
All Near Neighbor Graph Without Searching

Edgar Chávez1, Verónica Ludueña2, Nora Reyes2, and Fernando Kasián2

1Centro de Investigación Cientı́fica y de Educación Superior de Ensenada, México

{ elchavez}@cicese.mx
2Departamento de Informática, Universidad Nacional de San Luis, San Luis, Argentina

{ vlud, nreyes, fkasian}@unsl.edu.ar

Abstract

Given a collection of n objects equipped with a dis-

tance function d(·, ·), the Nearest Neighbor Graph

(NNG) consists in finding the nearest neighbor of

each object in the collection. Without an index the

total cost of NNG is quadratic. Using an index the

cost would be sub-quadratic if the search for indi-

vidual items is sublinear. Unfortunately, due to the

so called curse of dimensionality the indexed and the

brute force methods are almost equally inefficient. In

this paper we present an efficient algorithm to build

the Near Neighbor Graph (nNG), that is an approx-

imation of NNG, using only the index construction,

without actually searching for objects.

Keywords: Near Neighbor Graph, Proximity Search,

Clustering, Metric Indexing

1 Introduction

The nearest neighbor graph (NNG) is used in areas as

diverse as machine learning, statistics, optimization

and wireless communication networks and genomics.

A collection of sites or objects is given, and the objec-

tive is to find, for each object the nearest neighbor in

the collection. If the objects are points in the plane,

there are well known efficient algorithms using, for

example, the Voronoi diagram [1]. For collections of

points in higher dimensions it is not possible to effi-

ciently build the NNG because the algorithms have

an exponential dependence on the dimension of the

points. If the objects are more abstract (think for ex-

ample in strings representing genes in computational

biology, documents in a collection, digital images) the

problem becomes more difficult to solve. Fortunately

there is a well accepted model for proximity problems

in general, described below.

Citation: E. Chávez, V. Ludueña, N. Reyes and F. Kasián. All

Near Neighbor Graph Without Searching. Journal of Computer Sci-

ence & Technology, vol. 18, no. 1, pp. 61-67, 2018.

DOI: 10.24215/16666038.18.e07
Received: March 01, 2017 Revised: June 01, 2017 Accepted:

August 30, 2017.

Copyright: This article is distributed under the terms of the Cre-

ative Commons License CC-BY-NC.

Proximity searching can be formalized using the

metric space model [2]. A metric space is composed

by a universe of objects U, and a distance function d.

The distance function gives us a dissimilarity criterion

to compare objects from U.

Two basic primitives in similarity searching, on

metrics spaces, are: range query and k-nearest neigh-

bor. k-NN(q) query is a building block for a large

number of problems in a wide number of applica-

tion areas. For instance, in pattern classification,

the nearest-neighbor rule can be implemented with 1-

NN(q)’s [3].

Let be S ⊆ U a given database, the Nearest Neigh-

bor Graph (NNG) is a graph with S as the vertex set

and with an edge from u to v whenever v was the near-

est neighbor of u. It is often called the All Nearest

Neighbor Problem. It could be generalized to retrieve

the k-NN of all elements of database: the All-k-NN

problem. It is a useful operation for batch-based pro-

cessing of a large distributed point dataset.

It is customary to use the number of distance evalu-

ations as the complexity measure, because he distance

is considered to have the leading cost in the problem.

For general metric spaces there are several methods to

preprocess the database, in order to reduce the num-

ber of distance evaluations [2], and then avoiding the

exhaustive search. However, when the database is

very large or the distance is too costly, building an

index and then performing an exact k-NN query for

each database element could be very expensive too.

In these cases, an alternative is to settle for the re-

sponse to approximate similarity queries, which will

save runtime at the price of losing accuracy in the

response. But, it still could be very expensive, even

more if we consider that in this way many calculated

distances during the index construction are wasted,

because queries do not take complete advantage of

these calculations. Thus, it can be considered that an

even cheaper way to calculate the approximate nearest

neighbors could use directly the distances calculated

during the index building, in order to approximate the

response, especially if there is a reasonable chance

that during the construction each element would be

compared with very close elements. Such is the case

of the Distal Spatial Approximation Tree (DiSAT) [4].

