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Patricia González1, Xoán C. Pardo1, Ramón Doallo1, and Julio R. Banga 2

1Computer Architecture Group, Universidade da Coruña, Spain

{patricia.gonzalez, xoan.pardo, doallo}@udc.es
2BioProcess Engineering Group, IIM-CSIC, Spain

julio@iim.csic.es

Abstract

Metaheuristics are among the most popular meth-

ods for solving hard global optimization problems in

many areas of science and engineering. Their parallel

implementation applying HPC techniques is a com-

mon approach for efficiently using available resources

to reduce the time needed to get a good enough solu-

tion to hard-to-solve problems. Paradigms like MPI

or OMP are the usual choice when executing them in

clusters or supercomputers. Moreover, the pervasive

presence of cloud computing and the emergence of

programming models like MapReduce or Spark have

given rise to an increasing interest in porting HPC

workloads to the cloud, as is the case with parallel

metaheuristics. In this paper we give an overview of

our experience with different alternatives for porting

parallel metaheuristics to the cloud, providing some

useful insights to the interested reader that we have

acquired through extensive experimentation.

Keywords: cloud computing, MapReduce, MPI, par-

allel metaheuristics, Spark

Resumen

Las metaheursticas son uno de los mtodos ms popu-

lares en muchas reas de la ciencia y la ingeniera para

la resolucin de problemas de optimizacin global dif-

ciles. Su implementacin paralela, aplicando tcnicas

de HPC, es una aproximacin comn a la hora de reducir

el tiempo necesario para obtener una solucin lo sufi-

cientemente buena con un uso eficiente de los recur-

sos disponibles. Paradigmas como MPI u OMP son

las opciones habituales cuando se ejecutan en clsteres

o supercomputadores. Adems, la utilizacin general-

izada de la computacin en la nube y la aparicin de

modelos de programacin como MapReduce o Spark,

han generado un inters creciente por portar aplica-

ciones HPC a la nube, como ocurre en el caso de

las metaheursticas paralelas. En este trabajo reco-

gemos una visin general de nuestra experiencia con

diferentes opciones a la hora de portar metaheursticas

paralelas a la nube, proporcionando informacin til al

lector interesado, que hemos ido adquiriendo a travs

de nuestra experiencia prctica.

Palabras claves: computacin en la nube, MapRe-

duce, metaheursticas paralelas, MPI, Spark

1 Introduction

Optimization is concerned with finding the ”best avail-

able” solution for a given problem. Many key prob-

lems in different areas of science, economics and en-

gineering can be formulated and solved using differ-

ent optimization techniques [1, 2, 3]. For example,

optimization problems are playing an increasing role

in computational biology, bioinformatics and chem-

istry, helping in the development of novel therapies

and drugs for different diseases such as cancer or auto-

immune diseases. Most of these optimization prob-

lems are, in practice, NP-hard, complex, and time-

consuming. Stochastic global optimization methods

are robust alternatives to solve these problems. And

among them, metaheuristics are gaining increased at-

tention as an efficient way of solving hard global opti-

mization problems. However, in most realistic appli-

cations, metaheuristics still require large computation

time to obtain an acceptable result.

Thus, the parallelization of optimization methods

in general, and of metaheuristics in particular, and the

use of HPC resources, like clusters or supercomputers,

have been a common approach to speed-up the com-

putations, increase the size of the problems that can

be handled or attempt a more thorough exploration

of the solution space. Furthermore, the technologi-

cal developments of the last decades, continuously re-
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ducing the cost/performance ratio of HPC resources,

have made accessing to them more feasible. However,

when considering very challenging problems, the pro-

vision of a large number of resources, which is not

always practicable, is essential for the success of the

parallel solution. The emergence in the last years of

cloud computing [4] as a new model for the effortless

provision of a large number of computing resources

has attracted the attention of the HPC community.

Cloud computing has some specific characteristics

that make it an interesting alternative for the provi-

sion and management of computing resources. Public

cloud providers offer self-service interfaces to exter-

nal users for the on-demand provision of virtualized

computing resources. Users share the provider in-

frastructure while having exclusive zero-queue-time

access to their own isolated virtual resources, config-

ured to their applications’ needs. Resource consump-

tion is charged using a pay-as-you-go model at very

appealing prices. Additionally, collaborators can be

provided with controlled access to resources and en-

vironments be shared with third-parties using virtual

machine images.

