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Abstract

Automated, non invasive ear detection in images and
video is becoming increasingly required in several con-
texts, including nonivasive biometric identification,
biomedical analysis, forensics, and many others. In
biometric recognition systems, fast and robust ear de-
tection is a crucial step within the recognition pipeline.
Existing approaches to ear detection are susceptible
to fail in the presence of typical everyday situations
that prevent a crisp imaging of the ears, like partial
occlusions, ear accessories, or uncontrolled camera
and illumination conditions. Even more, most of the
proposed solutions work efficiently only within a pre-
viously detected rectangular region of interest, which
limits their applicability and lowers the accuracy of
the overall detection. In this paper we evaluate the use
of Convolutional Neural Networks (CNNs) together
with Geometric Morphometrics (GM) for automatic
ear detection in the presence of partial occlusions, and
a Convex Hull algorithm for the ear area segmenta-
tion. A CNN was trained with a set of ear images
landmarked by experts using GM to achieve high con-
sistency. After training, the CNN is able to detect ears
over profile faces, even in the presence of partial oc-
clusions. We analyze the performance of the proposed
ear detection and segmentation method over partially
occluded ear images using the CVL Dataset.

Keywords: biometrics, convex hull, deep learning,
ear detection, occlusion

Resumen

La deteccién automdtica del pabellén auditivo en
imagenes y video, es una funcionalidad crecientemente
requerida en varios contextos. Entre ellos podemos
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citar: identificacion biométrica no invasiva, analisis
biomédicos, estudios forenses, entre otros. En los
sistemas de reconocimiento biométrico, la deteccion
rapida y confiable del pabellén auditivo es un paso
fundamental dentro del procesamiento. Las aproxi-
maciones existentes con respecto a esta deteccién no
son robustas, siendo susceptibles a fallas en la pres-
encia de oclusiones parciales, accesorios como aros o
piercings, o condiciones desfavorables en la cdmara
o la iluminacién. Ademas, gran parte de los sistemas
biométricos de la actualidad asumen que el dato de en-
trada serd la region de interés que contiene el pabellon
auditivo, lo cual limita su uso y reduce la exactitud
global de reconocimiento. En este trabajo se evalda el
uso de redes convolucionales (Convolutional Neural
Networks o CNNs) junto con Morfometria Geométrica
para la deteccién automatica del pabellén auditivo y
la segmentacion de los pixeles correspondientes al
mismo mediante el uso de un algoritmo de Convex
Hull. Luego del entrenamiento, la red CNN puede
detectar el pabellon auditivo sobre imdgenes de rostro
en vista lateral, inclusive en la presencia de oclusiones
parciales. Se analiza la performance del método de
deteccidn y segmentacidn de orejas sobre imagenes
con oclusiones parciales correspondientes al conjunto
de datos CVL.

Palabras claves: aprendizaje profundo, biometria,
convex hull, deteccién de oidos, oclusiones

1 Introduction

Ears have several biometric advantages in recognition
tasks over other anatomical structures such as finger-
prints, iris patterns, or faces [1]. Ear shots can be
easily taken with non intrusive methods (even from
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afar). Also the ear’s anatomical features vary only
slightly with aging, and its shape is not influenced by
facial expressions [2, 3]. However, ear images are sub-
ject to potential acquisition problems such as partial
occlusion by hair, earrings, or earphones, which are
almost certain to happen when images are taken in the
open. Few fully automatic ear recognition algorithms
have been proposed in the literature, mostly due to the
lack of robust detection techniques capable to locate
the ears in the input image, which is key to identify
ears efficiently. According to Emersic et al. [4], the
absence of automatic ear detection approaches is one
of the most important factors hindering a wider deploy
of ear recognition technology.

Traditional proposals in the literature take advantage
of the ear’s specific shape, frequently using engineered
geometric features. This aims to detect specific bor-
der configurations often present in ears’ images, like
the occurrence of certain characteristic edges, curva-
ture dispositions or frequency patterns, using image
processing techniques. In general, since the ears’ bio-
metric properties are not fully leveraged in these pro-
cedures, the performance is only acceptable in strictly
controlled acquisition contexts (illumination and cam-
era position), not being robust under homographies or
changes in luminance conditions. Also, these methods
require several special case considerations.