- ORIGINAL ARTICLE -

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

61

In this paper we present a novel approach to com-

puting the nNG. The central idea is to use the index

itself as an approximation of the NNG. We selected

a novel index for that task, the Distal Spatial Approx-

imation Tree (DiSAT). After a few rebuilds, we will

have a fairly good nNG without performing individ-

ual searches, and at a fraction of the cost building the

index and querying every object. We present experi-

mental results supporting our claims. A preliminary

version of this paper appears in [5].

It is worth noticing that research in metric indexing

have a big gap between theory and practice. Complex-

ity models parametrized by the intrinsic dimension of

the metric space does not exist. First of all, there is

not a usable dimension definition capturing the diffi-

culty of practical implementations. The most recent

attempt to evaluate intrinsic dimension estimators is

[6] and it does cover all the cases.

This paper is organized as follows: Section 2

presents a brief description of some useful concepts.

In Section 3 we give a description of the DiSAT. Sec-

tion 4 presents our proposal, and Section 5 contains

the empirical evaluation of our proposed solution. Fi-

nally, in Section 6 we conclude and discuss about pos-

sible extensions for our work.

2 Previous Concepts

In this section we briefly state the problem in a more

formal way to continue the discussion. A metric space

is composed by a universe of objects U, and a distance

function d : U×U→R
+, such that for any x,y,z ∈U,

d(x,y)> 0 (strict positiveness), d(x,y) = 0 ⇐⇒ x= y

(reflexity), d(x,y) = d(y,x) (symmetry), and obeying

the triangle inequality: d(x,z)+d(z,y)≥ d(x,y). The

smaller the distance between two objects, the more

similar they are. We have a finite database S, which

is a subset of U and can be preprocessed. Later, given

a new object from U (a query q), we must retrieve

all elements found in S close to q, using as few dis-

tance computations as possible. Similarity queries,

in metrics spaces, are usually of two types, for a

given database S with size |S|= n, q ∈ U and r ∈ R
+:

(q,r) = {x ∈ S | d(q,x) ≤ r} denote a range query;

and k-NN(q), denotes the k-nearest neighbors, for-

mally it retrieves the set R ⊆ S such that |R| = k and

∀u ∈ R,v ∈ S− R, d(q,u) ≤ d(q,v). This primitive

is a fundamental tool in cluster and outlier detection

[7, 8], image segmentation [9], query or document rec-

ommendation systems [10], VLSI design, spin glass

and other physical process simulations [11], pattern

recognition [3], and so on.

The distance is considered expensive to compute

(think, for instance, in comparing two fingerprints).

Thus, the ultimate goal is to build offline an index in

order to speed up online queries. Different techniques

to solve the problem of similarity queries have arisen,

in order to reduce these costs, usually based on data

preprocessing. All those structures work on the ba-

sis of discarding elements using the triangle inequal-

ity, and most use the standard divide-and-conquer ap-

proach.

A version of the k-NN problem, perhaps less stud-

ied, is the All-k-NN problem. That is, if |S| = n, get

the All-k-NN is retrieve, efficiently, the k-NN(ui) for

each ui in S, performing less than O(n2) distance eval-

uations. It is a useful operation for batch-based pro-

cessing of a large distributed point dataset. Consider,

for example, a location-based service which recom-

mends each user his or her nearby users, who may

the candidates of new friends. Given that locations

of users are maintained by the underlying database,

we can generate such recommendation lists by issuing

an All-k-NN query on the database. In a centralized

database environment, we can use the existing All-k-

NN algorithms.

The kNNG is a weighted directed graph connect-

ing each object from the metric space to its k nearest

neighbors, that is, G(S,E) such that E = {(u,v),u,v∈
S∧ v ∈ k-NN(u)}. G connects each element through

a set of arcs whose weights are computed according

to the distance of the corresponding space. Building

the kNNG is a direct generalization of the all-nearest-

neighbor (All-NN) problem, which corresponds to

the 1NNG construction problem. The kNNG offers

an indexing alternative which requires a moderately

amount of memory, obtaining reasonably good perfor-

mance in the search process. In fact, in low-memory

scenarios, which only allow small values of k the

search performance of kNNG is better than using clas-

sical pivot-based indexing alternative [12, 13].

