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Abstract: The paper provides a brief introduction into a relatively new discipline: artificial immune systems
(AIS). These are computer systems exploiting the natural immune system (or NIS for brevity) metaphor: protect
an organism against invaders. Hence, a natural field of applications of AIS is computer security. But the notion of
invader can be extended further: for instance a fault occurring in a system disturbs patterns of its regular
functioning. Thus fault, or anomaly detection is another field of applications. It is convenient to represent the
information about normal and abnormal functioning of a system in binary form (e.g. computer programs/viruses
are binary files). Now the problem can be stated as follows: given a set of self patterns representing normal
behaviour of a system under considerations find a set of detectors (i.e, antibodies, or more precisely, receptors)
identifying all non self strings corresponding to abnormal states of the system. A new algorithm for generating
antibody strings is presented. Its interesting property is that it allows to find in advance the number of of strings
which cannot be detected by an „ideal” receptors repertoire.

Keywords: Binary Immune System, Schemas, Binary Receptors, Detection Probability, Lower Bounds on
Failure Probability, Maximal Detectability

1. Introduction

The natural immune system (NIS) is a complex, self organizing and highly distributed system that has no
centralized control and uses learning (to recognize relevant patterns), memory (to memorize already encountered
patterns) and associative retrieval (to construct receptors distinguishing between self and non-self patterns) when
solving its main task: protect an organism against invaders. The learning process does not require negative
examples and the acquired knowledge is represented in explicit form. The main actors of the NIS are
lymphocytes equipped with a set of receptors recognizing intruders, or pathogens (i.e. viruses, bacteria, etc.).
Because the receptors on a surface of a single lymphocyte are of identical structure and they recognize only a
narrow class of pathogens, we can treat them as a single receptor from an abstract point of view.

AIS are computer systems exploiting the natural immune system metaphor: protect an organism against invaders.
Hence, a natural field of applications of AIS is computer security - see (Kephart, 1994) for exhaustive discussion
of this topic. But the notion of invader can be extended: for instance a fault occurring in a system disturbs
patterns of its regular functioning. Thus fault, or anomaly detection is another field of applications (Dasgupta,
1999). We can extend the notion of invader even further. In general, a problem to be solved can be treated as
invader or pathogen, and a solution to this problem as an antibody. AIS’s have found interesting and successful
applications in machine learning (Hunt and Cooke, 1996), information retrieval (Hunt, Cooke and Holstein,
1995), binary patterns recognition (Smith, Forrest and Perelson, 1993), operation research (Hart, Ross, and
Nelson, 1998) or numeric optimization (Bersini and Varel, 1990). Recently edited volume (Dasgupta, 1998)
reviews ideas and applications of AIS while Perelson and Weisbuch (1997) give an exhaustive overview of basic
facts concerning immunology, and analytical methods used in the field.

Farmer, Packard and Perelson (1986) were perhaps the first who recognized the importance of immune system
metaphor comparing it with Holland’s (1975) classifier system. Bersini and Varela (1990) commented this
problem next. AIS’s were also compared with neural networks, cf. Hoffmann (1986) and Dasgupta (1997),
genetic algorithms, (Forrest and Perelson, 1990) and autocatalytic chemical reaction networks, (Farmer, 1990).

The key features of NIS attracting computer scientists are:
• Distributed detection: the receptors used by the NIS are highly distributed and are not subjected to centralized

control. Hence, the NIS resembles what we call a multiagent system.
• Imperfect detection: no perfect matching of antigen by antibody is requested. Partial detection increases

flexibility of the system. This is very important since in a human organism there is about 106 self patterns and
about 1016 non-self patterns.



• Anomaly detection: the NIS correctly identifies never seen pathogens.
• Adaptability: NIS can learn the structures of the pathogens and remember those structures; facing already

„seen” pathogen it quickly remembers its structure. The „memory” of the NIS is effectively managed: rarely
used information is forgotten.

• Self organization: the memory cells are organized into so-called idiotypic network (a hypotheses stated by
Jerne, 1974) that changes in time. The NIS resembles Kohonen neural networks in this aspect. The idea of
selforganization is especially attractive when building learning systems, cf. (Hunt and Cooke, 1996).

• No need for negative examples: in many machine-learning systems we vast the time to collect appropriate
negative examples. The NIS doesn’t need such examples, and it correctly recognizes non-self patterns.

• Explicit symbolic representation: All the knowledge acquired by the NIS is represented in a fixed form forced
by the structure of the receptors on the surface of the lymphocytes.

• Uniqueness: the NIS of each individual is unique, and the system solves problems in a unique way.