A much less explored strategy for ear detection and
recognition is to represent the ears’ shape and pheno-
typic attributes in the form of landmark coordinates. In
particular, landmarking based on Geometric Morpho-
metrics (GM) provides a robust methodology for shape
analysis and evaluation [5]. Manual landmarking, how-
ever, is not feasible for a massive sample, since it takes
considerable supervised time, increases the likelihood
of operation mistakes due to operator visual fatigue,
intra- and inter-observer error, and is prone to distrac-
tions or confusions during the landmarking sequence.
Automatic 2D or 3D landmark acquisition appears to
be a promising venue to explore since it may over-
come both limitations (the lack of robustness in most
ear detection and recognition proposals, and difficul-
ties associated to manual landmarking).

This work introduces a flexible and versatile method
for automatic ear detection based on selection of 2D
landmarks. Even though the main intended use of
this method is on population and quantitative genomic,
biomedical or forensic studies based on 2D data [6], it
is easily adaptable to be useful in other contexts, like
biometric identification. The main contributions of
this paper are the following:

e An evaluation of the CNN over an open dataset,
not previously used for training or validation.

e An analysis of the performance of the CNN over
different occlusion settings over a new dataset
with 219 images from [7] with the corresponding
ROI annotated by the authors.
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e Comparison of results with other proposed ear
detection techniques in the literature, in particular
the effect on detection quality under progressive
occlusions.

e An ear segmentation technique based on Geomet-
ric Morphometrics and Convex Hull methods.

2 Related Work

This section briefly summarizes the state of the art in
automatic ear detection in 2D images. A more thor-
ough description of current advances in ear detection,
feature extraction and biometric recognition methods
can be found in [8] and [4]. Most ear detection ap-
proaches rely on shape properties of the external ear’s
morphology, like the occurrence of certain characteris-
tic edges, curvature dispositions, or frequency patterns.
Among the most widespread ideas, the use of shape
models appears to be extensively used. Shape models
aim to recognize specific distributions of shape descrip-
tors that are frequent in the object under study, in this
case the ear’s surface. For instance, Chen and Bhanu
[9] propose to detect image regions with large local
curvatures with a technique they call step edge mag-
nitude. Then, template matching is performed with
typical shapes of the outer helix and anti-helix. Later,
in [10] the number of possible ear candidates was nar-
rowed by detecting skin regions first before the helix
template matching is applied, also reducing spurious
detections. This method, however, by its very nature is
not robust under homographies, making it unsuitable
for most applications where a careful and calibrated
acquisition may not be performed. Following a similar
shape-based approach, Attarchi et al. [11] use contour
lines for ear detection. Their proposal locates first
the outer contour of the ear using a search method
that finds the longest connected edge in the region of
interest. Once located, this contour can be used to
define a triangle formed by the outermost points in the
top, bottom and left positions of the contour. Finally,
geometric properties of this triangle, for instance the
barycenter, can be used as a reference point for image
alignment. Although less prone to break under ho-
mographies, this method still requires noise-free and
white-balanced images to perform adequately.
Another method, related to edge detection proper-
ties, was proposed by Ansari et al. [12]. First, they
apply an edge detector in which the edges are marked
as either convex or concave segments, since the most
likely candidates for the ear’s outer contour are convex
edges. After that, the algorithm connects the contour
segments and selects the shape enclosing the largest
area as being the outer ear contour. Like other akin
tracking algorithms, several special cases must be ac-
counted for, thus leading to very complex algorithms.
In a similar vein, Prakash and Gupta in [13] com-
bine skin segmentation and hierarchy edges. After
being detected, the edges located in the skin region
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are decomposed into edge segments. An edge connec-
tivity graph is constructed, integrating all these edge
segments. The connectivity graph is finally used to
compute the convex hull of the set of edge segments,
which encloses the ear’s outer shape. Also significant
is the proposal of Yan and Browyer [14], who devel-
oped an ear detection method which starts by locating
the concha (an anatomic part of the ear, see Fig. 1),
which is set as the initial shape for an active contour
used for determining the ear’s outer boundary.

Pflug et al. [15] use a combination of depth images
and texture. Their method starts with a preprocessing
step, where edges and shapes are extracted from the
texture and the depth image, and edges and shapes
are fused together in the image domain. In the next
step, the components are combined with each other
to find ear candidates and rank them according to a
computed score. Finally, the enclosing rectangle of
the best ear candidate is returned as the ear region.
Like the other methods already mentioned, the main
disadvantage of these shape-model approaches is the
fact that they require specifically engineered features,
which makes them less flexible or adaptable to other
detection problems, and also renders them fragile un-
der homographies and luminance changes.

