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Abstract:
							                           
 Video-based fire detection (VFD) technologies have received significant attention from both academic and industrial communities recently. However, existing VFD approaches are still susceptible to false alarms due to changes in illumination, camera noise, variability of shape, motion, colour, irregular patterns of smoke and flames, modelling and training inaccuracies. Hence, this work aimed at developing a VSD system that will have a high detection rate, low false-alarm rate and short response time. Moving blocks in video frames were segmented and analysed in HSI colour space, and wavelet energy analysis of the smoke candidate blocks was performed. In addition, Dynamic texture descriptors were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP). These features were combined and used as inputs to Support Vector Classifier with radial based kernel function, while post-processing stage employs temporal image filtering to reduce false alarm. The algorithm was implemented in MATLAB 8.1.0.604 (R2013a). Accuracy of 99.30%, detection rate of 99.28% and false alarm rate of 0.65% were obtained when tested with some online videos. The output of this work would find applications in early fire detection systems and other applications such as robot vision and automated inspection. [1]
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1. Introduction

 Fire is one of the major hazards of the modern society as it causes grave and significant losses of lives, properties and socio-economic infrastructures around the world every year. In the past decades, different technologies have been developed to detect and control fire at very early stage. These technologies can be broadly classified into conventional methods and video-based techniques. Conventional methods employ ion or particle sensors, heat sensors, optical sensors (infrared, visible, ultraviolet), relative humidity sampler or air transparency sampler; whereas video-based fire detection (VFD) systems use video camera and computational techniques in image processing, machine vision and pattern-recognition to intelligently detect fire in a manner like the way humans sense fire. 

 Conventional methods have proven to be inefficient and unreliable in many applications and this could be attributed to many reasons, such as proximity of sensors to the source of the fire – to reduce transport delay. In addition, they are oftentimes difficult to use in places with excessive ceiling heights or large areas such as warehouses, tunnels, and outdoors. They are also not suitable in harsh environments and in areas with strong airflow- since the air flow may easily dilute the concentration of the smoke. 

 Video-based Fire Detection (VFD) techniques detect fire by recognizing either smoke or flame anywhere within the field of view of the camera at a distance by using numerical analysis to model the monitored area [13]. Vision-based detection techniques can be used to sense the presence of flames within the camera’s field of view, reflected fire light when flames are covered, presence of ambient or pluming smoke clouds, and intrusion into monitored property. VFD techniques are becoming viable alternatives to the conventional fire detection methods and have shown to be useful in solving several problems associated with conventional fire sensors [1]. VFD techniques have numerous advantages such as fast response, indoor and outdoor detection at a distance, non-contact, absence of spatial limits, ability to provide fire progress information, and forensic evidence for fire investigations [13].

 Currently, available VFD algorithms mainly use models that are trained with observable characteristics of flame or smoke. In early studies, flame detection was the main subject of investigation. Recently, more attention is being focused on smoke detection. This is because smoke is usually produced before flames and can readily be observed from a long distance; therefore, it is an important sign for early fire detection [2].

 Many smoke detection algorithms using video images captured in visible-spectrum have been proposed [3-13]. These algorithms extract structural and statistical features from visual signatures such as motion, colour, edge, obscuration, disorderliness, growth rate, contour, geometry, texture and energy of smoke regions. The extracted features are then used as inputs for rule-based, Bayesian, or rule-first-Bayesian-next analysis to detect the presence of smoke. A survey of different methods used for smoke detection is discussed in our earlier study [13]. [9] proposed a wavelet-based real-time smoke detection algorithm, in which both temporal and spatial wavelet transformations were employed. The temporal wavelet transformation is used to analyse the flicker of smoke like objects, while the spatial wavelet transformation is implemented to calculate the decrease in high-frequency content corresponding to edges caused by the blurring effect of smoke. [10] proposed a method targeted at reducing the false alarms of the smoke detection systems in their previous works. The smoke is represented as a texture using the parameters obtained from background estimation, wavelet transform, and colour information. The model is trained using SVM, and promising simulation results were obtained. [12] proposed a smoke-detection approach that utilizes block-based spatial and temporal analyses. A candidate-region extraction step is firstly performed using a combination of temporal difference and GMM background subtraction techniques. Then, the method extracts energy-based and normalized-RGB colour-based features within the spatial, temporal, and spatial-temporal wavelets domains [13]. The three features are combined and fed to a Gaussian kernel-based SVM for classification. To reduce the false alarm rate and maintain a high detection rate with a short reaction time, a temporal-based alarm decision unit (ADU) is introduced. An average detection rate of 83.5 %, false-alarm rate of 0.1% with average reaction time of 1.34 seconds was reported.

