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Abstract

In a general context we introduce image processing with 1-dimensional
wavelets and show the di�erences with nonseparable 2-dimensional wavelets
having quincunx decimation, in the �rst place, and with balanced nonsep-
arable 2-dimensional multiwavelets, in the second place. All of them are
orthogonal. Formulae for analysis and synthesis are given for the latter.
The �rst steps are illustrated with images. The decomposition of the orig-
inal image into 2 input images is explained. We illustrate with examples
2 applications: zoom-in (interpolation) and compression of images.
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1 INTRODUCTION

Wavelet transforms have good time-frequency localization, which makes them
an eÆcient tool for signal processing: they are used for compression, denoising,
zooming an image. Generalizations of wavelets include i) nonseparable wavelets
and ii) multiwavelets. We show how a combination of both works in practice,
and give examples of two applications.

In section 2 we brie
y introduce image processing with 1-dimensional wavelets.
In section 3 we show how these are used to process images {the separable
wavelets{ and how a more general approach includes 2-d �lters and decima-
tion with a dilation matrix. We illustrate this de�ning quincunx decimation.

In section 4 multiwavelets are introduced, and in section 5 nonseparable mul-
tiwavelets are introduced. Formulae for analysis and synthesis are given for the
latter in section 6. The �rst steps are illustrated with images. The decomposi-
tion of the original image into 2 input images is explained. Finally we illustrate
with examples two applications: zoom-in (interpolation) and compression of
images
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Figure 1: Analysis-synthesis scheme

2 Wavelet processing a 1-d signal

Given a one-dimensional signal c
(0)
k , �nding one step of the wavelet transform of

the signal consists in i) �ltering the signal with a low-pass �lter H 0 = [::h3 h2 h1
h0::] and carrying out a decimation by 2, giving a smoothed version of the signal

c
(�1)
k ( approximation coeÆcients ), and ii) �ltering the signal with a high-pass

�lter G0and carrying out a decimation by 2, giving the detail coeÆcients d
(�1)
k ,

which capture the �ne details of the signal. In �gure 1 we have the transform
and inverse transform scheme. Two functions de�ne the wavelet transform: the
scaling function �(x) and the wavelet 	(x), which verify:

�(x) =
X

k2��Z
hk �( 2 x� k ) 	(x) =

X
k2��Z

gk �( 2 x� k )

CoeÆcients c
(0)
k correpond to a certain function f(x) written in the basis of

integer translations of the scaling function: f�( x� k)g, and under certain con-

ditions the fc(0)k g are very close to the samples of f(x) (see [Daubechies1992]).

f(x) =
X
k

c
(0)
k �(x� k)

CoeÆcients c
(�1)
k correpond to the basis f 1p

2
�( x

2 � k)g and d
(�1)
k correpond

to the basis f 1p
2
	( x

2 � k)g
In a second step the whole process is repeated on c

(�1)
k : we now obtain the

coarser approximation coeÆcients c
(�2)
k , and the detail coeÆcients d

(�2)
k , which

correspond to less �ne detail. We end up having a very coarse approximation
of the original signal, and a series of details at di�erent scales.

f(x) =
X
k

c
(�L)
k ��L;k(x) +

�1X
j=�L+1

X
k

d
(j)
k 	j;k(x) (1)

where

�j;k(x) = 2j=2 �(2j x� k) ; 	j;k(x) = 2j=2 	(2j x� k)
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Figure 2: Original image

Figure 3: One step of the separable Daubechies 4 transform

Scaling functions and wavelets can be constructed to have certain useful prop-
erties such as short support, orthogonality, symmetry, and polynomial approx-
imation. However, except for the Haar wavelet there can be no symmetry and
orthogonality simultaneously for real �lters.

3 Wavelets for image processing

The way to process an image with 1d- wavelets is to apply the transform to
the rows and then to the columns of the resulting image. In �gure 2 we have
the original image of a phone, and and in �gure 3 we have one step of the
separable Daubechies 4 transform. At the upper left corner is the phone at
a coarser resolution; the 3 other submatrices correspond to details, which are
mostly oriented in the vertical and horizontal directions. However, this does not
agree with our visual perception.

To avoid this, images are treated with nonseparable �lters, and the decima-
tion is done with a general dilation matrix. Examples of nonseparable bidimen-
sional wavelets have been given.( [Cohen and Daubechies1993],
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[Kovacevic and Vetterli1992], and [Kovacevic and Vetterli]).