The naı̈ve algorithm for kNNG calculates the dis-

tance function d between each ui ∈ S and every ele-

ment of S, so it has quadratic complexity. Even, when

we model similarity as a metric space, we are already

approximating the real retrieval need of users. In fact,

given a dataset, we can use several distance functions,

each of them considering some aspects of objects and

neglecting others. Likewise, when we design a model

to represent real-life objects, we usually lose some

information. Moreover, even if we find the proper

metric and a lossless object representation, there are

high-dimensional metric spaces where solving simi-

larity queries requires reviewing almost all the dataset

no matter what strategy is used. In addition, in many

applications, the query speed is much more important

than its precision. That is, users want a fast response

to their queries and will even accept approximate re-

sults (as far as the number of false hits is moderate).

This has given rise to a new approach to the similarity

search problem: we try to find the objects relevant to

a given query with high probability.

The goal of the approximate search is to signifi-

cantly reduce search times by allowing some “errors”

in the query outcome. This alternative to the “exact”

similarity searching is called approximate similarity

searching [14], and it includes approximate and prob-

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

62

abilistic algorithms. The general idea of approximate

algorithms is to allow a relaxation on the precision

of the query in order to obtain a speed-up the query

time complexity. In addition to the query, a precision

parameter ε is specified to control how far away we

want the outcome of the query from the correct re-

sult. A reasonable behavior for this kind of algorithm

is oncoming asymptotically to the correct answer as

ε get closer to zero, and complementarily, speed up

the algorithm, losing precision, as ε moves in the op-

posite direction. Hence, a successful approximation

technique must have a good balance quality/time [15].

To evaluate the performance of an approximate sim-

ilarity search it must be considered: improvement in

efficiency and accuracy of approximate results. The

good approximation algorithms should offer large im-

provements in efficiency and high accuracy of approx-

imate results. But, there must be a trade-off between

both. The improvement in efficiency can be stated as:

Cost(Q)

CostA(Q)

where Cost(Q) and CostA(Q) are the number of dis-

tance evaluations needed to perform an exact query

and an approximate query Q, respectively. Q can be a

range or a k-NN query.

When performing approximate searches we must

evaluate the retrieval effectiveness of the method. In

an information-retrieval scenario, two measures are

used as performance measures: Recall and Precision.

Recall is defined as the number of relevant objects re-

trieved by a search divided by the total number of ex-

isting relevant objects. While precision is defined as

the number of relevant objects retrieved by a search di-

vided by the total number of objects retrieved by that

search. If the R represents the result-set of an exact

similarity search query and RA the result-set returned

by the approximation query, these measures can be

formally stablished as:

Precision =
|R∩RA|

|RA|
and Recall =

|R∩RA|

|R|
.

As we are focused on k-nearest neighbor searches,

we can observe that given k the precise and approxi-

mate response sets both have a fixed cardinalities: k.

Thus, the recall and precision measures always return

identical values. Therefore, as follows we only use

the precision measure.

Another measure to evaluate is the relative error on

distances [16]. Relative error on distances compares

the distances from a query object to the object in the

exact and approximate results:

d(oA,q)− d(oR,q)

d(oR,q)
=

d(oA,q)

d(oR,q)
− 1

where oA is the approximate nearest neighbor and oR

is the real nearest neighbor.

By this way, we computed the ratio between the

distance to the object reported by the approximate al-

gorithm and the real nearest neighbor minus 1. In

our case, because we want to compute the All-1-NN,

the average of the resulting quantities over all the

elements is called the average relative error on dis-

tances.

3 Distal Spatial Approximation Tree

The Spatial Approximation Tree (SAT) is a proposed

data structure [17] based on a concept: approach

the query spatially. It has been shown that the SAT

gives better space-time tradeoffs than the other exist-

ing structures on metric spaces of high dimension or

queries with low selectivity [17], which is the case in

many applications. The Dynamic Spatial Approxima-

tion Tree (DSAT) [18] is an online version of the SAT.

It is designed to allow dynamic insertions and dele-

tions without increasing the construction cost with

respect to the SAT. It is very surprising that DSAT

is more efficient for searching than the SAT. For the

DSAT the database is unknown beforehand and the

objects arrive to the index at random as well as the

queries. Then, it arises the Distal Spatial Approxima-

tion Trees (DiSAT) [4] that improves regarding search

performance over SAT and DSAT. DiSAT obtains bet-

ter behavior on searches just by considering a differ-

ent construction heuristic from SAT, but it maintains

the same principles of searching and building process.