 Smoke detection has been recognized as part of dynamic texture (DT) segmentation. Nonetheless, DT segmentation is very challenging due to their unknown spatiotemporal extension and stochastic nature of the motion fields. Leveraging on the remarkable results obtained by researchers in dynamic textures segmentation, [2] proposed feature extraction methods that exploit dynamic characteristics of smoke for video-based smoke detection [13]. The algorithm is made up of various block-based processing stages which include candidate smoke blocks detection using motion and colour in RGB colour space; and candidate smoke blocks verification using accumulative motion orientation, Histograms of Equivalent Patterns (HEP)-based spatial texture descriptors, and Space-time Feature Analysis which consists of inter-frame difference and dynamic texture Descriptors on Three Orthogonal Planes [13]. They carried out extensive comparative studies on major spatial and dynamic texture descriptors. They introduced Edge Orientation Histogram (EOH) in three orthogonal planes. The performances of the proposed features are evaluated using SVM classifiers. Their experimental results show that improved detection accuracy and false alarm resistance are achieved compared with state-of-the-art technologies. 

 Due to the irregular shapes of smoke, varied lighting conditions, occlusions, shadows, scene complexity, video-based smoke detection remains a challenging task. This study proposes an effective smoke-detection method using spatial-temporal wavelet energy analyses and Weber Local Descriptor in three orthogonal planes (WLD-TOP) as dynamic texture descriptor. In this paper, we introduce a novel method for smoke detection that exploits variations in wavelet energy of a scene covered with smoke and dynamic textural properties of smoke. [16] demonstrated that WLD outperforms in texture recognition than state-of-the-art best descriptors like LBP, Gabor, and SIFT. The basic WLD descriptor is a histogram where differential excitation values are integrated according to their gradient orientations. In this study, we generalize the spatial mode of WLD to a spatiotemporal mode as it was done in previous studies whereby LBP was generalized as a spatiotemporal descriptor, i.e., LBP in three orthogonal planes (LBP-TOP), which is very promising in DTs recognition. Likewise, we refer to the spatial-temporal mode of WLD as WLD-TOP.

 The rest of the paper is organized as follows. The methodology used for the Smoke Detection system is discussed in Section 2. Experimental results are presented in Section 3. Section 4 concludes the paper.




2. Methodology


2.1. VSD System Architecture

The proposed Video-based Smoke Detection
(VSD) system uses a combination of attributes (motion, colour, energy and
texture) whose mutual occurrence leaves smoke as their only combined possible
cause; and detect smoke using SVM classifier by block processing. The block
diagram of the proposed VSD system is shown in Fig. 1. The architecture
comprises of data acquisition, pre-processing, feature extraction,
classification and post-processing stages.