In the rest of the paper we concentrate on so-called binary immune system introduced in 1987 by Farmer,
Packard and Perelson (Section 3). Instead of a genetic alphabet with four symbols (Adenine, Cytosine, Thymine,
and Guanine) the model uses a binary alphabet. Both receptors and intruders are represented as binary strings of
fixed length. As a rule activating a single receptor the k-contiguous rule is introduced in Sect. 3.1. It was
proposed by (Percus, Percus and Perelson, 1993) and is widely used in anomaly detection problems - cf.
(Dasgupta, 1999) or (Dasgupta and Forrest, 1996). The rule says that a receptor detects antigen if both the strings
have the same bits in at least k contiguous positions. Section 3.2 is a brief overview of existing algorithms for
receptors generation. Since the process of antigen recognition can be viewed as a form of template matching, in
Section 2.3 the notion of templates is introduced and some elementary properties of the templates are presented.

In Section 4 the discriminative power of a single receptor is determined. Contrary to the statistical analysis,
available in the literature - e.g. (Percus, Percus and Perelson, 1993) - we use deterministic approach. It allows
precisely compute the number of strings detected by a single receptor. The means introduced here are also of use
when the effectiveness of a set of n cooperating receptors is investigated (Section 5). This analysis gives a hint on
how to construct an effective (of minimal size) repertoire of receptors and allows determine, in advance, the
number of strings recognized by a given repertoire. Even if such an effective repertoire has been constructed
there are still some strings that cannot be detected. D’haeseeler (1995) explained this phenomena by the existence
of so-called holes, i.e. strings consisting of the templates from which the self strings were constructed. But the set
of non-recognizable strings is even larger. In Section 6 this problem is studied in depth and a method enabling to
compute the maximal number of strings that can be recognized by the optimal set of receptors is presented. This
section ends with the short description of the algorithm for the optimal repertoire construction. Its details are
given in (�������� �
����a).

2. Brief introduction to immune system

The basic building blocks of the NIS are white blood cells called lymphocytes. The size of an organism
determines the number of lymphocytes: mice have of the order of 108 lymphocytes, while humans have of the
order of 1012. There are two major classes of lymphocytes: B-lymphocytes, or B-cells, produced in the bone
marrow in the course of so-called clonal selection (described later), and T-lymphocytes, or T-cells, processed in
the thymus. Roughly (but not quite precisely) speaking B lymphocytes are related to humoral immunity: they
secrete antibodies. Among the B-cells are „memory cells”. They live relatively long and „remembering” foreign
proteins they constantly restimulate the immune response of the organism. On the other hand, T-lymphocytes are
concerned with cellular immunity: they function by interacting with other cells. T-lymphocytes divide into CD4
lymphocytes or helper T-cells, and CD8 lymphocytes, called cytoxic or killer T-cells, that eliminate intracellular
pathogens. Helper T-cells generally activate B-cells promoting their growth and differentiation into an antibody-
secreting state. That is, B lymphocytes interact with the pathogens to stimulate the immune response, whereas T
lymphocytes can either enhance or suppress the B cells’ response to a stimulus. Activated B-cells cut protein
antigens into smaller parts (peptides) and present them to killer T-cells. These last cells are responsible for killing
virally infected cells and cells that appear abnormal.

A lymphocyte has about 105 receptors, which are of the same structure. In the case of B-cells, the receptor is an
immunoglobulin (antibody) molecule embedded in the membrane of the cell, while in the case of T cells the
receptor is simply called the T-cell receptor, or TCR. These receptors are constructed from inherited gene
segments (libraries) and they come into being in the process of random recombination of segments from different
libraries. The process relies upon random selection of a genetic component from each of the libraries. There are
many possible combinations of the available components, so the immune system can generate a large number of



antibodies even though the libraries contain a limited amount of genetic information. Additionally the libraries
evolve in time. Hightower, Forrest and Perelson (1995) used this idea to simulate the ability of organising the
complex structure of the antibody libraries via a genetic algorithm. They observed that the antibodies tend to
maximize the average Hamming distance to other antibodies in the library. This extends, in a sense, earlier work
of Smith, Forrest, and Perelson (1993) and provides an interesting perspective for building pattern recognition
systems. On the other hand, it can be used to improve the performance of genetic algorithms, concretely their
exploration aspect. According to Schema Theorem (Holland, 1976) the algorithm assigns exponentially
increasing number of trials to the observed best parts of the search space. Treating its population individuals as
libraries and equating their fitness to the fitness of (randomly generated) antibodies we obtain the population with
partially expressed fitness. More precisely, the phenotype of an individual (i.e. expressed antibody molecules)
does not completely represent its genotype (the total collection of gene segments in the library). Hence, best parts
of the search space discovered in one cycle are rather different from best parts identified in the next cycle as
random segment selection allows the segments to be temporarily hidden from selection stage of the genetic
algorithm. Deeper understanding of the role of the antibody gene libraries in the generation of the immune
repertoire provides (Oprea, 1999).  Particularly, she reflects on what strategy do the relatively small antibody
libraries evolve for matching the much larger set of pathogens.