But despite these appealing features, its adoption

by the HPC community has been limited. The main

reason is the performance obtained when using tra-

ditional parallel programming models, like MPI, on

virtual clusters. Several evaluations [5, 6] have shown

that although computationally-intensive applications

present little overhead, communication-intensiveones

have poor performance thus limiting their scalability.

On the other hand, to facilitate the development

of large-scale distributed applications, new program-

ming models like MapReduce [7] or Spark [8] have

been proposed. These models combine high-level

programming abstractions and distributed execution

frameworks with implicit support for deployment,

data distribution, parallel processing and run-time fea-

tures like fault tolerance or load balancing. But, al-

though their many advantages, these proposals also

have some shortcomings that could discourage their

use for HPC workloads. They are designed with

the analytics of big amounts of data in mind, prefer-

ring availability to performance and providing lower

speedup and distributed efficiency than traditional par-

allel frameworks.

In this paper we give an overview of our experience

with the different alternatives we have studied for port-

ing some representative parallel metaheuristics to the

cloud. By means of extensive experimentation, using

both synthetic and real-world benchmarks on differ-

ent traditional and cloud testbeds, we have analyzed

the pros and cons of the different options. Consider-

ing the demanding and dynamic nature of the imple-

mentation of these methods, we think that they are

exemplary of the many applications that could benefit

from being ported to the cloud, and that the conclu-

sions drawn could be useful in many other scenarios.

The rest of the paper is structured as follows. Sec-

tion 2 describes the alternatives for writing parallel

programs for the cloud that we have analyzed. Section

3 introduces the Differential Evolution metaheuristic

and the parallel versions we have implemented. In

section 4 the main lessons learned from experimental

results are overviewed and justified. Section 5 refer-

ences some related work. Finally, Section 6 summa-

rizes the conclusions of the paper.

2 Parallel programming in the cloud

Nowadays there are different alternatives that could

be used to implement parallel programs for the cloud.

Examples include “traditional” message-passing or

many-task computing approaches, using actors or

using data-oriented models and abstractions like

MapReduce (MR) or Resilient Distributed Datasets

(RDD). From these alternatives, we have evaluated

and compared three different approaches. Each of

them is based on different programming abstractions,

implemented using different programming languages

and executed using different platforms:

1. A C implementation using MPI in a virtual clus-

ter.

2. A Java implementation using MR in a Hadoop

cluster.

3. A Scala implementation using the RDD abstrac-

tion in a Spark cluster.

The Message Passing Interface (MPI) is the de-

facto standard for HPC distributed computing. It is a

standard interface that allows developers to write par-

allel applications in C, C++ or FORTRAN using the

message-passing model. In this model, parallel pro-

grams consist of a set of processes that communicate

with each other by sending and receiving messages.

Processes have separate address spaces and the pro-

grammer has explicit control over the memory used

by each process and how the communication occurs.

MapReduce (MR) [7] is a programming model

and associated distributed execution framework orig-

inally proposed for processing large datasets in com-

modity clusters. For many years it has been the de-

facto standard for cloud programming. A program in

MR is composed of a pair of user-provided map and

reduce functions, generally written in Java, that are ex-

ecuted in parallel over a distributed network of worker

processes. Executions can be described as a directed

acyclic data flow where a network of stateless map-

pers and reducers process data in single batches, us-

ing a distributed filesystem (typically HDFS) to take

the input and store the output. The execution frame-

work has a master-worker architecture with implicit

support for data distribution, parallel processing and

fault tolerance.
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Resilient Distributed Datasets (RDD) [8] is the

main abstraction provided by Spark for support-

ing fault-tolerant and efficient distributed in-memory

computations. An RDD is a read-only fault-tolerant

partitioned collection of records that is created from

other RDDs or from data in stable storage by means

of coarse-grained transformations (e.g., map, filter or

join) that apply the same operation to many data items

at once. RDDs are used in actions (e.g. count, collect

or save) to return a value to the application or export

data to a storage system. Spark provides a program-

ming interface to RDDs for Scala, Java or Python,

and a distributed execution framework composed of

a single driver program and multiple workers, that

are long-lived processes that persist RDD partitions

across operations. Developers write the driver pro-

gram in which they can manipulate RDDs using a rich

set of operators, control their partitioning to optimize

data placement and explicitly persist intermediate re-

sults to memory or disk.