2.2. Pre-Processing

The
pre-processing stage comprised many sub-units which were interconnected to
obtain regions that were suspected to contain smoke pixels. The sub-units in
this stage were: image sub-blocking, RGB-Greyscale image conversion, colour
analysis in HSI colour space, GMM background modelling and subtraction. For the
purpose of model training and testing, video clips were collected from the test
data previously used in [10], along with additional video clips downloaded from
the following websites: http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips;
http://cvpr.kmu.ac.kr and http://imagelab.ing.unimore.it/visor. The frame rate
of the video data varied from 15 to 30 Hz and the size of the video clips
varied between 320 by 240 and 640 by 480 pixels. Brief description of the video
clips used for system training and testing is shown in Table 1. Using video
clips employed in previous studies allows quantitative comparison of proposed
method with state-of-the-art methods in smoke detection. Since smoke is a
non-rigid object, object-based image segmentation is inefficient for smoke
detection in video. Therefore, a block-based technique, which provided a more
effective smoke detection was used. Input images were subdivided into
non-overlapping ‘N by N' square blocks, and the features were extracted from
these local regions for smoke detection. Generally, there is a trade-off
between complexity and performance of block-based image segmentation. It was
observed that as the number of sub-blocks increased, the classification
accuracy improved. However, the computational cost and the complexity of the
detection also increased. The block size of 16 by 16 pixels was found to be a
good compromise between accuracy and complexity. Video clips with frame height
or width that were not multiple of 16 were padded by repeating border elements
of the frame to make the frame height and width to be a multiple of 16.
Sub-blocking was followed by a moving-block detection algorithm implemented
using Gaussian Mixture Models (GMM). The video frames were then transformed
into HSI colour space, where further analyses were performed to differentiate
smoke candidate blocks from other non-smoke moving blocks. Smoke is
semi-transparent when it initially starts to expand, which leads to a decrease
in the chrominance values of pixels. YUV, YCbCr, HSV and HSI colour spaces were
investigated on smoke of different colours to find robust colour model that
will adequately characterize smoke of different colours with low computational
complexity. Since smoke may have any colour (which can be grey, light grey,
white, dark grey or black) depending on compositions of the fuel material, the
chrominance based methods were found to be inadequate for smoke detection. HSI
colour space was used for the proposed VSD as it provided colour-invariant
characteristic feature that reliably differentiated smoke from other moving
objects. Every pixel in each block was transformed from RGB colour space to HSI
colour space using Eq (1) to (3). Every
frame in a video sequence was multiplied by the foreground mask obtained from
GMM. Saturation (S) and Intensity (I) were obtained from the resulting frame. A
pixel is considered to be a smoke candidate if its saturation and intensity
were less than empirically determined thresholds. A binary mask, (Colour_Motion_mask), was then
obtained which indicated whether a given pixel was a smoke candidate or not.
Since the Hue component of HSI was not required in this analysis, only
Saturation and Intensity were computed to reduce computational complexity of
the smoke detection system. The Colour_Motion_mask,
φ(i, j) is defined by Eq (4).

Hue, H is given
as
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where
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Saturation, S is given as
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while intensity, I is given as
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The flowchart for the HSI colour analysis of
moving block is shown in Fig. 2.
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Fig. 1



The VSD
Architecture.
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Fig. 2



