fin in the pictures) and then
morphometric descriptors to obtain an additional
feature vector that combined with the available
metadata may achieve better identification perfor-
mance. Finally, we are considering other analytic
features of the global population of captured an-
imals. For instance, performing spatio-temporal
analysis of capture-recapture patterns may reveal
trends that may further aid in the automated
identification process.
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