
Implementation of an Open Source Based Augmented
Reality Engine for Cloud Authoring Frameworks

Implementación de un Motor de Realidad Aumentada Basado en Código Abierto para
Frameworks de Authoring en la Nube

Nahuel Mangiarua1 , Jorge Ierache1, and Marı́a José Abasolo2,3

1DIIT, National University of La Matanza, San Justo, Buenos Aires, Argentina
{nmangiarua, ierache}@unlam.edu.ar

2Faculty of Informatics, National University of La Plata, La Plata, Buenos Aires, Argentina
3Scientific Research Commission of the Buenos Aires Province, Buenos Aires, Argentina

Abstract

In recent years the technology around Augmented Re-
ality has grown considerably, in particular, cloud based
always online solutions. In this paper we present a
pipeline model and sample implementation that shows
how an Augmented Reality engine can be built by
leveraging advances in open source algorithm imple-
mentations. We also show how such an engine can
be effectively integrated with cloud authoring tools
to take advantage of the network connectivity and its
computing power without an always online require-
ment.

Keywords: Augmented Reality, Cloud Authoring
Framework.

Resumen

En tiempos recientes la tecnologia al rededor de la Re-
alidad Aumentada a crecido considerablemente, en par-
ticular, las soluciones con conexion constante basadas
en la nube. En este trabajo presentamos un modelo de
pipeline y una implementacion de ejemplo que mues-
tra como un motor de Realidad Aumentada puede ser
construido aprovechando los avances en algoritmos de
implementacion abierta. Tambien mostramos como
dicho motor puede ser efectivamente integrado con
herramientas de autor en la nube para sacar ventaja de
su conectividad y poder de computo, pero sin requerir
una conexion continua.

Palabras claves: Realidad Aumentada, Framework
de Autoria en la Nube.

1 Introduction

Augmented Reality (AR) consists in the creation of an
environment in which information and virtual objects
are superimposed to reality, offering the user an en-
riched experience without interfering with his natural
perception. It can be used to expand our senses, to

define a direct or indirect view of a real world envi-
ronment, whose elements are combined with virtual
elements, such as texts, images, audios or videos to
create a mixed reality in real time [1]. AR does not al-
ways add elements to the real world, but it can also be
used to remove parts of it, occluding a physical object
from the view and replacing it with relevant informa-
tion [2]. As the AR Gartner hype cycle described by
Lens-Fitzgerald [3] states, AR can be categorized in
several types or levels of increasing availability and
seamlessness. From type 0 to 3, the first type refers
to linking real world elements to digital content by
reading an special code like a QR or barcode. Type 1
instead can effectively augment the reality by detecting
a marker and projecting virtual elements relative to its
spatial position. On the other hand, type 2 and 3 aug-
ment the physical reality without relaying in markers,
making use of precise gps, environment mapping and
wearable devices focusing on providing a seamless
experience In recent years AR technology has seen a
wide amount of progress from both academic research
and business. There are various libraries and frame-
works for exploiting augmented reality environments
such as ARToolKit [4], Vuforia [5], Layar [6], AR-
Core [7], ARKit [8]. Furthermore, several cloud based
authoring platforms have been developed such as the
recently acquired by IBM Aurasma [9], Augment [10],
Aumentaty [11], Zappar [12]. These authoring tools
allow users to upload virtual content to augment the
reality, linking it to an AR marker, GPS position or
trigger image. Another example of an authoring tool
is our Virtual Catalogs System [13][14] which focus
on reducing the required technological knowledge of
the final user to effectively augment content. Within
this frameworks and authoring tools, a considerable
fraction of the effort has been put on improving pure
cloud solutions and pushing towards AR of type 2 and
3. In particular, markerless AR that maps the envi-
ronment into some 3D representation. By anchoring
virtual objects at a point in this mapped space, the real-
ity can be augmented when that point is seen through a

- ORIGINAL ARTICLE -

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-175-

https://orcid.org/0000-0003-2674-7324


wearable or screen. Despite the huge potential of this
type of AR and the incredible improvement in network
connectivity and latency, we can still find a consid-
erable number of applications where type 1 AR on a
mixed cloud-local platform offers the best solution. In
parallel with the advances discussed previously, open
source algorithms and techniques have continue to be
implemented and improved making it possible to put
together a type 1 AR engine able to work offline when
needed, while taking advantage of the cloud when
available. In this paper we present a sample imple-
mentation of such and engine and its integration with
our existing cloud authoring framework. At the same
time we will be measuring the performance of differ-
ent algorithms available on the OpenCV library [15]
relevant to each step of the proposed pipeline. The rest
of the paper is organized as follows: in Section 2 we
describe the architecture of our existing cloud based
authoring tool, a proposed pipeline for a type 1 AR
engine and their integration; in Section 3 we proceed
to test the pipeline to identify the most promising al-
gorithms for its implementation. We finally conclude
with our findings and a discussion about scalability
issues and related future work.