Each of the selected approaches has its pros and

cons. The MPI approach is HPC oriented and its main

advantage is the high communications performance

combined with the use of a compiled programming

language. The other two approaches are HTC ori-

ented, having JVM-based distributed execution frame-

works and using interpreted or JVM languages, which

a priori will provide worst performance. On the other

hand, compared with the other two, the MPI approach

is too low level, requiring that the programmer deals

with details like the data distribution, the ordering of

communications or the fault-tolerance support.

Both MR and Spark provide high-level data abstrac-

tions, interfaces to object and/or functional languages

and distributed execution frameworks with implicit

support for data distribution and fault tolerance, so

programming is easier and less error-prone. The main

difference between them is how they support iterative

algorithms. MR has been designed to execute pro-

grams in batches, taking input, and storing output and

intermediate data in the file system. Executing iter-

ative algorithms has considerable overhead because

there is no way of efficiently reusing data or compu-

tation from previous batches. On the contrary, Spark

has been designed with iterative algorithms in mind,

providing efficient in-memory processing between it-

erations.

3 Parallel implementation of the Differ-
ential Evolution metaheuristic

For our study we have selected one representative

population-based metaheuristic that will be used as

a test case, the Differential Evolution (DE) [9]. DE

is very popular and has been successfully applied

to many problems [10]. It is an stochastic iterative

method (see algorithm 1) that starting from an initial

population matrix composed of NP D-dimensional so-

Algorithm 1 Differential Evolution algorithm

Input: A population matrix P of size D x NP

Output: A matrix P whose individuals were optimized

1: repeat

2: for each element i of the P matrix do

3: choose randomly different r1, r2, r3 ∈ [1,NP]
4: choose randomly an integer jr ∈ [1,D]
5: for j← 1,D do

6: choose a randomly real r ∈ [0,1]
7: if r ≤CR or j = jr then

8: uG+1
i ( j)← xG

r1( j)+F ·(xG
r2( j)−xG

r3( j))
9: else

10: uG+1
i ( j)← xG

i ( j)
11: end if

12: end for

13: evaluate (uG+1
i )

14: if f itness(uG+1
i )< f itness(xG

i ) then

15: xG+1
i ← uG+1

i

16: else

17: xG+1
i ← xG

i

18: end if

19: end for

20: until Stop conditions

lution vectors (individuals), tries to achieve the op-

timal solution iteratively using vector differences to

create new candidate solutions. In each iteration,

new individuals are generated by means of operations

(crossover - CR; mutation - F) performed among indi-

viduals in the population matrix. New solutions will

replace old ones when its fitness value was better. A

population matrix with optimized individuals is ob-

tained as output of the algorithm. The best of which

is selected as the solution close to optimal for the ob-

jective function of the model.

Different models have been proposed for the paral-

lelization of metaheuristics [11]. We have considered

two of the most popular:

1. The master-slave model, that preserves the be-

haviour of the sequential algorithm parallelizing

the inner-loop of the DE. In this model a mas-

ter processor distributes computation operations

between the slave processors.

2. The island-based model, that divides the popu-

lation in subpopulations (islands) where the DE

algorithm is executed isolated. To preserve diver-

sity and avoid getting stuck in local optima spo-

radic individual exchanges are performed among

islands.

Our first approach was to parallelize the DE using

the master-slave model. But when we were imple-

menting it with Spark, we found an issue with the

parallelization of the generation of new individuals.

In the implementation of this model with Spark, the

population is partitioned and distributed among work-

ers. For the mutation of each individual, three ran-
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Figure 1: Island-based DE implementation with MPI

dom different individuals have to be selected from

the whole population but, unlike MPI, communica-

tion among workers is not allowed in Spark. Each

worker only have access to individuals of its partition

and the driver is the only that has access to the com-

plete population.

From the alternatives we tried to deal with this prob-

lem, broadcasting a read-only copy of the whole pop-

ulation to every worker in each iteration was the op-

tion that has shown best benchmarking results. But

even so, the communications overhead introduced by

this solution was unfeasible. So we concluded that

the master-slave model did not fit well with the dis-

tributed programming model of Spark and decided to

discard it in favour of the island-based model. A com-

plete discussion of the implementation of the master-

slave model and the other alternatives we tried to deal

with this issue can be found in [12].