The SAT is built as follows. An element a is se-

lected as the root, and it is connected to a set of neigh-

bors N(a), defined as a subset of elements x ∈ S such

that x is closer to a than to any other element in N(a).
The other elements (not in N(a)∪{a}) are assigned to

their closest element in N(a). Each element in N(a)
is recursively the root of a new subtree containing the

elements assigned to it. From the previous definition

of the SAT, the starting set for neighbors of the root

a, N(a) is empty. Particularly, SAT selects the first

neighbor between all the elements in S−{a}, as its

closest element and then considers if any other ele-

ment can become a neighbor by analyzing them in an

ordering from nearest to farthest. However, it could

be possible to select any database element as the first

neighbor. Inversely, DiSAT selects the first neighbor

as its farthest elements in S−{a} and uses the reverse

ordering of the other elements to analyze if any of

them can become a neighbor. Nevertheless, the same

searching algorithm can be used on both trees because

both uses the same condition to be a neighbor [17, 4].

This heuristic change of DiSAT increases the discard-

ing power of the SAT by selecting distal nodes instead

of the proximal nodes proposed in the original paper.

Please note that this heuristic is the exact opposite of

the original ordering in the construction of the SAT.

Besides, DiSAT and SAT have the advantage of not

having to tune any parameter.

Algorithm 1 gives a formal description of the con-

struction of our data structure. As it can be seen in

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

63

Algorithm 1 Algorithm to build a DiSAT for S∪{a}
with root a.

BuildTree(Node a, Set of nodes S)

1. N(a)← /0 /* neighbors of a */

2. R(a)← 0 /* covering radius */

3. For v ∈ S in decreasing distance to a Do

4. R(a)← max(R(a),d(v,a))
5. If ∀b ∈ N(a),d(v,a) < d(v,b) Then

6. N(a)← N(a)∪{v}
7. For b ∈ N(a) Do S(b)← /0

8. For v ∈ S−N(a) Do

9. c← argminb∈N(a)d(v,b), S(c)← S(c)∪{v}

10. For b ∈ N(a) Do BuildTree(b,S(b))

line 3, DiSAT uses farthest-to-nearest order from the

root. Searching is done with the standard procedure.

When working with hyperplanes to perform data sepa-

ration it is advisable to use object pairs far from each

other as documented in [2] for the GNAT and GHT

data structures. Using the above observations, it is

possible to ensure a good separation of the implicit

hyperplanes by selecting the first neighbor as the far-

thest element to the root, and as a secondary effect the

covering radii of neighbors are smaller than in SAT.

Thereby, the partition induced by the DiSAT construc-

tion on the space has the nice property of obtaining a

good data separation, that is useful for our approach

to All-1-NN.

4 Our proposal

We decided to attack the problem of the 1-nNG, i.

e. to retrieve a near neighbor of each item in the

database without comparing it against all the others.

The idea of this proposal is maintaining for each item,

during construction of the index, the closest element

seen. This makes sense because the root knows the

distances to every object in the database and as we

descend the tree less information will be stored. No

searches will be performed.

We used the DiSAT as the choice index, because as

we previously mentioned it do not require any parame-

ter and produces a very good partition on the database.

During tree construction we maintain for each object

its closest element seen among all which it was com-

pared with. When the construction finalizes we can

retrieve for each oi ∈ S a near neighbor x and its dis-

tance d(oi,x), where 1-nN(oi) = {x}.
After the DiSAT construction not all the nodes will

have its nearest neighbors. Our hypothesis is that by

rebuilding the index a few times we can improve the

quality of the approximation.

5 Experimental Results

To evaluate our proposal, the experiments consisted

in obtaining the approximate All-1-NNA of each ele-

ment, only by building the DiSAT. We computed the

true All-1-NN using the DiSAT as an auxiliary index,

and searched for the nearest neighbor of each item in

the database. It is cheaper than a brute force approach.

The total cost of the 1-NNG considers all distance

evaluations performed for construction and searching.

All our results are averaged over 10 executions on dif-

ferent permutations of the datasets. As we provide

an approximate answer, we need to analyze its quality

by calculating precision, recall, relative error of differ-

ences and complexity of each option.