2 Augmented Reality Cloud Authoring
Framework

2.1 Framework Architecture

An AR authoring framework consists of set of tools
specifically designed to assist non-expert individuals
in effectively augmenting their reality with virtual con-
tent. In particular, the Augmented Catalog’s System,
consists of a cloud based application that works closely
in hand with a secondary mobile application. As seen
on the architecture diagram in figure 1, the cloud or
server portion of the system provides a web based
editor working as the front end to the final user. In
this front end augmented catalogs can be created from
scratch or by making use of existing templates. Ad-
ditionally, a RESTful API exposes the serialized and
compressed catalogs of user generated content to the
mobile application though HTTP as detailed in figure
2.

Figure 1: Architecture overview of the Augmented
Catalogs System. The proposed AR engine can be
integrated as the AR Engine module.

Once a catalog is acquired by the mobile application,
it can be exploited completely offline by leveraging the
capabilities of a content display module and a marker
recognition module. This last one is the entry point
where the proposed AR engine can be plug into the sys-
tem as previously demonstrated in our Virtual Catalogs
System using a commercial implementation.

Figure 2: Structure of the Rest API connecting the
server application in the cloud and the client.

This authoring framework architecture, as exposed
by the Rest API, was previously integrated with a
commercial AR engine and an inference engine in the
context of a smart augmented medical card system
[16] and with an augmented template framework [17].

2.2 Augmented Reality Engine

Augmented Reality of type 1, in terms of computer
science, can be described as the problem of applying
computer vision algorithms to detect planar objects,
estimate a perspective transform relative to the camera,
and tracking the object in question. While this have
been all well-known and solved tasks for years, the
constraint to perform them on real time has a signifi-
cant impact that required thoughtful engineering and
novel methods that are yet an active field of research.
A proposed pipeline from which to build a sample en-
gine is shown on Figure 3. Here we divide the problem
in seven individual tasks grouped in two sub processes,
starting from the detection of the planar object and
followed by tracking. Detection of the trigger im-
age or marker on a bigger picture or video stream is
the first and also the most computationally expensive
task of the pipeline. The detection sub-process shares
elements to that presented by [18] and includes the
following steps: finding of key-points, extraction of
descriptors for those key-points, matching the current
key-points with the pre-computed ones of the marker,
finding inliers to the match and finally fitting a perspec-
tive transformation that satisfies the matching pairs.
The first two steps in the proposed approach are to find
and compute descriptors for key points of an image
of the wanted object, the marker, and of the scene or
video frame. To achieve this several algorithms are cur-
rently available and freely implemented, from classic
blob and edge detection to more complex and robust
methods like SURF [19], FAST [20], BRISK [21],
STAR [22] and ORB [23]. While some of this meth-

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-176-



ods include both the detection and description steps,
other algorithms only provide a means to describe a
point that must be found with a different one. The
following step in the detection sub process is to match
the descriptors obtained from the marker and the scene.
This matches will allow us to find an homography and
retrieve the transform matrix. For the task of matching,
the time complexity of a naive approach is O(NxM)
were N is the number of key-points of the marker and
M the number of key-points in the scene. This means
that the amount of key-points produced by each algo-
rithm becomes an important factor regardless of the
time it takes to actually find them. Once matches have
been determined, it is necessary to filter out unwanted,
low quality ones leaving us with the inliers of a poten-
tial affine projection. This process is performed by the
RANSAC algorithm at the time of fitting a perspective
matrix using the findHomography method provided by
the opencv library. This matrix will allow us to project
virtual content over the captured image or video stream
with the correct perspective to make it look as if part of
the real environment. In order to reduce the processing
power required, the pipeline for an AR engine must
switch to a tracking loop once the marker has been
detected. From this point further, we can use the found
key-points, inliers to the homography computation, to
track the object and avoid re-computing them on each
frame of a video stream. For this purpose, the already
classic Lucas-Kanade algorithm based on optical flow
can be used.