3.1 Island-based DE implementations

Dividing the population into subpopulations re-

duces interprocessor communications and leads to

more loosely coupled parallel applications. Therefore,

at least theoretically, the island model should be more

suitable for implementing parallel metaheuristics with

programming abstractions like MR or RDDs. In this

section we explain the basics of the three island-based

implementations of the DE that we have studied and

compared.

Figure 1 shows the schematic diagram of the im-

plementation with MPI of an asynchronous island-

based DE (asynPDE) first presented in [13]. Each pro-

cess executes the same inner-loop of the sequential

Algorithm 2 Migration step of the MPI impl.

1: select(migSet);

2: // asynchronous send

3: ISend(migSet, remoteDest);

4: // asynchronous reception (non-blocking)

5: IRecv(recSet, remoteDest);

6: Test(recSet, isComplete);

7: if isComplete then

8: Replace(recSet);

9: end if

Algorithm 3 Island evolution of the MPI impl.

1: repeat

2: for each element in the population do

3: cross(); mutation(); eval();
4: end for

5: while pending migration do

6: // check pending messages (non-blocking)

7: Test(recSet, isComplete);

8: if isComplete then

9: Replace(recSet);

10: else

11: break;

12: end if

13: end while

14: until Stop conditions

Algorithm 4 Driver of the MR implementation

Input: DE configuration parameters

Output: A population P of optimized individuals

1: P← initial random population

2: #i← number of islands

3: repeat

4: // partition and shuffle the population

5:
−−−−→
Islands⇐ PartitionPopulation(P, #i)

6: P⇐ EvolveIslands(
−−−−→
Islands) // the MR job

7: until Stop conditions

DE, doing mutation and crossover operations within

the subpopulation of its island. A migration step is

performed once every few iterations to migrate indi-

viduals among islands in order to preserve diversity.

MPI asynchronous communications have been used

to avoid having idle processes waiting for migrants

arriving from other processes. The arriving of new in-

dividuals is examined at the end of the migration step

(algorithm 2), proceeding with the next island evolu-

tion if new solutions have not yet arrived. Missed mi-

grations will be checked again later, after each evolu-

tion of the island (algorithm 3). Asynchronous com-

munications are also used for checking the stopping

criteria of the algorithm. Whenever a process reaches

a stopping condition, it sends a message to the rest so

they can all stop almost at the same time.

As every MR program, our implementation of the

Algorithm 5 Map function of the MR implementation

Input: An island I; DE configuration parameters

Output: An island I of optimized individuals

1: repeat

2: // apply the DE mutation strategy

3: I⇐ EvolveIsland(I)

4: until number of evolutions

5: for each individual
−→
Ind of the island I do

6: Emit(fitness(
−→
Ind),

−→
Ind)

7: end for
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Figure 2: Island-based DE implementation with Spark

island-based DE with MR (mrPDE) presented in [14]

has two components: the main program (driver) that

will be executed by the master and the map and re-

duce functions that will be executed by the workers.

In the driver (algorithm 4) the outer-loop of the DE is

executed to evolve a randomly-generated population

until the stopping criterion is met. In every iteration,

the population is partitioned into islands that are writ-

ten to HDFS, a batch MR job is launched to evolve

the islands in parallel and the resulting global popu-

lation is read from HDFS once the job finished. To

introduce diversity individuals are randomly shuffled

during the partition of the population. The inner-loop

of the DE algorithm is executed in the map function

(algorithm 5) of the MR job. Each map instance reads

an island population from HDFS and applies the mu-

tation strategy during a predefined number of evolu-

tions, taking random individuals from its island only.

Finally, an output record is emitted for each individ-

ual of the evolved island using its fitness value as key.

The MR job is completed with a single identity re-

ducer that writes all the population to HDFS ordered

by fitness.

The schematic diagram of our island-based DE im-

plementation with Spark (SiPDE) presented in [12] is

shown in figure 2. The population has been repre-

sented as a key-value pair RDD (solid outlined boxes

in the figure). Each partition of the population RDD

is considered to be an island (shaded rectangles in the

figure, darker if they are persisted in memory). The

algorithm starts generating in parallel an initial ran-

dom population using a map transformation. Then,

an evolution-migration loop is repeated until the stop-

ping criterion, implemented as a reduce action (a dis-

tributed OR), is met. Finally, the best individual is se-

lected using a reduce action (a distributed MIN). Dur-

ing each iteration of the evolution-migration loop is-

lands evolve isolated for a predefined number of evo-

lutions. After which, and to introduce diversity, the

same random shuffling as in the MR implementation

is performed using a custom random partitioner.