Clonal selection is another mechanism guaranteeing large diversity of the receptors. When a cell is activated by
binding to pathogens, it secretes a soluble form of its receptors and, simultaneously, it clones itself. Clones are
not perfect, but they are subjected to somatic mutation (characterized by high mutation rate) which result with
children having slightly different receptors than the parent. These new B-cells can also bind to pathogens and if
they have a high affinity (or simply "similarity") to the pathogens they in turn will be activated and cloned. The
rate of cloning a cell is proportional to its "fitness" to the problem: fittest cells replicate the most. The somatic
mutation guarantees sufficient variation of the set of clones, while selection is provided by competition for
pathogens. This mechanism was employed by Hunt and Cooke (1996) to create learning system, and by Bersini
and Varela (1990) and in solving optimization problems.  Gaspar and Collard (1999) also exploits this idea in
their approach to time dependent optimization.

Another interesting and controversial idea is the idiotypic network hypothesis proposed by Jerne (1974). It is
based on the concept that lymphocytes are not isolated, but communicate with each other among different species
of lymphocytes through interaction among antibodies. Hence, the identification of antigens is not done by a
single recognizing set but rather a system level recognition of the sets connected by antigen-antibody reaction as
a network. The hypothesis quite elegant explains the mechanism of immunological memory as well as
immunological forgetting, consult (Farmer, Packard and Perelson, 1986) for details. Hunt (1998) research group
has extensively studied the application of these metaphors to machine learning and information retrieval. Their
models are primary based on idiotypic network hypothesis.

Clonal selection (which operates with individual) and stochastic gene selection (operating on genes that
determine the specificity of antibodies) are two main mechanisms providing an exponential number of
combinations. Potentially the NIS can produce 1015 different receptors, although an estimated number of
receptors present in a body at any given time varies between 108 - 1012. Recognition in the NIS occurs at the
molecular level and is based on the complementarity in shape between the binding site of the receptor and an
epitope (a portion of the antigen). It is important to notice that since all the receptors on the surface of a single
lymphocyte have the same structure, the lymphocyte can be formally treated as a single detector. It can only
recognize a narrow class of structurally related epitopes.

The most popular among biologists theory is that helper T-cells are responsible for making the discrimination
among self and non-self patterns. Thus, in this paper we focus on the properties of abstract helper T-cells. To
detect invaders (e.g. anomalies in a system functioning) effectively we should have efficient means for generating
sufficiently rich repertoire of receptors being a counterpart of T-cells receptors. The method of generating such
detectors hardly depends on the rule triggering them and the method of representing genetic information.

3 Intrusion selection algorithm

The intrusion selection algorithm is inspired by the principles of self-nonself discrimination in the immune
system, where any foreign cell or molecule should be distinguished from the body cells. In the NIS, this
discrimination is achieved partly by T lymphocytes, which have receptors on the surface to detect pathogens. T
cells develop in the bone marrow by a pseudo-random genetic rearrangement process, and then travel to thymus
to mature, when they undergo a censoring process called negative selection. All T cells that react against self-
molecules are destroyed so that only those that do not bind to self-molecules are allowed to leave the thymus.
These matured T cells then circulate through the body and acting as detectors they perform immunological
functions to protect against pathogens.



This metaphor has been successfully applied for various anomaly detection problems. These include computer
security, (Forrest et. al, 1994), novelty detection, (Dasgupta and Forrest, 1996) or spectra recognition (Dasgupta,
Cao and Yang, 1999). Below an abstract formulation of the problem is presented.

Let U be the set of all binary strings of length l; obviously |U|, the cardinality of U, equals 2l. Let S ⊆ U be a
proper subset of U, called self strings, which represent e.g. regular states of a system. The strings from the set U-
S are referred to as non-self strings. The problem relies upon constructing a set of detectors, denoted R, such that
each r ∈ R doesn’t recognize any self string, and at least one receptor activates when meeting a non-string
representing abnormal state of the system. This way of detecting abnormal states was proposed by Forrest et. al.
(1994) under the name negative selection method. It has a number of interesting features distinguishing it from
other methods. The most important, among them, are:

1. No prior knowledge of anomaly is requested.

2. Detection is probabilistic and tunable: instead of constructing a set of detectors recognizing all non-self
strings (so-called complete repertoire) a smaller set of detectors is generated. It recognizes all but a small
fraction Pf of non-self strings in exchange for a smaller set of detectors.

3. Detection is local: only small sections of data are checked and when a detector does find an anomaly it can be
localized to the string that the detector is checking.

4. Detection is distributable: small sections of the protected system can be checked separately and no
communication among detectors is needed until an anomaly is detected.