A different approach regards the ear detection prob-
lem as an instance of a pattern recognition problem
instead of focusing on the unique geometric features
of the ear, In this approach, the first stage uses image
processing techniques to extract features present in the
image, followed by a second stage in which pattern
recognition techniques are applied over the feature set
to perform detection tasks. This approach is in gen-
eral more robust under homographies and luminance
changes, depending on the feature space used for the
ear representation in the first stage. Among the propos-
als based on pattern recognition approaches, we can
mention Abaza et al. [16] and Islam et al. [17], which
use weak classifiers based on Haar-wavelets over re-
gions of the image to find correlation with previously
learned patterns. These weak classifiers are then com-
bined with a standard AdaBoost procedure for ear
localization. Yuan et al. [18] propose a dictionary-
based sparse representation and classification scheme,
intended to work with partially occluded ear imagery.
An identity occlusion dictionary encodes occluded
parts in the source image to perform ear recognition. A
non-negative dictionary that includes a Gabor feature-
set extracted from ear images improves the sparseness
of the coding representation, thus circumventing the
expense of a conventional occlusion dictionary. In
[19], Kumar et al. take advantage of the sparse repre-
sentation of the finite (discrete) Radon transform based
local orientation information. The neighborhood rela-
tionship of gray-levels in the normalized ear images
is encoded as the dominant gray-level feature orienta-
tions in a local region using a local Radon transform.
In [20] the authors develop an approach that encodes
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reliable phase information using 2D quadrature fil-
tering. They extensively evaluated both quaternionic
and monogenic quadrature filters and develop a new
quaternionic-code-based approach for the ear identifi-
cation. These proposals based on pattern recognition
techniques are more recent and tend to outperform
shape-model methods.

3 Methods and Implementation

Given the aforementioned limitations of the current
proposals in ear detection algorithms, we propose the
use of Geometric Morphometrics together with Deep
Learning algorithms, as presented in [6] for ear de-
tection, and Convex Hull methods for posterior seg-
mentation. A set of 2735 manually landmarked im-
ages, each with 45 interest points (landmarks and semi-
landmarks), the landmark configuration is described
in Fig. 1, was obtained to train a convolutional neural
network, using specific learning techniques to achieve
a high generalization rate and to avoid overfitting. An
overview of the network structure used in this case is
detailed in Table 1. For more information regarding
the network training please refer to [6].

In this paper we used a subset from CVL Face
Database [7], with 219 profile face images associated
with a Region Of Interest (ROI) where the ear is lo-
cated, used as a ground truth in this work. After the ear
is landmarked the convex hull of these landmarks is
calculated and used to segment the images resulting on
a set of pixels corresponding only to the ear structure.

3.1 Geometric Morphometrics

Geometric Morphometrics (GM) provide a set of meth-
ods for the quantitative analysis of the size and shape
of objects. GM is widely used in the study of biologi-
cal organisms [23], specially humans [24]. Methods
in GM propose to quantify the shape of each speci-
men according to the location in space of a set of 2D
or 3D reference points or landmarks that are homol-
ogous across individuals. The specific configuration
and anatomical descriptions of human ears are shown
in Fig. 1.

3.2 Convolutional Neural Networks

In recent years, the computer vision literature has wit-
nessed many research efforts in descriptor engineering.
A sought-for advantage of these descriptors, when ap-
plied to recognition purposes, is that they require to use
the same operator to all locations in the image. In this
way, the design of workflows for specific recognition
purposes is greatly simplified. Moreover, and as more
data becomes available, learning-based methods are
increasingly outperforming engineered features, be-
cause they can discover and optimize features without
supervision for the specific task at hand [25, 26].
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Name

Otobasion superiorious
Concha superiorious
Tragus superiorious
Intertragic incisure
Otobasion inferiorous
Helix basal border
Crus Helix

Semi landmarks

Number

~N NN RN =

8 to0 45

Figure 1: Landmark and semi-landmark configuration
and anatomical description [21, 22].

Convolutional neural networks (CNNs) [27, 28] con-
stitute the state of the art in many computer vision
problems, since they were shown to be very effec-
tive for large-scale image classification [26, 29, 30].
Their outstanding performance is based in four core
concepts: local connections, shared weights, pooling,
and the use of several layers [25]. However, since
the amount of learnable parameters in these nets is
huge, special care must be taken to avoid overfitting
(i.e., the network may just memorize the examples,
without generalization). In CNNs, the connectivity
patterns between some of the layers are constrained
in a way such to facilitate the processing of input data
that comes in the form of multiple arrays, for example
2D arrays containing pixel intensities, or 3D for video
or volumetric images. Images commonly exhibit high
correlation between values in a local group, forming
distinctive local patterns that are easily detected. To
take advantage of these properties, CNNs contain two
types of layers: convolutional and pooling layers.