Figure 3: Pipeline for an AR application.

2.3 Integration

A type 1 AR engine built with the proposed pipeline
and the described open source tools can work offline
provided the markers have been already processed and
its key-points associated with the virtual content to dis-
play as augmentations. It is precisely here where the
integration with a cloud based authoring framework
comes into play. Figure 1 shows the high level archi-
tecture of our Augmented Catalogs System including
the integration point with the proposed engine. After a
user uploads a trigger image or marker, we can take ad-
vantage of the high computational power of the cloud
to quickly generate and process several variations of
the marker. By applying known synthetic illumination
changes and affine transformations we can simulate
the conditions at which each marker may be found
in the real world. By computing key-points on this
simulated conditions, combining and ranking then we
can increase the robustness of the detection step. Once

computed, this key-points can be easily stored along
with the augmentation contents and distributed as a
whole catalog using the serialization and compression
modules.

3 Testing Marker Recognition Algo-
rithms for the Augmented Reality En-
gine

We proceeded to test and compare the capabilities of
some of the available algorithms in the opencv library
when under the constraint of real time computing.

3.1 Tests description

The tests consist of running the detection sub-process
for each of several combinations of detection and de-
scription methods, measuring their time to completion
on a fixed scene. The following tests were recorded
running our code in a Core i7 4810MQ CPU at 2.8Ghz.
In all cases, the various parameters of each algorithm
were set to achieve the best speed while maintaining
an equal level of accuracy as perceived by a human.
Figure 4.a shows the marker, a png picture with a reso-
lution of 800x560 chosen to be robust and with a good
distribution of potential key-points. Figure 4.b illus-
trates the fixed test scene, a png file with a resolution
of 1200x675 pixels made such that it represents the
border line scenarios on which some of the current
AR engine would still be able to work: a rotation of
near 45 degrees (although we want complete rotation
invariance), partial occlusion, poor illumination and a
perspective of around 30 degrees from the top.

3.2 Finding of key-points and extraction of
descriptors performance

We tested a combination of five key-point finder al-
gorithms and four descriptors, SURF, FAST, ORB,
BRISK and FREAK [24]. Some algorithms include
their own descriptors while others do not. In the case
of the FAST algorithm, the built in descriptor is co-
variant to rotations so it was immediately discarded.
The ORB and BRIEF descriptors performed reason-
ably well but they were not robust enough to scale so
FREAK or SURF were used on the final rounds of
testing as shown in figure 5.

Table 1: Key point finding and descriptor extraction
times in ms.

Algorithm Finding
Time

Extraction
Time

Total
Time

Fast+Freak 00.79 4.16 04.95
Brisk 10.99 0.00 10.99
Orb+Freak 10.18 2.77 12.95
Star+Freak 14.31 1.58 15.89
Surf 86.61 35.91 122.52

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-177-



Figure 4: a) The marker images used for the tests. b)
The simulated, fixed scene where the marker must be
detected by the tests.

Figure 5: Example of the test’s visual output using
SURF features.

A usual camera ranges between 15 and 30 frames
per second which means we have at most 50ms to run
the whole pipeline without dropping frames. From the
data in Table 1 we can immediately notice that SURF is
not very appropriate for real time applications. Further
parameter tweaking (a Hessian threshold of around
30000) allowed SURF to pass the test with significant
lower times but cross validating with other marker
confirmed that such fine tuning over-fits the original
marker and does not work for others.

3.3 Matching descriptors and finding an ho-
mography

After finding and describing the key-points of the video
frame, the next step it to match them with the key-
points of the marker we computed in the cloud. While
the minimum amount of points to compute an homog-
raphy is as low as 4, we found that, given the accuracy
of this key-points, an average of 20 good matches are
needed. With this number of points the RANSAC
algorithm can reduce the error of a rectangle fit to

the marker borders to levels hardly noticeable by bare
sight, as seen in figure 6. Note that finding the exact
error in the retrieved transform is not of interest for this
application since the results are only to be perceived
by humans.

Figure 6: Overlaid rectangle with calculated perspec-
tive transform applied.