The strings from R can be loosely treated as a concise characterization of a notion N described by the strings
belonging to the set U-S. Denoting by R* the set of strings detected by the receptors in R, the problem can be
stated as follows: knowing the description on non-N, given by a set S ⊆ U, find a subset R ⊆ U-S of minimal
cardinality such that R* = U-S. Here, typically, the cardinality of S is relatively small in comparison with the
cardinality of U. This is in contrast to the earlier work of Smith, Forrest, and Perelson (1993) where the set S was
not taken into account explicitly and the number of antigens was relatively small.

To implement the algorithm of identifying the set R we should define in general: receptors representation (binary
in our case), the method of their activation (so-called matching rule), and the method of receptors generation.
These topics are discussed below.

3.1 Matching rules

There is no unique receptors activation method. Perhaps a simpler one is Hamming matching: two strings x and y
match under the rule if they have different bits in at least k positions, 1 ≤ k ≤ l, i.e.

matchH(x,y) iff dH(x,y) ≥ k

where dH stands for the Hamming distance. It is easy to observe that matchH(x,y) is symmetric and irreflexive
since dH(x,y) = dH(y,x) and dH(x,x) = 0. The total number of strings recognized by a single receptor r ∈ R under
the Hamming match with threshold k, DH(l,k), equals

DH(l,k) = 
l

ii k

l 





∑

=

Knowing this number we easily find pH(l,k) - the probability that two random strings match at least k bits: pH(l,k)
= 2-l⋅DH(l,k).

Other rules based on Hamming match are reviewed in (Hunt and Cooke, 1996).

In this paper we will focus on so-called k-contiguous bits rule introduced by Percus et. al. (1993) as a plausible
abstraction of receptor binding in the immune system. Two strings, x and y match under the rule if x and y have
the same bits in at least k contiguous positions. Suppose for instance that l = 6, k = 3 and assume that the strings r
(receptor) and x1, x2 are of the form r = 100110, x1= 001100 and x2= 000100. Then matchC(r,x1) = FALSE
while matchC(r,x2) = TRUE, so x1 is a self pattern and x2 is an antigen (anomaly). The rule can be imagined as
moving a window of width k over two tested strings:



Figure 1. Matching under the k-contiguous rule: move from left to right a window of length k over the receptor
(r) and tested (x) strings. If the two substrings within the window are identical, receptor activates.

Contrary to the Hamming match this rule is symmetric and reflexive and hence induces a tolerance relation over
U-S. The discriminative power of this rule is investigated in the next sections.

3.2 Existing algorithms for receptors generation

Given a binary immune system with the set S of self strings we should generate the set R containing as small as
possible receptors which recognize all the antibodies from U - S. Such a set R is referred to as the complete
repertoire. Usually, to reduce its cardinality we are satisfied with a subset of R recognizing all but a small fraction
Pf of non-self strings. D’haeseler (1995) proved that in general it is impossible to construct a set R recognizing all
non-self strings. The set U - S contains so-called holes i.e. strings constructed from the templates (defined in Sect.
2.3) of S which are not members of S. ��������  (2000) has shown that U - S contains additional number of non-
recognizable strings: they contain some templates characterizing S and cannot be complemented with templates
characterizing strings from U - S.

A naive solution to the problem of receptors repertoire construction is to generate randomly candidate strings and
then test them to see if they match any self string. If a match is found, the candidate is rejected. The process is
repeated until the desired number of receptors is generated. This algorithm resembles the way in which B-cells in
the immune system are recruited in the bone marrow. It is ineffective, however, because the receptors grow
exponentially with the size of |S|. Denoting Pm the probability that two random strings match at least k contiguous
positions and Pf - the probability that the set of receptors fail to detect an antigen, the time complexity of this
algorithm is O(-ln(Pf)⋅|S|/(Pm⋅(1-Pm)|S|) and the space complexity is O(l⋅|S|), consult (D’haeseleer, Forrest, and
Helman, 1996).

Helman and Forrest (1994), proposed a more efficient algorithm which runs in linear time with the size of self
(and receptors). It consists of two stages. First, the set of templates (defined in Section 2.3) from which receptors
can be constructed is identified, and numbering of the templates is established. Next, this numbering is used to
construct randomly the receptors. Unfortunately, this way we obtain many redundant receptors. D’haeseleer
(1995) proposed a greedy algorithm based on the same principles which generates better coverage of the string
space by placing detectors as far apart as possible. However, its space complexity of this algorithm is of order
O((l - k)2⋅2k.

Further simplification of this idea has been proposed by (�������� �
 ������
 ��
 �!���
��
 ����
 ���
 ��"#�����
used to construct receptors form binary trees. Identifying common subtrees in these trees we can substantially
reduce the number of receptors.

3.3 Templates

Moving the window of width k over the self strings, see Fig. 1, we can split each of them into (l-k+1) substrings
of length k. These substrings induce so-called templates introduced by (Hellman and Forrest, 1994) to build
receptors. Since each receptor does not recognize any self string, s ∈ S, it is obvious that it cannot contain any
template recognized in a self string.