The three programming models have unique inher-

ent features that have conditioned the implementa-

tions, modifying the systemic properties of the orig-

inal algorithm, and resulting in different searches. As

we will see later, this will influence the benchmark-

ing results. The parts of the algorithm that have been

implemented differently are:

• The migration strategy. While in MPI it is used

an strategy with replacement (i.e. best individu-

als in one island replace worst individuals in the

neighbour), in MR and Spark, as messaging be-

tween worker processes is not possible, the mi-

gration is a random shuffling of the population

without replacement.

• The evolution-migration synchronization. In

MPI individuals are migrated using asyn-

chronous messaging between processes, so each

island can proceed with a new evolution without

waiting for the others. For the same reason as

before, in MR and Spark that is not possible, so

migrations introduce a synchronization step be-

tween island evolutions.

• The stopping criterion checking. In MPI when-

ever a process reaches a stopping condition

sends an asynchronous message to the rest and

all stop almost at the same time. Again that is

not possible in MR and Spark, that have to wait

until all the islands conclude their evolutions to

check if any of them reached the stopping condi-

tion.

It must be noted that, although the migration steps

in MR and Spark appear to be very similar, their im-

plementations and overheads are very different. In

MR the migration is performed in the driver, reading

the population from HDFS, shuffling the individuals

and writing back the islands to HDFS, while in Spark

a custom random partitioner is used (no HDFS over-

head).
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4 Lessons learned from experimental re-
sults

In our previous works [14, 15, 16], we have conducted

extensive testing of the three proposed island-based

DE implementations using different benchmarks and

execution platforms. In this section we overview the

main lessons that we have learned, using the exper-

imental results obtained for a challenging problem

from the domain of computational systems biology,

the Circadian model [17], as example. It is a pa-

rameter estimation problem in a nonlinear dynamic

model of the circadian clock in the plant Arabidopsis

Thaliana, that is known to be particularly hard due to

its ill-conditioning and non-convexity.

Table 1 summarizes the results of the experiments

with the MPI (asynPDE) and Spark (SiPDE) imple-

mentations. In the columns the number of cores (#is-

lands) used, the mean number of evaluations required

(#evals), the mean and deviation of the execution

times (time(s)), and the speedup achieved versus the

sequential execution are shown. Two different plat-

forms have been tested varying the number of cores

from 2 to 16/32 and calculating the mean of 20 in-

dependent runs for each configuration. The first plat-

form was a cluster (named Pluton) with 16 nodes pow-

ered by two octa-core Intel Xeon E5-2660 @2.20GHz

with 64GB and an InfiniBand FDR network. The sec-

ond platform was a virtual cluster formed by A3 in-

stances (4 cores, 7GB) in the Microsoft Azure cloud.

The quality of the solution has been used as termina-

tion condition with a value-to-reach (VTR) of 1e-5

and, for the migration frequency, 50 evolutions be-

tween migrations have been used for asynPDE and

200 for SiPDE. Refer to [16] for the detailed experi-

mental setting.

From table 1 we can conclude the following:

• All the parallel implementations (including MR

not shown in the table) have improved the con-

vergence time of the sequential algorithm. This

was an expected result, given that, the evaluation

of the population is performed in parallel. More-

over, superlinear speedups are obtained because,

in the island model, the cooperation between is-

lands improves the convergence rate.

• The MPI implementation has the lower conver-

gence rate (i.e. required number of evaluations),

specially when using few cores. This is due to the

inherent features of each programming model ex-

plained in Section 3.1.

• The convergence rate of the Spark implementa-

tion improves with the number of islands, while

the MPI implementation stagnates for more than

8. The reason is that the shuffling of the popula-

tion, used as migration strategy in the Spark im-

plementation, maintains the diversity when the

number of islands increases.

Figure 3: Evals/s/core of the MPI and Spark impl.

• The convergence rate has similar results in

Azure, but execution time worsens and speedup

improves. The execution times are between 2x

and 3x times worse in Azure than in the cluster

due to the overhead of virtualization and using

non-dedicated resources. By the contrary, the

speedups are larger due to the computation-to-

communication ratio, that is, the ratio between

the time spent computing and communicating.