A convolutional layer is parametrized by a set of
learnable filters. The feature maps are taken as input
and then a convolution is applied to each with the set
of filters to produce a stack of output feature maps.
To reduce the dimensionality of the features maps, a
pooling layer is located between convolutional lay-
ers. Pooling layers eliminate non-maximal values by
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computing some aggregation function (typically the
maximum or the mean) across small local regions of
the input [31]. The main purpose of this pooling is to
reduce the computational cost in the remaining layers,
reducing the dimensionality of the feature maps and
providing a form of translational invariance.

3.3 Dataset

Images used in this paper are a subset of the CVL Face
Database [7]. The images consist of a lateral view
of the head, with a 640 x 480 pixel resolution, taken
with Sony Digital Mavica under uniform illumination
conditions, and with background removal. The dataset
contains 219 images (corresponding to 114 persons)
from [7], each with an associate rectangle correspond-
ing to the ROI (Region of Interest) where the ear is
located, for ground truth purpose'. In some of the
images, ears were partially occluded by hair, earrings
or a combination of both. To further evaluate partial
occlusion, black boxes were added at random locations
in the images. An example of individual images of the
dataset with the ROI associated can be seen in Fig. 2. It
is worth mentioning that the network used in this paper
was trained with a different dataset (privately owned
by the CANDELA Consortium [32]), with different
pixel resolution, non uniform background, and differ-
ent and varying illumination conditions. In this way,
the instances used in this paper were never seen by the
network neither in the training nor in the validation
stage.

3.4 Preprocessing

Prior to the CNN-based processing, images are con-
verted to a single channel (i.e., luminance). The lumi-
nance histogram is stretched to black-out at most 2%
of the pixels in the ROI, and to white-out at most 1%
of the pixels. Then, the image is resampled to a final
size of 96 x 96 pixels, using bilinear downsampling.
For testing robustness with respect to partial occlusion,
we generate black rectangles located randomly over
the resampled image with different areas. The imple-
mentation of the occlusion method can be seen in the
repository, and an example of the occluded image with
a configuration of 5 boxes with a size of 15 x 15 pixels
each one can be seen in Fig. 6.

3.5 CNN Architecture and Training

In Table. 1 the best performing architecture is shown.
The input layer takes a single-channel profile face im-
age of size 96 x 96 pixels, with brightness scaled to
[0,1]. This is followed by a convolution layer with
square filters, and after a max pooling and dropout

'The images and ROI for the network can be downloaded
fromhttps://github.com/celiacintas/tests_landmarks,
please note that the images belong to CVL Database and should be
properly cited if used [7].
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Figure 2: Sample of the images used, with the associated ROIs superimmposed.

Table 1: Structure and parameters used for building the CNN for automatic landmarking over profile faces.

Name Type Size Filters Pool Dropout Units
C1 Convolutional 4x4 32 - - -
M2 Max pooling - - 2x2 - -
D3 Dropout - - - 0.1 -
C4 Convolutional 2x2 64 - - -
M5 Max pooling - - 2x2 - -
D6 Dropout - - - 0.2 -
C7 Convolutional 2x2 128 - - -
M8 Max pooling - - 2x2 - -
D9  Dropout - - - 0.3 -
F10 Fully connected - - - - 1024
D11 Dropout - - - 0.5 -
F12  Fully connected - 1024
O13  Output - - - - 90
layer. This structure is repeated three times to obtain 3.6 Pixel Segmentation based on Convex

features at different levels of abstraction, with different
filter size, number of feature maps, and probability val-
ues. The convolutional layers C1, C4, C7 have 32, 64
and 128 filters of size 4 x 4, 2 x 2 and 2 x 2. All max
pooling layers are of size 2 x 2, and the probability
values used for D3, D6, D9 and D11 are (resp.) 0.1,
0.2, 0.3 and 0.5. After the feature extraction layers,
the architecture contains two fully connected linear
layers with 1024 units each (F10 and F12 in the di-
agram), and a dropout layer in between (D11). The
output layer (O13) contains 90 output units (45 [x,y]
pairs) for the predicted position of the landmarks and
semi-landmarks. The implementation used Python and
the Lasagne library [33]°. This allows the use of GPU
acceleration without considerable programming effort.
The training of the network took roughly 10 hours
using NVIDIA GeForce GTX 1080 cards. Also, the
learning curves showing the training set error and the
validation set error can be seen at Fig. 3.