Flowchart of the HSI
Colour Analysis of a Moving Block


















Table 1




Brief description
of the video clips used for system training and testing









	
  Video Sequence
  
	
  Source
  
	
  Description
  
	
  Frame Rate
  



	
  Movie 1
  
	
  http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips/
  swindow.avi
  
	
  Burning truck 
  
	
  25
  



	
  Movie 2
  
	
  http://imagelab.ing.unimore.it/visor/ smoky.avi
  
	
  Smoke from fire in a garden 
  
	
  30
  



	
  Movie 3
  
	
  http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips/swastebaket.avi
  
	
  Smoke from burning cotton rope
  
	
  25
  



	
  Movie 4
  
	
  http://cvpr.kmu.ac.kr/movmt.avi
  
	
  People walking outside
  
	
  15
  



	
  Movie 5
  
	
  http://www.firesense.eu./black_smoke.avi
  
	
  Black smoke from burning tire 
  
	
  25
  



	
  Movie 6
  
	
  http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips/sbehindthefence
  
	
  Fast-moving smoke with a pedestrian
  
	
  15
  



	
  Movie 7
  
	
  Obtained using camera in an outdoor scene
  
	
  Burning foam mattress 
  
	
  25
  



	
  Movie 8
  
	
  www.HDNatureFootage.com/trucks.mov
  
	
  Gray-coloured moving truck 
  
	
  30
  



	
  Movie 9
  
	
  www.HDNatureFootage.com/rhinos.avi
  
	
  Two rhinos walking outside
  
	
  25
  



	
  Movie 10
  
	
  www.HDNatureFootage.com/men.mp4
  
	
  Three men walking in a hallway
  
	
  15
  



	
  Movie 11
  
	
  http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips/
  Sparkinglot.avi
  
	
  Crowded parking lot
  
	
  15
  



	
  Movie 12
  
	
  http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips/
  carlight2.avi
  
	
  Light smoke in a tunnel with pedestrians
  
	
  30
  



	
  Movie 13
  
	
  Obtained using camera in a poorly-lit room
  
	
  Candle Smoke in a room 
  
	
  30
  



	
  Movie 14
  
	
  http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips/
  carlight2.avi
  
	
  Cars in a tunnel at night
  
	
  25
  



	
  Movie 15
  
	
  http://cvpr.kmu.ac.kr/forest_smoke.avi
  
	
  Light smoke in a forest fire
  
	
  15
  



	
  Movie 16
  
	
  Obtained using camera in an outdoor scene
  
	
  Moving cloud in a forest 
  
	
  15
  



	
  Movie 17
  
	
  www.HDNatureFootage.com/ocean_wave.mov
  
	
  Ocean wave
  
	
  30
  



	
  Movie 18
  
	
  http://www.firesense.eu./ sparkinglot.avi
  
	
  Smoke from fire in a parking lots
  
	
  25
  



	
  Movie 19
  
	
  Obtained using camera in an outdoor scene
  
	
  Fast moving cars on a tarred road
  
	
  30
  






















 Pixels with the maximum number of changes across frames were selected from a large number of video sequences (smoke and non-smoke video clips). Saturation and Intensity values were computed for the selected pixels in each frame of the sequences. The results obtained for the selected pixels in a typical smoke video clip and non-smoke video clip are shown in Fig. 3(a to d). From the result, it was observed that variations in intensity and saturation of smoke pixels are significantly different from those of other moving objects. While variations in smoke pixels are gradual and irregular, that of rigid moving objects tends to be spontaneous and regular. The gradual and irregular nature of variations in intensities of smoke pixels could be attributed to irregular nature of smoke motion. Also, in the absence of strong wind, the intensity of smoke pixels varied slowly when compared with that of a pixel of a non-smoke solid moving object.

As shown in Fig. 3(a) and Fig. 3(c), saturation values of the
selected smoke pixel varied between 0.061 and 0.318; while that of the selected
non-smoke moving pixel varied between 0.005 and 0.19. The results indicated
that a smoke pixel could not have zero value -since saturation of zero value
could only be obtained from objects with pure black colour. Though the minimum
and maximum saturation values obtained for the selected non-smoke moving pixel
were 0.005 and 0.19 respectively, it should be noted that the saturation value
of a non-smoke pixel could vary between 0.000 (for pure black object) and 1.000
(for pure white object). To reduce the possibility of categorizing a smoke
pixel as non-smoke a threshold value of 0.7 was selected for maximum saturation
value that could be obtained from smoke pixel. As shown in Fig. 3(b) and Fig. 3(d),
it was observed that the intensity values of the selected smoke pixel varied
between 0.319 and 0.616 while that of selected non-smoke object varied between
0.290 and 0.990. The intensity value of an ordinary non-smoke object can range
from 0.000 (for black object) to 1.000 (for shining white object). Though the
maximum intensity value of the selected smoke pixel was 0.616, a threshold
value of 0.900 was used to differentiate smoke pixel from other moving objects.
This was important to reduce the possibility of rejecting a smoke candidate
pixel at the pre-processing stage. Though the selected threshold allowed other
non-smoke blocks to pass the pre-processing stage, the non-smoke blocks were
easily rejected during SVM classification.

 Thus, in generating colour mask, a moving pixel was considered to be smoke candidate if its saturation was less than 0.7 and its intensity less than or equal to 0.9. An "AND" logical combination of the colour mask and motion mask was performed to obtain smoke candidate blocks that were fed to the feature extraction stage.


2.3. Feature Extraction

The input data
(smoke candidate blocks in the video frame) was transformed into a reduced
representation set of features at this stage. The outputs (marked blocks) of
the pre-processing stage were used as the inputs for the feature extraction
stage. Two processes used in this stage were 2-D spatial-temporal wavelet
analysis and dynamic texture analysis.


2.3.1. 2-D
spatial-temporal wavelet analysis.

Previous
studies have shown that wavelet sub-images contain the spatial texture and edge
information of the original image in form of local extrema. Discrete Wavelet
Transform (DWT) has become an efficient tool in evaluating the energy variation
of an intensity image for smoke detection [8]. DWT has also proved useful in
obtaining decomposed images through various sub-bands that allow extraction of
smoke’s features at different resolutions and frequencies. The two-dimensional DWT is made up of approximation and detail
parts. The original image is decomposed into four sub-images, which are Wф,
WφH, WφV and WφD.
The scale j + 1 approximation coefficients are again divided into four
sub-images of smaller size. In other words, the output of DWT is a vector of
the form [An, (Hj, Vj, Dj)j =
1,…, n] where An is a low-resolution approximation
(low-frequency data of row and column, LL) of the original image, Hj
is wavelet sub-image containing the image details in horizontal direction
(high-frequency data of row and low-frequency data of column, HL), Vj
is wavelet sub-images containing the image details in vertical direction (low-frequency
data of row and high-frequency data of column, LH) , Dj
is wavelet sub-image containing the image details in diagonal direction
(high-frequency data of row and column, HH) at the j-level decomposition. The output of n-level DWT
decomposition on the original image will produce 3n + 1 sub-images. A 1-level 2D decomposition is shown in Fig.
4. 
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Fig. 3



Saturation and intensity variation of selected
pixels of video frames with smoke.