We have also calculated the number of evaluations

per second and per core (eval/s/core) for both imple-

mentations and platforms (Figure 3). This is a good

metric for evaluating the implementations because it

includes not only the CPU time of evaluations, but

also the communications and overhead time. From

the figure we can conclude that:

• The MPI implementation has a value of

eval/s/core between 2.1x and 2.5x times better

than the Spark implementation.

• The number of eval/s/core of the MPI implemen-

tation in the cluster drops with the growth of the

number of cores. This is because as the number

of cores increases, so does the communications

overhead. Besides, the computation of each is-

land decreases, degrading the trade-off between

computation and communication. Conversely, in

the Spark implementation, the migration commu-

nication overhead is always the same, spreading

the data movement among the available cores,

and thus, having better scalability.

In order to evaluate the suitability of virtual clus-

ters composed of HPC instances for running MPI ap-

plications, we have repeated the experiments with the

MPI implementation in Azure, but now using a vir-

tual cluster of A11 instances (16 cores, 112GB, Intel

Xeon E5-2670 @2.6GHz). Figure 4 shows the results

compared with those of table 1. From the figure we

can conclude that:

• The MPI implementation running in an HPC vir-

tual cluster shows competitive execution times

and better scalability.

Figures 5 and 6 summarize the results of the ex-

periments with the MR (mrPDE) and Spark (SiPDE)
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Table 1: MPI and Spark results (DE params: NP=256, D=13, CR=0.8, F=0.9, VTR=1e-5)

impl. platform #islands #evals time(s) speedup

asynPDE cluster 1 6,480,102 15,230.22±886.80 -

2 3,540,889 4,078.36±1,852.32 3.73

4 1,815,689 1,100.08±180.96 13.84

8 1,231,094 380.99±77.64 39.97

16 1,236,346 220.79±51.17 68.98

32 1,700,782 149.82±30.37 101.65

Azure 1 6,633,830 37,952.61±3,224.67 -

2 3,067,622 9,196.63±1,110.82 4.13

4 1,809,942 2,659.65±410.31 14.27

8 1,279,609 929.77±204.21 40.82

16 1,301,888 491.92±87.50 77.15

SiPDE cluster 1 6,437,670 40883.39±3712.56 -

2 5,980,416 19275.65±1281.63 2.12

4 5,729,536 9305.30±909.41 4.39

8 3,904,256 3319.33±296.88 12.32

16 1,835,776 790.97±90.50 51.69

32 1,577,216 348.36±43.47 117.36

Azure 1 6,565,461 93,977.02±5216.28 -

2 5,333,186 41,140.87±6474.26 2.28

4 5,716,736 21,030.04±2443.06 4.47

8 3,983,616 7,444.79±928.91 12.62

16 1,953,536 1,768.25±166.51 53.15

Figure 4: Comparison of MPI results in a physical

cluster and in ordinary and HPC virtual clusters

implementations in the cluster. Bean plots are used

to show the execution times and the dispersion of the

results. From the figures we can conclude that:

• The MR implementation has larger execution

times and dispersion than the Spark implemen-

tation.

• The MR implementation also reduces the conver-

gence rate but with a limited speedup.

To evaluate the overhead that is limiting the

speedup of MR, we have measured, for a total of 8 iter-

ations, the overhead of each evolution-migration iter-

ation separately. These experiments were performed

with versions of our implementations with the evolu-

Figure 5: MR and Spark results in the cluster

(DE params: NP=640, D=13, CR=0.8, F=0.9, VTR=1e-5)

tion of the population removed. Figure 7 shows the av-

erage and standard deviation of 10 independent runs

of each experiment in two different platforms: the

cluster we used before, and a virtual cluster formed

by m3.medium instances (1 core, 3.75GB) in the AWS

cloud. Refer to [14] for the detailed experimental set-

ting. From the figure we can conclude that:

• MR has significant higher overhead and larger
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Figure 6: MR and Spark speedup in the cluster

dispersion than Spark. It must be noted that, al-

though at first this would advise against using

it in favour of Spark, for problems where the

computation time significantly dominates over

the overhead introduced by the iterations, MR

would be competitive with Spark though with

worst scalability.