Table 2: Key point matching times in milliseconds.

Algorithm Matching
Time

Homography
Time

Total
Time

Orb+Freak 04.61 00.39 05.00
Star+Freak 10.71 03.59 14.30
Brisk 16.49 03.53 20.02
Surf 11.29 35.76 47.05
Fast+Freak 413.33 05.10 418.43

Table 3: Key points amount and quality.

Surf Brisk Fast Star Orb

Scene
Fea-
tures

267 349 1524 503 500

Filtered
matches

317 48 32 43 88

Inlier
matches

255 40 29 39 64

Max
dist.

0.54 202 183 167 168

Min
dist.

0.09 51 24 29 30

% of
in-
liers

95.5% 11.5% 1.9% 7.7% 12.8%

Given the complexity of a näıve, brute force match-
ing algorithm, the number of key-pints needed to
achieve the wanted level of quality will have a tremen-
dous impact in this step of the pipeline. As seen in
table 5 and in line with results presented in [25] and
[18], the ORB key point detection and FREAK descrip-
tors produces the best results allowing for accurate
planar object detection under the time limit of 20 fps,

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-178-



or 50 milliseconds. ORB, Oriented FAST and Rotated
BRIEF, is a rather new approach that builds up from
the previous algorithms to amend for their weak points.
This algorithm allows for a high level of parameteri-
zation but since we want to ensure the most general
approach possible, the only values changed from its
default was the maximum number of features (500)
and the patch size (16). This number of features en-
sures a low maximum and average computing time as
reported in Table 1 while yielding enough good quality
matches. The smaller patch size benefits small features
and reduces the margin left out from the marker in or-
der to capture a more uniformly distributed set of key
points. The descriptor chosen, Fast Retina Key point
or FREAK for short, is a novel technique which tries
to emulate the retinal response in our eyes to build a
robust binary descriptor. It can be parameterized to be
rotation and scale invariant and so it was set. Paradox-
ically, even if SURF produces only an average number
of features, since most of them are of high quality,
the homography calculation using RANSAC has to
be run with a high number of candidates which raises
its processing time significantly more than its gains
to accuracy. Further filtering of the SURF features or
RANSAC parameters tuning could be performed but
the previous step already discarded this algorithm. Ta-
ble 3 clearly shows why the matching step with FAST
features is so slow with over 1500 key points just for
the scene. We can also appreciate the relative qual-
ity of the features as a percentage of the inliers after
running RANSAC. As stated before, SURF produces
high quality key points with more than 95% of inliers
and really low distances. The rest of the algorithms
perform really close on average distance with ORB
leaving in amount of inliers.

3.4 Detection Results

Table 4: Total times for each tested combination of
algorithms.

Algorithm Match &
Homogra-
phy

Find &
Extract

Total
Time

Orb+Freak 5 7.77 12.77
Star+Freak 14.3 15.88 30.18
Brisk 20.02 20.02 40.04
Surf 47.05 82.96 130.01
Fast+Freak 418.43 422.59 841.02

Table 6 shows the final times for this algorithms
when running over a video stream of 720p without
sight of the marker. It is evident that a great part of
the processing effort in the detection loop is spent on
matching the descriptors when using a naive, brute
force nearest neighbor finder. OpenCV provides an im-
plementation of more advanced matching algorithms

Table 5: Final times for ORB + FREAK + NAIVE NN
over a video stream.

Times in ms Max Avg

Detect loop 44.00 14.68
Match only 19.34 06.03
% of total time 43.95% 41.07%

grouped in the Fast Library for Approximate Near-
est Neighbors. The FLANN [26] matcher performs
fast approximate nearest neighbor searches in high di-
mensional spaces by automatically choosing the best
algorithm and optimum parameters depending on the
dataset. While powerful, the lack of documentation
for this implementation makes it hard to use for fea-
tures other than numerical, like SURF. Running some
experiments with this feature, it turns out that for a
low amount of features (around 500 or less in this
case) the naive brute force NN algorithm works at the
same speed or even faster. This is because FLANN
advanced model has to be retrained for every frame
since we want to match the marker static features to
the scene ones. If we did the opposite, the model could
benefit from the fact that the markers features does not
change and be trained only once. This requires some
additional step to filter out detected features that are
not part of the object but, since SURF features are very
accurate, even without this filtering the homography
calculation is good enough and the matching times
reduces from the 11ms reported on Table 2 to roughly
2ms. This proves FLANN matcher is of utility for
this particular problem and further work to use it with
binary descriptors would yield significant performance
improvements. Even if this algorithms work within
the margins, we want to reduce the processing time
even further to have enough time to do the rendering
of the augmentation elements, that is, leave as much
time as possible to the computer graphics side of this
problem.