To be more precise, let w be a binary string of length k (k is the threshold value). We will consider strings of
length l over the alphabet {0,1,*} where * stands for „irrelevant”. By a template ti,w of order k, we understand a
string (of length l), whose substring of length k taken from position i equals w, and all the remaining positions of
the template are filled by the star symbol. For instance, when l = 6, k = 3, and w = 010 then t1,w = 010***, t2,w =
*010**, t3,w = **010*, and t4,w = ***010. A self string s = 001101 splits into four templates: t1,001 = 001***,
t2,011 = *011**, t3,110 = **110*, and t4,101 = ***101. In genetic algorithms terminology a template of order k is a
schema (Holland, 1975) of order1 k in which all the significant bits are contiguous.

The set of all possible templates, denoted T, contains (l - k +1)⋅2k different elements. We split T into two disjoint

                                                          
1 The order of a schema is defined as the number of relevant positions in this schema. For instance if x1 = 0000**** and x2 =

00000*** then order(x1) = 4 and order(x2)=5.

r 1 0 0 1 1 0
x2 0 0 0 1 0 0



subsets: TS consisting of all the templates contained in at least one self string and the set of remaining templates,
TN, used to construct receptor strings. Typically TS is a low fraction of T. Following D’haeseleer (1995) we will
naively2 represent the set T as the matrix T with 2k rows and (l - k +1) columns: T[w,i] = 0 if ti,w ∈ TS and T[w,i] =
1 if ti,w ∈ TN.

Example 1: Let l = 6, k = 3. Given the set of ten self strings, shown in the leftmost column of Table 1, the sets TS

(of self templates) and TN (of non-self templates) are represented by the table T consisting of 8 rows and 4
columns shown below.

Table 1. Matrix T representing the set TS (of self) and TN (of non-self) templates

4. Discriminative power of a receptor

Consider a single receptor r = b1b2,...,bl where bi ∈ {0,1} denotes bit value at i-th position, i = 1,...,l. We are
interested in finding the number D(l, k) of unique strings from U detected (by means of the k-contiguous-bits
rule) by the receptor r. Obviously this number depends on the receptor length and the threshold value only. To
find D(l, k) we will represent all the templates ti,w constituing a given receptor by the set of schemas forming a
partition of the set of all detected strings. In other words, if X = {x1,...,xm} is the set of schemas generated by the
receptor and u is an antibody detected by r then u is an instance3 of exactly one schema xi ∈ X. We restrict to the
special class of schemas, however: a schema derived from a template ti,w has first (k+i-1) positions meaningful
and remaining (l-k-i+1) positions are filled in by the star symbol.

To be illustrative, consider a receptor r = 001101 (hence l=6) and assume k = 3. The first template, t1,001 =
001***, induces unigue schema identical to the template and recognizes 2l-k strings including this schema. The
second template, t2,011 = *011**, induces two schemas: s2,1 = 0011** and s2,2 = 1011**. However the strings
including schema s2,1 are already recognized by the first template and the number of new, or fresh, strings
recognized by the second template equals half of 2l-k, i.e 2l-k-1. Similarly the third template, t3,110 = **110*,
induces four schamas: s3,1 = 00110*, s3,2 = 01110*, s3,3 = 10110*  and s3,4 = 11110*, but only half of them
are active since schema s3,1 is covered by the first template and s3,3 is covered by the schema s2,2 = 1011**. One
verifies that the number of fresh strings recognized by third template equals again 2l-k-1. Continuing this reasoning
we state that the first schema recognizes 2l-k strings and remaining (l-k) schemas recognize 2l-k-1 fresh strings, i.e.

D(l, k) = 2l-k + (l-k)⋅2l-k-1 = 2l-k-1⋅(2+ l-k) (1)

The reasoning presented here easily extends to the case when strings over an alphabet consisting of m symbols
are considered. For instance when k ≥ (l/2) we observe that each template ti,w introduces (m-1)/m fresh schemata.
Hence the total number of strings recognized by a single receptor equals

Dm(l,k) = ml-k +(l-k)⋅(m-1)⋅ml-k-1 = ml-k-1 ⋅[(l-k)⋅(m-1) + m] (2)

Dividing Dm(l,k) by ml (total number of strings) we obtain a formula describing the probability that a randomly
choosen string is detected by a receptor. This formula was firstly presented by Percus, Percus and Perelson
(1993). It is important however that both (1) and (2) are valid only if k ≥ (l/2).

To explain this suppose that in our example we decided to choose k = 2 < (l/2). Then the first schema induced by

                                                          
2 Linked lists or sparse arrays are more efficient representations. We use the matrix representation for its illustrative power

only.
3 That is, if x = 00000*** then e.g. u=00000101 is an instance of x.