• Spark has better support for iterative algorithms

than MR. This was an expected result, given that,

Spark persists results in-memory between itera-

tions. That explains why the first iteration (the

outliers in the box plots) is the most time con-

suming in Spark, while there is no significant dif-

ference between iterations in MR.

• The overhead of MR and Spark is larger in AWS

than in the cluster. Spark is between 4x and

5x times worst in AWS, and MR around 2,8x.

Also it must be noted that, in tune with what was

expected, the Spark overhead slightly increases

when the number of nodes grows.

5 Related work

Many works have been published analyzing the per-

formance of HPC applications in the cloud. In [5, 6]

extensive analysis to detect the more critical issues

and bottlenecks are presented. These works conclude

that the lack of high-bandwidth low-latency networks

and the virtualization overhead has a great impact on

the performance of tightly-coupled HPC workloads,

as is the case of MPI applications.

There are also many works on the parallelization of

metaheuristics. Nice reviews using traditional HPC

approaches can be found in [11, 18]. With regard to

the parallelization of DE, a distributed implementa-

tion using an island-model with asynchronous com-

munications is proposed in [19].

Some works have studied the use of cloud program-

ming models for the parallelization of metaheuristics.

Most of these references are based on the use of MR,

since not so long ago it was the de-facto standard for

cloud programming. MRPSO, a parallelization of the

Particle Swarm Optimization (PSO) metaheuristic is

proposed in [20]. Different approaches to the imple-

mentation of parallel Genetic Algorithms (GA) are

proposed in [21, 22]. In [23] different algorithmic

patterns of distributed Simulated Annealing (SA) are

designed and evaluated on Azure. In [24], a practical

framework to infer large gene networks using a paral-

lel hybrid GA-PSO is proposed.

There are also some references proposing paral-

lelizations of the DE algorithm with MR. In [25] the

fitness evaluation is performed in parallel, but experi-

mental results show that the HDFS overhead reduces

the benefits of the parallelization. In [26], a concur-

rent implementation of the DE steady-state model is

proposed, but its applicability is limited to shared-

memory architectures. In [27] it is proposed a parallel

implementation of a DE-based clustering algorithm.

As Spark replaces MR as the new de-facto standard

for cloud programming, the number of references us-

ing it is gradually increasing. A PSO proposal for

data clustering in learning analytics can be found in

[28]. PSO is also used in [29] to test the proposal of

a parallel metaheuristic data clustering framework. In

[30] a GA is parallelized for pairwise test generation.

A MAX-MIN Ant System algorithm (MMAS) is pre-

sented in [31] to solve the Traveling Salesman Prob-

lem (TSP). A coral reef (CR) algorithm is applied to

the job shop scheduling problem (JSP) in [32]. A Bi-

nary Cuckoo Search algorithm is applied to the crew

scheduling problem (CrSP) in [33].

The first parallelization of the DE algorithm using

Spark was proposed in [34]. However, only the fitness

evaluation is performed in parallel following a master-

slave approach. An entire parallelization of the al-

gorithm was first explored in [12]. In that paper we

propose and evaluate implementations of the master-

slave and the island-based models. Results showed

that the island-based model is by far the best suited

to be implemented using Spark. A thorough evalua-

tion of the island-based implementation can be found

in [15] and extensive comparatives of the implemen-

tations overviewed in this paper in [14, 16].

6 Conclusions

In this paper we overview the insights we have

learned, through extensive experimentation, about

some approaches to implement parallel metaheuris-

tics in the cloud. Using the Differential Evolution

metaheuristic and the Circadian model, a difficult pa-

rameter estimation problem from computational sys-

tems biology, as test case, three different program-

ming paradigms: MPI, MapReduce and RDDs, have
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Figure 7: MR and Spark overhead per evolution-migration iteration

been evaluated on three different platforms: a cluster,

the Azure cloud and the AWS cloud. Results show

that, as it was expected, MPI outperforms the other ap-

proaches in terms of execution time, due to its reduced

overhead and low level programming interface. Nev-

ertheless, Spark should be positively consider when

looking for better scalability, easier programmability

and implicit support for data distribution and fault-

tolerance. In our experience, to get efficient imple-

mentations using cloud programming models it is nec-

essary to reshape the existing algorithms or to propose

new ones.

The source code of the MPI and Spark

implementations are publicly available at

https://bitbucket.org/xcpardo/sipde

and https://bitbucket.org/pglez/asynpde,

respectively.
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