3.5 Tracking performance

In this area the Lucas-Kanade [27] method implemen-
tation in OpenCV was tested. The algorithm provides
an internal measurement of the tracking error for each
point and returns a mask for the ones lost. To further
increase the accuracy, a threshold was set to discard
points with an error over 15. Since the quality of
the tracking degrades over time, a lower bound on
the number of remaining key points was set. Some
quick testing showed that having less than 15 points
produces a noticeable error on the homography com-
putation. When the number of key points is then lower
than 15, the object is considered lost and we switch
back to the detection steps.

This method of switching between loops for detec-
tion and tracking showed to work reasonable well even

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-179-



Table 6: Final times when a Tracking sub-process is
used.

Times in ms

Max Frame 37.00
Avg. Frame 10.54
Avg. Track loop 10.47
Improvement 28.67%

under a highly un-optimized setup as our demo with
a reduction of 28% in average frame time. Further-
more, having a separate and fast tracking once the
marker is recognized, allows for the detection loop to
be loosen up, trading off increased computation time
to gain accuracy. Nevertheless, the switching does
not take advantage of the last know position of the
object when falling back. Instead, a mixed setup were
a small number of new features is calculated on each
step to regenerate and keep the tracking accuracy was
implemented.

3.6 Simple Optimizations
3.6.1 Geometric constraints

Since the markers used for this demo, and the vast ma-
jority of type 1 AR applications use mainly squares or
rectangles, some geometric constraints can be applied
to ensure proper detection. Each time a homography
is estimated, we can exploit the fact that, when cor-
rect, applying it to a rectangle of the same proportions
as the marker should preserve the rectangular shape.
This simple technique allows for quick false positive
pruning without adding almost any computational cost
by just checking whether the two inner diagonals of
the figure intercept. The area can also be easily com-
puted and further filter false positives whenever it gets
unreasonably small.

3.6.2 Two-step detection

Over this work we have stated that the ORB key point
detection algorithm along with FREAK descriptors is
one of the most efficient and robust ways to perform
planar object detection under heavy time constrains.
The reason of this efficiency comes from the fact that
this methods pro- vide enough medium quality fea-
tures very quickly, but this means that, when the object
is detected, only a few high quality points, the inliers,
are left. This small number of points is not the ideal
initialization for a tracking algorithm that would ben-
efit from a bigger number of uniformly distributed
features. Taking this into account, a two-step detection
was implemented such that, after the marker is located,
a new set of GFTT is calculated for that area and fed
to the tracking loop. This showed to offer better ro-
bustness to occlusions and local shadows during the
tracking process.

3.6.3 Feature regeneration

Rather than tracking a set of initial points until the
object is completely lost and then reverting to the de-
tection loop, a regenerative approach was implemented.
This simple optimization checks whether the tracked
points drop under a certain threshold, but while the
object position is still well known, and finds a small
number of new features only in- side the object’s area.
Since we know the new points belong to the object, no
matching needs to be performed, and if an algorithm
where the number of wanted features like GFTT or
ORB is used, the overall time for this operation lies
below the 2ms.

4 Conclusions

While most of the recent research effort and progress
in the field of AR has been in pushing towards type 2
and type 3 variants, we have shown how a type 1 AR
engine can be put together and integrated to a cloud
authoring framework with considerable little effort by
leveraging state of the art open source and freely avail-
able algorithms. We proposed and tested a complete
AR pipeline by adjusting the pipeline in [16] and ex-
tending it, adding a tracking sub-process. We tested
the detection sub-process with several combinations
of key-point detection and description algorithms and
demonstrated the ORB+FREAK pair to be the most
promising for this particular, time constrained task.
We also demonstrate it is very desirable to use tracking
methods such as local optical flow in a separate sub-
process once a trigger image is found. An integration
point of the AR engine in the architecture of a cloud
based authoring tool was explored. Grouping user gen-
erated contents by marker/trigger in the context of a
catalog allows us to expose a very simple RESTfull
API to communicate with clients. This integration al-
lows the use of hardware resources available on the
cloud, ensures bottom-up emerging content genera-
tion while taking advantage of online distribution and
offline exploitation when needed.