3.1 Nonseparable wavelets :Quincunx (diagonal) decima-
tion and upsampling

We consider two possible dilation matrices: D1, a re
ection followed by an
expansion of

p
2, and D2, a rotation followed by an expansion of

p
2. For both

matrices jDj = j det(D)j = 2.

D1 =

�
1 1
1 �1

�
D2 =

�
1 �1
1 1

�

Both D1 and D2 induce a decomposition of the sets of all pairs of integers Z2

into 2 cosets: �1 and �2; forming the quincunx sublattices -black and white
squares of a chess-table:

Z2 = �1 [ �2 ; �1 = fDZ2g ; �2 =

�
DZ2 +

�
1
0

��

Let D be the dilation matrix.
We de�ne decimation of an image with D as
Y = X # D () Yk = XDk:
We de�ne upsampling an image with D as:

Y = X " D , Yk =

�
Xj ; if k = Dj for some j 2 Z2

0 if D�1k =2 Z2

For example, if we have image X =

�
1 2
3 4

�
; then X upsampled with

D1 is Y =

2
4 0 1 0

2 0 3
0 4 0

3
5 : The dilation matrix is a re
ection, and it induces a

re
ection in the upsampled image Y . If Y is now decimated with D1, we recover
X . Quincunx decimation is equivalent to eliminating all the white squares of a
chess-table.

4 Multiwavelets

In a more general context, we consider the approximation images as generated
by the integer translations of 2 or more scaling functions: they give rise to multi-
scaling functions and multiwavelets. Multiwavelets in 1-d have been constructed
to have suitable properties, such as orthogonality, polynomial approximation,
short support and symmetry. They have given good results for signal com-
pression: see [Strela1996] [Strela et al.to appear] and [Plonka and Strela1998].
Balanced multiwavelets [Lebrun and Vetterli1997] were introduced in order to
avoid pre�ltering the input data, so that the lowpass branch of the transform
preserves discretized polynomials.
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5 Nonseparable multiwavelets.

In previous works [Ruedin1999] [Ruedin2000] the author constructed examples
of continuous balanced nonseparable orthogonal multiscaling functions, in an
attempt to combine advances made in both directions: multiwavelets, and non-
separable bidimensional wavelets. They are compactly supported, have quin-
cunx decimation, and have polynomial approximation orders (i.e. accuracy) 2
and 3. Their corresponding multiwavelets were also found. (To obtain the �lter
coeÆcients please e-mail the author.) We give a short outline of the theory.

Let �1 and �2 be 2 continuous scaling functions de�ned over R2 and asso-
ciated to a dilation matrix D. In vector form the dilation equation becomes

�(x) =
X

k2��Z2

Hk �( D x� k )

�
�1(x)
�2(x)

�
=
X
k

[Hk ]

�
�1( D x� k )
�2( D x� k )

�
(2)

where Hk are 2x2 matrices with indices

M0=

2
4 0 H1;1 H2;1 0

H0;0 H1;0 H2;0 H3;0

0 H1;�1 H2;�1 0

3
5

and D is the dilation matrix. Notation is rather loose and �1( D x� k ) means

that we apply �1 to the 2 entries of D x� k =

�
d11 d12
d21 d22

� �
x1
x2

�
�
�
k1
k2

�
The number of wavelets is jDj � 1 = 1 in both cases. The equation for the

multiwavelet, in vector form, is:

	(x) =
X
k

Gk �( D x� k ) (3)

6 Analysis-synthesis formulae:

Assume that we decompose the original image into two input images c
(0)
1;k and

c
(0)
2;k (k 2 Z2), and let f(x) be the function that veri�es:

f(x) =
X
k2Z2

c
(0)T
�;k �(x � k), where c

(0)
�;k =

"
c
(0)
1;k

c
(0)
2;k

#
:

The analysis scheme (see �gure 6) outputs 2 approximation images: c
(�1)
1;k and
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Figure 4: Analysis-synthesis scheme

c
(�1)
2;k , and 2 detail images: d

(�1)
1;k and d

(�1)
2;k ;whose expression we want to �nd.