For the experiments, we consider a set of real-life

metric spaces with widely different histograms of dis-

tances available from www.sisap.org [19]:

Strings: a dictionary of 69,069 English words. The

distance is the edit distance, that is, the minimum

number of character insertions, deletions and substi-

tutions needed to make two strings equal.

NASA images: a set of 40,700 20-dimensional fea-

ture vectors, generated from images downloaded from

NASA.The Euclidean distance is used.

Color histograms: a set of 112,682 8-D color his-

tograms (112-dimensional vectors) from an image

database. Any quadratic form can be used as a dis-

tance, so we chose Euclidean distance.

It is interesting to analyze how the intrinsic dimen-

sionality affects the behavior of our approach. To this

end we experimentally evaluated the different solu-

tions over synthetic metric spaces where we can con-

trol the intrinsic dimensionality. We use collections of

100,000 vectors of dimensions 4, 8, and 12, uniformly

distributed in the unit hypercube. We do not use ex-

plicitly the information of the coordinates of each vec-

tor. In these spaces we also use Euclidian distance.

Figure 1 illustrates the costs of the exact solution

against our approximate proposal. We show the cost

measured in distance evaluations for each rebuilding

of the index. Thus, the first construction is indicated

by 0 rebuilding, 1 rebuilding means that we have con-

struct firstly a DiSAT and secondly a DiSAT from the

balls obtained with the first construction, and so on.

As can be noticed, the cost of the exact solutions is

shown as constant, because it do not depend of any

rebuilding. Figure 1(a) shows the costs for the three

real metric spaces. For example, in the plots we name

STRINGS-exact the cost of 1-NNG and STRINGS-

approx the cost of our 1-nNG solution, for the space

of Strings. Besides, as it can be seen, we use the same

color for both costs on the same metric space. Alike,

Figure 1(b) depicts the same experiments on the three

synthetic spaces, designiting the spaces of coordinate

vectors in dimensions 4, 8, and 12 as C4, C8, and C12,

respectively.

As it can be noticed, our proposal is significantly

less expensive to perform in almost all the metric

spaces used than the exact solution. Only, in the

space of vectors in dimension 4, the exact alterna-

tive surpasses, although not significantly, our solution

from the second rebuilding onwards. In order to show

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

64

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

es
 x

 1
00

,0
00

Number of Rebuilding

Costs of All-1-NN search

ENG-approx
COLORS-approx

NASA-approx
ENG-exact

COLORS-exact
NASA-exact

(a) Real spaces.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

es
 x

 1
00

,0
00

Number of Rebuilding

Costs of All-1-NN search

C4-approx
C8-approx

C12-approx
C4-exact
C8-exact

C12-exact

(b) Synthetic spaces.

Figure 1: Comparison of costs of obtaining 1-NNG

and 1-nNG, for all metric spaces considered.

more clearly the improvement of costs, Figure 2 illus-

trates the improvements in efficiency obtained with

our approximate solutions as we made more rebuild-

ings of the index. Figure 2(a) shows that in all real

the approximate method obtains a very significant effi-

ciency. On the other hand, Figure 2(b) depicts the effi-

ciency achieved over the three synthetic metric spaces.

In this case we can observe that the improvement in ef-

ficiency is higher as dimension grows, and on dimen-

sions 8 and 12 is always important, but on dimension

4 is negligible.

In Figure 3 we show the precision obtained with

each reconstruction. After the fourth reconstruction,

we can observe that the answer exceeds 80% hits in

the three real metric spaces (Figure 3(a)). However,

in the synthetic spaces it needs more reconstructions

to achieve a reasonable precision. Figure 1 shows that

there is still some slack to improve, and that a good

solution can be obtained using only a fraction of the

needed distance computations using the brute force

approach.

We estimate the quality of the approximate solu-

tion by measuring the average error on distances; that

is the average of differences between the distance to

the approximate nearest neighbor obtained with our

method and to the actual nearest neighbor of each ele-

ment. Figure 4 exhibits the average error on distances

obtained versus the number of rebuilding, for the two

kinds of metric spaces used. In the real world met-

ric spaces, Figure 4(a) the distance error decreases

fast. In most of spaces the distance error from the

first construction is almost zero, one exception is the

Dictionary possibly because it uses a discrete distance.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10

Ef
fic

ie
nc

y

Number of Rebuilding

Improvement in efficiency of approximate All-1-NN search

ENG
COLORS

NASA

(a) Real spaces.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10

Ef
fic

ie
nc

y

Number of Rebuilding

Improvement in efficiency of approximate All-1-NN search

C4
C8

C12

(b) Synthetic spaces.