5 Future Work

Even if the Augmented Catalogs System in which the
sample AR engine is integrated allows for the cre-
ation of a manageable amount of markers or image
triggers per catalog we are not exempt of the reduced
scalability problem of the proposed engine or other
commercial available ones. To alleviate this problem
our effort will be focused on incrementing the scalabil-
ity, the number of trigger images that can be detected
without external help, of this model engine. Search-
ing and identifying images in big volumes of data is a
very active field or research with a flourishing cloud
based ecosystem of related services such as reverse im-
age search engines. In this context the most common

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-180-



approaches are, developing predictable approximate
search algorithms, or reducing the dimensionality of
the input or query. The first type of methods can accept
queries of a considerable size by predictably sacrific-
ing the precision of the result. On the other hand,
dimensionality reduction methods seek to discard the
least relevant data from the input in order to allow for
the use of more costly distance functions that yield
more precise results. Our focus will be on integrat-
ing existing techniques, adapting them to work within
the time constraints of an AR engine yet increment-
ing the scalability factor of the system in terms of
the amount of trigger images or markers than can be
detected offline. In particular, regardless of the dif-
ficulties adapting FLANN for the available types of
inputs, its approach of building a hierarchical struc-
ture, a dendogram, to perform approximate NN results
of great interest in this context. While building such
structures have relatively high computational complex-
ities of up to O(n2), the hardware capabilities available
in the cloud make it possible to exploit them. Lever-
aging this indexing techniques we plan to integrate
human face detection and recognition algorithms, in-
corporating them as another type of AR trigger into
the Augmented Catalogs System. This research line
seeks to be the starting point for future developments
seeking to exploit the implicit information available on
human faces such as biometric parameters and emotion
elicitation.

Competing interests

The authors have declared that no competing interests
exist.

References

[1] C. Manresa Yee, M. J. Abásolo, R. Mas Sansó,
and M. Vénere, ”Realidad virtual y realidad au-
mentada. Interfaces avanzadas”, 2011.

[2] R. T. Azuma. ”A survey of augmented reality”,
Presence: Teleoperators and Virtual Environments,
6(4):355–385, 1997.

[3] C. Boonstra, R. V. D. Klein, and M. Lens-
Fitzgerald. ”The Augmented Reality Hype Cycle”.
Available at: https://huguesrey.wordpress.com-
/2009/09/08/the-augmented-reality-hype-cycle-
sprxmobile-mobile-service-architects/. Accessed
on 2019-9-1.

[4] Artoolkit. Available at:
http://www.hitl.washington.edu/artoolkit/.
Accessed on 2019-9-1.

[5] Vuforia. Available at:
https://developer.vuforia.com/.
Accessed on 2019-9-1.

[6] Layar. Available at:
https://www.layar.com/.
Accessed on 2019-9-1.

[7] Google ARCore. Available at:
https://developers.google.com/ar/.
Accessed on 2019-9-1.

[8] ARKit. Available at:
https://developer.apple.com/arkit/.
Accessed on 2019-9-1.

[9] Aurasma. Available at:
https://www.aurasma.com.
Accessed on 2019-9-1.

[10] Augment. Available at:
https://www.augment.com/.
Accessed on 2019-9-1.

[11] Aumentary. Available at:
http://www.aumentaty.com/index.php.
Accessed on 2019-9-1.

[12] Zappar. Available at:
https://www.zappar.com/.
Accessed on 2019-9-1.

[13] J. Ierache, N. Mangiarua, N. Verdicchio, M. Be-
cerra, N. Duarte, S. Igarza, ”Sistema de Catálogo
para la Asistencia a la Creación, Publicación,
Gestión y Explotación de Contenidos Multimedia
y Aplicaciones de Realidad Aumentada”. XVIII
Argentine Congress of Computer Science, 2014.