S no w T[w,1] T[w,2] T[w,3] T[w,4]
001110 0 000 1 0 0 1
001101 1 001 0 1 1 0
001111 2 010 0 1 0 1
010001 3 011 0 0 1 1
010101 4 100 0 0 1 0
011100 5 101 1 0 1 0
011111 6 110 0 1 0 0
100001 7 111 1 0 0 0
110001
110100



the first template is s1 = 00****, the second template induces two schemas s2,1 = 001*** (covered by s1) and s2,2

= 101***. Third template induces four schemas s3,1 = 0011** (covered by s1) s3,2 = 0111**, s3,3 = 1011**
(covered by s2,2)  and s3,4 = 1111**. Fourth template, ***10* induces eight schemas; we can group then into
schemas of the form **010* and **110*. All the schemas of the form **110* are instances of third template
**11**, while the schemas belonging to the first group are s4,1 = 00010* (covered by s1) s4,2 = 01010* s4,3 =
10010* and s4,4 = 11010*. It means that fourt template recognizes less than half of 2l-4 fresh strings. ��������
(2000b) provides a correct (slightly complicated) procedure for counting the number of fresh strings recognized
when k < (l/2). Figure 2 shows how this number diminishes when k increases (for different values of l).

Figure 2. Number of strings (in logarithmic scale) detected by a single receptor with different matching threshold.
Each curve corresponds to another string length.

5. Reduction of the discriminative power

Although a single receptor can distinguish D(l,k) unique strings from the universe U, its discriminative power
radically changes when it cooperates with another receptors. To be more illustrative consider two receptors
000000 and 001100, and assume that the threshold k = 3. Using the method described in previous section we
easily state that both the receptors recognize 38 unique strings and not 2⋅D(6,3) = 40 strings. On the other hand,
the ensemble consisting of two receptors 000000 and 100001 recognizes only 28 receptors.

To explain this phenomena let us write down all the schemas induced by the templates representing
corresponding strings. In the first case (case (a) in Table 2) we see that the schema 000100, belonging to the
template t4,100 of the string 001100 is absorbed by the schema 000*** representing the template t1,000. Similarly
the schema 001000 is absorbed by the schema 001***. Hence, instead of 16 fresh schemas we have only 14
fresh schemas. In the second case (case (b) in Table 2) we have only 12 fresh schemas covering 28 different
strings, that is each receptor recognizes 14 strings in average.

In general, to estimate the average number of strings recognized by a set of n receptors we should use statistical
approach. Assuming that the receptors are chosen independently we can define pf(l,k,n), the failure probability

pf(l,k,n) = (1- p(l,k))n ≈ e-n⋅p(l,k) (3)

This last approximation is valid for large values of n and small values of p(l,k). The average number of strings
detected by n receptors is determined by the formula

d(l,k,n) = (1 - pf(l,k,n))⋅2l (4)

and the average number strings detected by a single receptor among the ensemble of cardinality n equals
davg(l,k,n) = d(l,k,n)/n. Figure 3 shows how this number varies for different values of l, k and n. The parameters l
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and k were chosen such D(l, k) is fixed and equals 48. Each receptor can be treated as a „ball” in its Hamming
space. Increasing l we increase the „volume” of the space, and the larger the space, the balls have more places
and can freely move without losing theirs independence.

Table 2 Overlapping schemas in the ensemble of two strings

Formula (4) almost perfectly agrees with empirical data. Figure 4 shows the theoretical curve compared with real
data. The plot was averaged over 200 runs, and average of these runs is almost identical (hence, not shown) with
theoretical values. However, we see that apart from mean values there are two extreme lines: upper one shows the
best results achieved in these runs, while the lower line shows the worst results. It is interesting to contrast the
number of strings recognized by a receptor with the average number of fresh schemas included in the receptor.
Figure 4 shows how this number decreases when the size of the set of receptors increases (again the plot was
averaged over 200 runs). Careful examination of both the plots shows that choosing receptors that contain as
most as possible different templates, we can increase their discriminative power.

These considerations give a hint on how to construct a repertoire of receptors. Namely, to achieve maximal
discrimination power of the receptors we should choose them in such a way that each receptor enters maximal
number of different schemas. To achieve this receptors must be build from diverse templates. This problem is
discussed in the next section.

Figure 3. Reduction of the discriminative power of a single receptor

case (a) case (b)
Schemas

induced by the
string 000000

Schemas
induced by the
string 001100

Schemas
induced by the
string 000000

Schemas
induced by the
string 100001

100*** 001*** 000*** 100***
1000** 1011** 1000** 0000**
01000* 01110* 01000* 11000*
11000* 11110* 11000* 01000*
001000 000100 001000 101001
101000 100100 101000 001001
011000 010100 011000 111001
111000 110100 111000 011001
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Figure 4. Average number of strings recognized by n receptors (l=10, k=6).