Figure 2: Improvement in efficiency of 1-nNG, for all

metric spaces considered.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge

Number of Rebuilding

Precision

STRINGS
COLORS

NASA

(a) Real spaces.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge

Number of Rebuilding

Precision

C4
C8

C12

(b) Synthetic spaces.

Figure 3: Precision of the answer of 1-nNG, for all

metric spaces considered.

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

65

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e

Number of Rebuilding

Average error of distances

ENG
COLORS

NASA

(a) Real spaces.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
nc

e

Number of Rebuilding

Average error of distances

C4
C8

C12

(b) Synthetic spaces.

Figure 4: Average error on distances of the answer of

1-nNG, for all metric spaces considered.

On the other hand, Figure 4(b) shows the error for

the three synthetic spaces used. As it can be seen,

as dimension grows the average error on distance is

greater, but all of them decreases significantly with

the reconstructions. For instance, in the space of vec-

tors in dimension 4 (C4) the distance error begins

lower than 0.01 and gets close to zero from the sec-

ond reconstruction.

We also evaluate the quality of the approximate so-

lution by measuring the average relative error on dis-

tances. Figure 5 shows the average relative error ob-

tained, versus the number of rebuilding. With the real

metric spaces the error decreases fast Figure 5(a), and

from the third reconstruction the error is almost zero.

Again the Dictionary is one exception, we believe this

is due to the discrete distance.

Figure 5(b) shows the error behavior in three syn-

thetic spaces. As it can be seen, as dimension grows

the average error decreases more slowly with the re-

constructions. For instance, in the space of vectors

in dimension 4 (C4) the percentage of error begins

lower than 0.3 and achieves close to zero values with

the fourth reconstruction.

5.1 Another Improvements

We can notice that even if we want to obtain the 1-

NNG, we could take advantage of the information ob-

tained with our approach in order to speed up its so-

lution. For this moment, a good approach to solve

efficiently 1-NNG consists of building an index and

then performing a 1-NN search of each element in S.

However, as it is known that 1-NN search can be

performed more quickly if we know one initial dis-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10

Er
ro

r

Number of Rebuilding

Average relative error on distances

ENG
COLORS

NASA

(a) Real spaces.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1 2 3 4 5 6 7 8 9 10

Er
ro

r

Number of Rebuilding

Average relative error on distances

C4
C8

C12

(b) Synthetic spaces.

Figure 5: Average relative error on distances of the

answer of 1-nNG, for all metric spaces considered.

tance to prune the searches, we can to take advantage

of the information obtained during the construction of

the DiSAT in order to accelerate every 1-NN search on

the DiSAT. That is, we can use for each oi ∈ S its 1-

nN(oi) = x and its distance d(oi,x) obtained, to prune

the search of the exact 1-NN(oi) on the DiSAT.

It is still possible to improve our approach to ob-

tain the 1-nNG in terms of distance costs if we con-

sider that with our proposal the better quality of the

near neighbor is obtained for elements that are lo-

cated on the top of the DiSAT. The reason is that these

objects are compared with more elements of S, so

the chance of obtaining its actual nearest neighbor is

greater. Therefore, we can save some distances if we

stop the rebuilding of the DiSAT at some height. In

this case we can improve the first near neighbor ob-

tained during the first construction of DiSAT for cer-

tain subset of S. Then, we can repeat this abbreviated

process several times depending of the number of dis-

tance evaluations that we are willing to spend.

6 Conclusions

In this paper we tested an alternate approach to com-

puting an approximation to the 1-NNG, that is we ob-

tain a 1-nNG, by using a simple heuristic. We have

designed an algorithm able to approximately solve 1-

nNG with a low cost, a very good accuracy, and low

error. Our algorithm is based on the construction of

the DiSAT, an index that was originally proposed only

for the common similarity queries. Therefore, in ad-

dition to obtaining a good method for solving an ap-

proximation of 1-NNG, we have expanded the range

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

66

of applications of the DiSAT.