[14] J. Ierache, N. Mangiarua, S. Bevacqua, N. Verdic-
chio, M. Becerra, D. Sanz, M. Sena, F. Ortiz,
N. Duarte, S. Igarza, ”Development of a Cata-
logs System for Augmented Reality Applications”.
World Academy of Science, Engineering and Tech-
nology, International Science Index 97, Interna-
tional Journal of Computer, Electrical, Automa-
tion, Control and Information Engineering, 9(1),
1-7, 2015.

[15] OpenCV. Available at: www.opencv.org

[16] C. Montalvo, F. Petrolo, D. Sanz, N. Mangiarua,
N. Verdicchio, S. Igarza, J. Ierache, ”Knowledge
Based Augmented Card System for Medical Assis-
tance Over Mobile Devices”. Selected Paper, XXI
Argentine Congress of Computer Science, pages
257-265, La Plata, Argentina, 2017.

[17] N. Mangiarua, J. Ierache, M. Becerra, H. Mau-
rice, S. Igarza, O. Spositto, ”Templates Frame-
work for the Augmented Catalog System”. XXIV
Argentine Congress of Computer Science, Tandil,
Argentina, Pages 267-276, Revised Selected Pa-
pers, Springer Nature Switzerland, Springer, Com-
puter Series Online, 2018.

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-181-



[18] S. A. K. Tareen and Z. Saleem, ”A comparative
analysis of SIFT, SURF, KAZE, AKAZE, ORB,
and BRISK”. International Conference on Com-
puting, Mathematics and Engineering Technolo-
gies (iCoMET), Sukkur, 2018, pp. 1-10, 2018.

[19] H. Bay, A. Ess, T. Tuytelaars, and L.V. Gool,
”Speeded-up robust features (surf)”. Comput. Vis.
Image Underst., 110(3):346–359, 2008.

[20] E. Rosten and T. Drummond, ”Machine learning
for high-speed corner detection”. In Proceedings
of the 9th European Conference on Computer Vi-
sion - Volume Part I, ECCV’06, pages 430–443,
Berlin, Heidelberg, 2006.

[21] S. Leutenegger, M. Chli, and R. Y. Siegwart,
”Brisk: Binary robust invariant scalable key-
points”. In Proceedings of the 2011 International
Conference on Computer Vision, ICCV ’11, pages
2548– 2555, Washington, DC, USA, 2011.

[22] M. Agrawal, K. Konolige, and M. Rufus Blas,
”Censure: Center surround extremas for real-time
feature detection and matching”. In David A.
Forsyth, Philip H. S. Torr, and Andrew Zisserman,
editors, ECCV (4), volume 5305 of Lecture Notes
in Computer Science, pages 102–115. Springer,
2008.

[23] E. Rublee, V. Rabaud, K. Konolige, and G. Brad-
ski, ”Orb: An efficient alternative to sift or surf”.
In Proceedings of the 2011 International Confer-
ence on Computer Vision, ICCV ’11, pages 2564–
2571, Washington, DC, USA, 2011.

[24] P. Vandergheynst, R. Ortiz, and A. Alahi, ”Freak:
Fast retina keypoint”. 2013 IEEE Conference

on Computer Vision and Pattern Recognition,
0:510–517, 2012.

[25] E. Karami, S. Prasad, M. S. Shehata, ”Image
matching using sift, surf, BRIEF and ORB: perfor-
mance comparison for distorted images”. CoRR
abs/1710.02726, 2017.

[26] M. Muja and D. G. Lowe, ”Fast approximate
nearest neighbors with automatic algorithm config-
uration”. In International Conference on Computer
Vision Theory and Application, VISSAPP’09,
pages 331–340. INSTICC Press, 2009.

[27] B. D. Lucas and T. Kanade, ”An iterative image
registration technique with an application to stereo
vision”. In Proceedings of the 7th International
Joint Conference on Artificial Intelligence, Vol-
ume 2, IJ- CAI’81, pages 674-679, San Francisco,
CA, USA, 1981.

✛

✚

✘

✙

Citation: N. Mangiarua, J. Ierache and M.J. 
Abásolo. Implementation of an Open Source 
Based Augmented Reality Engine for Cloud 
Authoring Frameworks. Journal of Computer 
Science & Technology, vol. 19, no. 2, pp. 
175–182, 2019.
DOI: 10.24215/16666038.19.e16
Received: April 13, 2019 Accepted: 
September 09, 2019.
Copyright: This article is distributed under the 
terms of the Creative Commons License CC-BY-
NC.

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-182-