Figure 5. Average number of schemas included in a single receptor (l=10, k=6).

6. Lower bound for the fault probability

The fault probability pf(l,k,n) defined in formula (3) applies to the case when S = ∅. When S ≠ ∅ it is not
possible, in general, to construct detectors recognizing all the strings from the set U-S. It is hard to define the
lower bound analytically, but it is relatively easy to treat the problem numerically. There are two sources of non-
detectability, which will be discussed below.

The first source are so-called holes defined by D’haeseleer (1995). Intuitively by hole we understand any string u
∈ U-S build up from the templates belonging to the set TS only. There is a simple procedure, suggested by
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however.

Let w be a substring of length k. Denote by (→w) the substring obtained by deleting the first bit from w, and by
(w←) the substring resulted from deletion of last bit from w. The symbol (→w)+b denotes the string (→w)
appended with b, where b ∈ {0,1}, and similarly b+(w←) denotes b appended with (w←); obviously in both
cases the length of new strings is again k.
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correspond to the templates: a template t1,w is said to be the root of a tree. In general, given a template ti,w ∈ TS, 1
≤ i ≤ (l-k), we call te template ti+1,(→w)+0 ∈ TS the left child of ti,w, and the template ti+1,(→w)+1 ∈ TS the right child of
ti,w. Surely, if i + 1 = l-k +1 then the corresponding child is just a leaf of the binary tree. By analogy, given a
template ti,w ∈ TS, 2 ≤ i ≤ (l-k+1, we call te template ti-1,(w←)+0 ∈ TS the left child of ti,w, and the template ti-1,(w←)+1

∈ TS the right child of ti,w.

Figure 6 shows binary trees representing the set of self strings from Example 1. The trees are drawn in a compact
way: common subtrees were identified and joined together. For instance the leftmost structure represents two
binary trees with the roots t1,001 and t1,011; both the trees have common subtrees: one rooted with t3,110, and second
rooted with t3,111. Now any path from the root to a leaf represents a single string. Careful examination of the
structure shows that we can reconstruct 15 strings instead of the original 10 = |S| strings. It means that we can
construct 5 additional strings from the templates belonging to the set TS. These additional strings are just holes.
For instance the leftmost structure encodes four strings: 001100, 001101, 001110 and 001111. Two of them
are holes: 001100, 001110.

We are ready now to define a simple procedure counting the number of strings induced by the set S. Suppose we
move from the leaves toward the root of a tree. A node tl-k,w ∈ TS has at most two children: tl-k+1,(→w)+0 and tl-

k+1,(→w)+1. If this is the case, it means that we can construct two self strings: one ends with bit 0 and the second
ends with 1. Suppose the values of the table T (defined in Section 2.3) were changed such that T[w,i] = 1 -
T[w,i], i.e. T[w,i] = 1 iff ti,w ∈ TS. Hence the values of the table T should be updated according to the rule:

T[w,i] = T[(→w)+0,i+1] + T[(→w)+1,i+1] , i = (l-k),...,1

provided that ti+1,(→w)+0 and ti+1,(→w)+1 are members of TS. Summing up all the entries in the first column of the
table T we find the number NS of all possible strings that can be constructed from the templates belonging to TS.
Now, NS - |S| is the number of holes.

    001***       011***      010***     110***        100***

*011**       *111**           *100**     *101**             *000**

**110*       **111* **000*     **010*         **000*

           ***100   ***101   ***110   ***111   ***001   ***100   ***101         ***001
Figure 6 Graphical representation of the templates from the set TS

Let us focus now on the second source of non-detectability. Suppose we construct receptors from the template
belonging to TN. Consider the template t1,000 from Table 1 of Example 1. Its left child t2,000 belongs to the set TS

and its right children t2,001 belongs to the set TN; hence the initial four bits of possible receptor are 0001. Now the
template t2,001 has only one valid (i.e. belonging to TN) child: t3,011. But both the children of this last template, i.e.
t4,110 and t4,111 belong to TS what means that t1,000 cannot generate a valid receptor. �������� 
*�����
#��#����
�
simple procedure for finding the set TR ⊆ TN  from which we can build receptors. Roughly speaking for each
template ti,w ∈ TS we check its parents: if a parent, say ti-1,v is not a member of TS, but both its children are
members of TS, we move ti-1,v to the set TS. Similarly, we check the children of ti,w ∈ TS: if a child, say ti+1,r is not a
member of TS, but both its parents are members of TS, we move ti+1,r to the set TS. Let us call such a procedure
FindIneffective. Table 3 presents modified (by the FindIneffective procedure) Table 1 from
Example 1.