The novelty of our proposal is that no searches

are performed, but only the distances computed dur-

ing the construction of the DiSAT are used. Our re-

sults are preliminary and encouraging. We obtained

good performance with low and medium dimensional-

ity databases, we are aiming at improving the results

to tackle higher dimensions.

Competing interests

The authors have declared that no competing interests

exist.

References

[1] C.-H. Liu, E. Papadopoulou, and D.-T. Lee,

“The k-nearest-neighbor voronoi diagram revis-

ited,” Algorithmica, vol. 71, pp. 429–449, Feb.

2015.

[2] E. Chávez, G. Navarro, R. Baeza-Yates, and

J. Marroquı́n, “Searching in metric spaces,”

ACM Computing Surveys, vol. 33, pp. 273–321,

Sept. 2001.

[3] R. Duda and P. Hart, “Pattern classification and

scene analysis,” John Wiley & Sons, 1973.

[4] E. Chávez, V. Ludeña, N. Reyes, and P. Roggero,

“Faster proximity searching with the distal sat,”

Information Systems, vol. 59, pp. 15–47, 2016.

[5] E. Chávez, V. Ludeña, N. Reyes, and F. Kasián,

“Approximate nearest neighbor graph via index

construction,” pp. 824–833, 2016.

[6] G. Navarro, R. Paredes, N. Reyes, and C. Bustos,

“An empirical evaluation of intrinsic dimension

estimators,” Inf. Syst., vol. 64, pp. 206–218, Mar.

2017.

[7] M. Brito, E. Chávez, A. Quiroz, and J. Yukich,

“Connectivity of the mutual k-nearest neighbor

graph in clustering and outlier detection,” Statis-

tics & Probability Letters, vol. 35, no. 4, pp. 33–

42, 1996.

[8] D. Eppstein and J. Erickson, “Iterated near-

est neighbors and finding minimal poly-topes,”

vol. 11, pp. 321–350, 1994.

[9] N. Archip, R. Rohling, P. Cooperberg, H. Tah-

masebpour, and S. K. Warfield, “Spectral clus-

tering algorithms for ultrasound image segmen-

tation,” vol. 3750, pp. 862–869, 2005.

[10] R. Baeza-Yates, C. Hurtado, and M. Mendoza,

“Query clustering for boosting web page rank-

ing,” pp. 164–175, 2004.

[11] P. Callahan and R. Kosaraju, “A decomposi-

tion of multidimensional point sets with applica-

tions to k nearest neighbors and n body potential

fields,” JACM, vol. 42(1), pp. 67–90, 1995.

[12] R. Paredes, Graphs for Metric Space Search-

ing. PhD thesis, University of Chile, Chile, July

2008.

[13] R. Paredes, E. Chávez, K. Figueroa, and

G. Navarro, “Practical construction of k-nearest

neighbor graphs in metric spaces,” in Proc. 5th

Workshop on Efficient and Experimental Algo-

rithms (WEA), LNCS 4007, pp. 85–97, 2006.

[14] P. Ciaccia and M. Patella, “Approximate and

probabilistic methods,” SIGSPATIAL Special,

vol. 2, no. 2, pp. 16–19, 2010.

[15] M. Patella and P. Ciaccia, “Approximate similar-

ity search: A multifaceted problem,” J. Discrete

Algorithms, vol. 7, no. 1, pp. 36–48, 2009.

[16] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-

verman, and A. Y. Wu, “An optimal algo-

rithm for approximate nearest neighbor search-

ing fixed dimensions,” J. ACM, vol. 45, pp. 891–

923, Nov. 1998.

[17] G. Navarro, “Searching in metric spaces by spa-

tial approximation,” The Very Large Databases

Journal (VLDBJ), vol. 11, no. 1, pp. 28–46,

2002.

[18] G. Navarro and N. Reyes, “Dynamic spatial ap-

proximation trees,” Journal of Experimental Al-

gorithmics, vol. 12, pp. 1–68, 2008.

[19] K. Figueroa, G. Navarro, and E. Chávez,

“Metric spaces library,” 2007. Available at

http://www.sisap.org/Metric Space Lib
rary.html.

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

67