 (a) Saturation variation
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Fig. 3



Saturation and intensity variation of selected
pixels of video frames with smoke. 

 






(b) Intensity variation














[image: 3026004_gf6.png]


Fig. 3



Saturation and intensity variation of
selected pixels of non-smoke video frames






(c) Saturation variation
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Fig. 3



Saturation and intensity variation of
selected pixels of non-smoke video frames






 (d)
Intensity variation
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Fig. 4



2-D Discrete wavelet transform















High-frequency energy of each block was computed using single stage
2-D discrete wavelet decomposition of the current image block using Eq (5).
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 where bk is the kth block of the active frame and It is the input image at time t; H, V and D are vertical, horizontal and diagonal sub-band details respectively. 

 One-level Daubechies (Haar) wavelet was used for the wavelet analysis. To extract spatial-temporal energy variations from video frames, wavelet energy was computed for W consecutive video frames and five derived features were calculated from the sub-band energies. The five statistical parameters were variance, standard deviation, skewness, kurtosis and sum of inter-frame energy differences. 

 Blocks with maximum temporal variation across frames were selected from a smoke video clip and non-smoke video clip. Each block’s energy was computed over the video sequences. Fig. 5 shows the results of a comparison of the energy analysis for smoke and an ordinary moving object. Smoke produced a smoother variation in the energy value. In contrast, non-smoke solid moving objects produced large instantaneous variations in the energy value. To obtain these variations irrespective of the absolute value of the block energy, several statistical parameters were computed. The computed parameters were: variance, standard deviation, skewness, kurtosis and sum of inter-frame energy differences. 

 Fig. 5(a) and 5(b) show that changes in variance of wavelet energy produced when a selected block was obscured by smoke were more irregular than when a selected block was obscured by non-smoke moving objects. The variance of wavelet energy in the case of non-smoke moving block was predictably regular and varied from near zero to maximum value along the consecutive video frames. Fig. 5(c) and 5(d) show the plot of sum of energy change for the selected block in smoke and non-smoke block respectively over time. It could be observed that the sum of energy change for non-smoke moving objects exhibits more predictable, regular and oscillatory change than that of smoke. From the results, all the statistical parameters obtained from wavelet energy analysis were relevant in discriminating smoke from other moving objects.
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Fig. 5(a) 



Variance of energy change for
    selected block in video with smoke
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Fig. 5(b)



Variance of energy change for
    selected block in non-smoke video
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Fig. 5(c)



Sum of energy change for selected
    block in video with smoke
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Fig. 5(d)



Sum of energy change for selected
    block in non-smoke video















The results obtained showed that the spatial-temporal features
obtained from wavelet energy of a video clip could easily be used to
distinguish smoke from non-smoke moving object.


2.3.2. Dynamic Texture
analysis using Weber Local Descriptor (WLD)

 Weber Local Descriptor (WLD) descriptor is based on Weber’s Law which states that the change of a stimulus (such as sound or light) that is just noticeable is a constant ratio of the original stimulus. Inspired by this law, [16] proposed WLD descriptor for texture representation. WLD descriptor represents an image as a histogram of differential excitations and gradient orientations and possesses several desirable properties such as robustness to noise and illumination changes, elegant detection of edges and powerful image representation [16]. WLD is computationally simple and effective for texture classification, and it is complementary to LBP. Three steps which are required in computing basic WLD descriptor are: finding differential excitations, gradient orientations and building the histogram.

 To get differential excitation ℰ(xc) of a pixel xc, firstly the intensity differences of xc with its neighbours xi, i = 1, 2, …, p are calculated as
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Then the ratio
of total intensity difference of xc with its neighbours xi
to the intensity of xc is calculated as follows:
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Arctangent function can be used as a filter on fratio
to enhance the robustness of WLD against noise which results in:
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 where Ixx is the intensity difference between two pixels on the left and right of the current pixel xc, and Iyy is the intensity difference of two pixels directly below and above the current pixel,   

 The gradient orientations are quantized into T dominant orientations as:

where
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In our case T = 12 and the
dominant orientations are
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