Table 3. Matrix T representing modified set TS (added templates are in bold) and the set TR of templates from
which receptors can be generated

Now, counting the number of strings induced by the modified set TS‘ = T - TR we determine the whole number of
nondetectable strings. It consists of: the number of self strings, the number of holes, and the number of additional
nondetectable strings. In our example we find that the number of strings induced by TS‘ is 28 what means that the
set of receptors is able to recognize only 26 - 28 = 36 strings. Applying the method for identifying holes to the set
TR we find that it is possible to construct 6 different receptors shown in Figure 7.

Observe however that the three receptors chosen such that at least one of them contains the template t1,101 and the
template t1,111 has the same discriminative power as the full set of six receptors. Suppose for instance that we
decided to choose the receptors 101010, 101011 and 111000. Then the first and second receptors recognize
templates t1,101, t2,010, t3,101, t4,010 and t4,011 while the third detector recognizes remaining templates t1,111, t2,110, t3,100,
t4,000. The general rule for constructing nonredundant receptors is such that they must cover all possible paths
from roots to the leaves, and the number of these paths must be as small as possible. This problem is discussed in
(�������� �
����a).

           101*** 111***

        *010** *110**

  **101* **100*

     ***010     ***011 ***000

Figure 7. Graphical representation of the set of receptors to be constructed for the set S of Example 1

It is interesting that the number of strings that can be detected by the complete repertoire of receptors hardly
depends on the structure of the set TS. For instance, replacing the first string of S in Example 1 by the string
001100 we are able to construct four detectors recognizing 51 strings (i.e. the number of holes is 4).

7. Summary and conclusions

The problem of generating receptors recognizing strings from the set U-S can be treated in broader sense as a
problem of inducing concise description of a notion N represented in the DNF form: each string u ∈ U-S is an
elementary conjunct and the whole set U-S is the disjunction of these conjuncts. Knowing non-N, i.e. the set S,
we are looking for a short (i.e. including minimal number of conjuncts) description R such that its extension R*
(expressed in terms of the matching rule) equals just U-S. The results of last section show that in general R* is
only a proper subset of U-S.

To verify our ideas we conducted a number of simulations (not reported here) and the number of holes, the total
number of unrecognizable strings and the number of receptors recognizing all the remaining strings were

S no w Tz[w,1
]

T[w,2] T[w,3] T[w,4]

001110 0 000 0 0 0 1
001101 1 001 0 0 0 0
001111 2 010 0 1 0 1
010001 3 011 0 0 0 1
010101 4 100 0 0 1 0
011100 5 101 1 0 1 0
011111 6 110 0 1 0 0
100001 7 111 1 0 0 0
110001
110100



computed by using the ideas from last section. Table 7 below presents exemplary results when S consists of 200
randomly choosen strings of length 20. Varying the threshold k we observe that the number of unrecognizable
strings decreases while the number of receptors increases. This number has been compared with theoretical value
dictaded by the equation (6). The failure probability has been computed as the ratio of unrecognized strings to 2l.
It is interesting to observe that for k ≤ 6 it is not possible to construct any detector. For k = 7 the theoretical
estimate is 1,13 but since D(20,7) = 61008 and the number of stings that can be detected equals 220 - 979584 =
68992 it is obvious that we need at least two receptors. When k increases, the number of receptors increases
approximately as the power of two. Indeed D(l,k+1)/D(l,k) = (l-k+1)/[2⋅(l-k+2)] that is the number of strings
recognized by a receptor decreases approximately twice if the threshold increases by one. It is interesting
however, that the method presented in Section 5 allows generate only half of the theoretical number of receptors
(for larger values of k).

Table 7. Comparison of theoretical (c) and empirical (d) number of detectors needet to recognize maximal
number of non-self strings. Row (a) shows number of holes and (b) shows total number of unrecognizable strings
(it counts self trings as well).

It is also important to observe that the number of holes is much greater than the number of strings that cannot be
recognized and when k increases these two numbers became almost identical. In our case when k = 13 the number
of holes is 22 and number of additional unrecognizable strings equals 227 - 200 - 22 = 5. When k = 14 there is
only 6 holes and 2 additional unrecognizable strings and for k = 15 the number of holes is 4 and there is no
additional unrecognizable strings (apart of self strings of course).

In summary, the methods described in this paper allow
• Count the number of holes.
• Count the number of additional strings that cannot be recognized by any set of receptors (for given threshold

k). This enables correctly find the lower bound for the failure probability.
• Count (in advance) the number of strings that can be recognized by a given repertoire of receptors.
• Generate a minimal set of receptors recognizing maximal subset of strings from the set U-S.

There is one more interesting remark. Suppose we use the random algorithm described in Section 3.2 and
suppose we have found, say r receptors. Let Tr be the set of templates contained in these receptors. A new
receptor can be added to the existing repertoire if (1) it does not match self strings, and (2) it enters as much as
possible new templates to the Tr.
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