2The code is available at https://github.com/
celiacintas/tests_landmarks/blob/master/testing_
output_ears_JCST.ipynb
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Hull

Usually ear detection methods return a rectangular
ROI [34, 35], that contains the pixels corresponding
to the ear among others from the background. This is
rather impractical in several cases, since the amount of
pixels that require ulterior processing (in a recognition
step, for instance) is much larger, and also because the
ROI could contain background undesired information
that may add clutter. Using the landmarking config-
uration described in 1, instead, a more precise and
practical ROI based on a convex hull can be calculated
over landmarks. An example of this process can be
seen in Fig. 4. A convex hull of a set of points S in n
dimensions is the intersection of all convex sets con-
taining S. For N points x1,...xy € S the convex hull
Conv(S) is given by:

ey
Convex hulls over n points (planar or otherwise) can
be computed with very low complexity algorithms. In
our case we use the combined two-dimensional Quick-
hull algorithm with the general-dimension Beneath-
Beyond algorithm developed by [36]. Subsequently,

IS|

Z OX;
i=1

IS|
(Vi: OC,'ZO)/\Z(X,’ZI
i=1

1

Conv(S) = {
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Figure 3: Loss curves over validation and training set of the CNN detailed in Table 1. The yellow line represent
error on the training set, and the violet line represent the validation error, for the best performing network.
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Figure 4: Convex Hulls calculated over automatic placed landmarks.

the convex hull is used as a mask for the ROI, obtaining
as a final result only the pixels corresponding to the
ear, see Fig. 5. The code for convex hull calculation
and posterior segmentation along with the full output

dataset can be seen in the repository.
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0.0

4 Performance Assessment of Ear Detec-

tion

To evaluate the performance of our method we used
as a ground truth the geometry of the ROI, and as a
second geometry, the one formed by the convex hull
of the landmarks coordinates described in Eq. 1. If
the latter is completely inside the former, the ear was
correctly detected. Since both regions are convex, this
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Table 2: Performance with different types of occlusion.

# of boxes % of image occluded Accuracy CNN  Accuracy Viola-Jones
0 0 0.941 0.803
3 10.1 0.900 0.602
5 17.9 0.868 0.474
7 23.7 0.832 0.461
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Figure 5: Pixels corresponding to Convex Hull mask based on automatic placed landmarks.

means that all the detected landmarks must lie within
the ROI. Otherwise the ear was incorrectly detected.

For comparison, we also included results using the
Haar-based ear detector using cascades for left and
right ear available at OpenCV library. In Table 2 we
put together the outcomes of the Haar-based and our
method under progressive occlusions in the images.
As can be seen, our method clearly outperform Viola-
Jones, being also much more robust under increasingly
larger occluded areas. The accuracy of our method
degrades gracefully when occlusion increases, being
still significant with as much as 24% occlusion, while
Viola-Jones’ performance lowers rather drastically.

In Fig. 6 it can be noticed that even though in some
of the images the ear is partially occluded, the land-
marking is still sound. The full test set landmarked
by the CNN, the full structure and an analysis of the
net’s behavior can be accessed in the aforementioned
repository.
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5 Discussion and Conclusions

We analyze the feasibility of using Geometric Morpho-
metrics and CNNs for ear detection. For this purpose
we used a specific CNN previously trained with su-
pervised landmarks [6]. Detection was evaluated over
an open dataset, not previously used for training or
validation. The CNN was further evaluated over differ-
ent settings with incremental partial occlusions. Ear
detection was still adequate even with 24% of the im-
age occluded. Finally we propose an alternative ROI
segmentation method, based on using the convex hull
determined by the set of landmarks detected by the
CNN. The resulting ROI greatly enhances the quality
and reduces the computational burden of subsequent
tasks like people identification and other biometric
applications, since it is a robust and clean pixel set
without any background clutter that may mistify fur-
ther analysis.

We are currently working on people identification
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Figure 6: Results over images randomly chosen from the CVL Face Database with partial occlusion with five
randomly located black boxes of size 15 x 15 http://www.lrv.fri.uni-1j.si/facedb.html [7].

using ear biometrics. Both the convex ROI method
and the plain landmarks appear to be promising venues.
The latter provides significant qualitative information,
such as relative distances and angles among landmarks.
Also, as initial studies suggest ([6]), the relative impor-
tance of the landmarks’ coordinates is uneven, there-
fore reducing the amount of information required for
correct identification.
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