We set

c
(�1)
�;k =

"
c
(�1)
1;k

c
(�1)
2;k

#
d
(�1)
�;k =

"
d
(�1)
1;k

d
(�1)
2;k

#
.

c
(�1)
�;k =

1pjDj
X
j2Z2

Hj�Dk c
(0)
�;j (4)

d
(�1)
�;k =

1p
jDj

X
j2Z2

Gj�Dk c
(0)
�;j : (5)

Similarly it can be shown that the synthesis formula is:

c
(0)
�;k =

1pjDj
2
4X
j2Z2

HT
k�Djc

(�1)
�;j +

X
j2Z2

GT
k�Djd

(�1)
�;j

3
5 (6)

In �gure 5 we have 4 images: they are the coeÆcients of one step of the mul-

tiwavelet transform: d
(�1)
1;k (top left), c

(�1)
1;k (top right) and d

(�1)
2;k (bottom left),

c
(�1)
2;k (bottom right). The dilation matrix was D1 The e�ect of downsampling
with D1 in the analysis formula is to re
ect and contract the image.

In �gure 6 are the coeÆcients of 2 steps of the same transform: d
(�1)
1;k ; d

(�2)
1;k ,

c
(�2)
1;k (top) and d

(�1)
2;k ; d

(�2)
2;k , c

(�2)
2;k (bottom). After 2 steps the image has

recovered its original orientation. It takes 4 steps to do so if the dilation matrix
is D2:

At each step, before the images are processed they have to be periodized,
otherwise there are artifacts at the borders. Periodization is di�erent if the
frames of the images are normally oriented squares (after the even steps) or
diamond-oriented squares (after the odd steps).

At the beginning of the process the original image may be copied so as to
get 2 input images. Otherwise, the original image can be decomposed into 2
input images by separating into 2 diamonds the pixels belonging to each coset
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Figure 5: One step of the multiwavelet transform
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Figure 6: 2 steps of the multiwavelet transform
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Figure 7: Zoom-in with Daubechies 4

Figure 8: Zoom-in with D1-acc3-bal

Notice that in this way all the coeÆcients of the multiwavelet transform need
as much storage as the original image, and can be made to �t into it.

7 Applications:

7.1 Zoom in

To zoom-in an image with one-dimensional wavelets, we upsample the image and
then convolve it with a low-pass �lter { i.e we apply the synthesis algorithm of
scheme 1 to the image, after setting to zero the detail coeÆcients.

To zoom-in an image with nonseparable multiwavelets, we apply the synthe-

sis algorithm of scheme 6: the image is copied onto c
(�1)
1;� and c

(�1)
2;� , the details

d
(�1)
1;� and d

(�1)
2;� are set to zero and the synthesis formula 6 is applied.

The original image of a phone was decimated eliminating 3 pixels out of
4. It was then zoomed-in with separable Daubechies 4 wavelet, on one hand
(see detail in �gure 7.1), and with a nonseparable balanced multiwavelet having
accuracy 3 with dilation matrix D1 {D1�acc3�bal {, on the other (see detail in
�gure 7.1). Comparing both images, we see that the latter has more resolution;
this is because the dilation matrix takes 2 steps to zoom-in an image to twice
its size; while with separable wavelets it takes 1 step.
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Reconstruction 15% Daubechies4 coefficients

Figure 9: Reconstruction with Daubechies 4 -detail

7.2 Compression

Wavelet transforms are eÆcient for image compression: they decorrelate the
data and give a sparse representation of the image. A threshold is applied to
the transformed coeÆcients; the thresholded coeÆcients have many zeroes and
this is useful for compression. The quality of the reconstructed image is good.
Since the system is orthonormal, an error in the transformed coeÆcients is equal
to the error in the reconstructed image (in 2-norm).

The original image of a cameraman was chosen for compression. The sep-
arable wavelet transform Daubechies 4 and the multiwavelet transform D1 �
acc3 � bal were applied to it and compared. The number of steps taken was
such that the �nal coarse approximation matrix was of size 8� 8. The original
images were compressed retaining in all cases 15% of the largest transformed
coeÆcients in absolute value {adecuate quantization and entropy coding will
improve the compression rate. In �gure 9 we have a detail of the reconstructed
image after transforming with Daubechies 4 and thresholding. In �gure 10 we
have a detail of the reconstructed image after transforming with D1�acc3�bal
multiwavelet and thresholding. The latter looks smoother, but the former has
more energy compaction: the PSNR was 35.51 for Daubechies 4 and 32.20 for
D1� acc3� bal.

8 Conclusion

We have shown how image processing is achieved with nonseparable multi-
wavelets having quincunx decimation. The examples reveal satisfactory results
at interpolation ( zoom- in) for these wavelets. For future work remains the
construction of better �lters for image compression.
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Reconstruction 15% D1−acc3−bal1 coefficients

Figure 10: Reconstruction with D1� acc3� bal {detail
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