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ABSTRACT
Evolving neural arrays (ENA) have proved to be capable
of learning complex behaviors, i.e., problems whose
solution requires strategy learning. For this reason, they
present many applications in various areas such as robotics
and process control. Unlike conventional methods –based
on a single neural network– ENAs are made up of a set of
networks organized as an array. Each of them represents a
part of the expected solution.
This work describes a new method, ALENA, that
enhances the solutions obtained by solving the main
deficiencies of ENA since it eases the obtaining of
specialized components, does not require the explicit
decomposition of the problem into subtasks, and is
capable of automatically adjusting the arrays length for
each particular use.
The measurements of the proposed method –applied to
problems of obstacle evasion and objects collection– show
the superiority of ALENA in relation to the traditional
methods that deal with populations of neural networks.
SANE has been used in particular as a comparative
referent due to its high performance. Eventually,
conclusions and some future lines of work are presented.

Keywords: Evolving Neural Networks, Evolving Neural
Arrays, Learning, Genetic Algorithms, Subpopulations.

1. INTRODUCTION
Evolving Artificial Neural Networks (EANNs) are a
particular case of the artificial neural networks (ANNs) in
which the adaptation is carried out by way of training and,
above all, evolution [13]. The evolution has been used in
various ways: in order to obtain connection weights,
architecture design, initial parameters value, learning
rules, etc. [14].
Freeman and Skapura [6] discussed the need to learn to
combine small ANNs, putting them under the control of
other networks in order to solve the scaling problem. Xin
Yao and Yong Liu [12] have studied the benefits of using
the complete population of the neural networks obtained in
the last generation –result of an evolving process–, instead
of that of better fitness. More recently, Bruce and
Miikkulainen [1], working on the problem of free-hand
characters recognition, have demonstrated that all the
neural networks of a population, together with an effective
specialization technique, can respond better collectively
than individually.
Under the general lines of exploring solutions based on
multiple neural networks, [4] presents evolving neural
arrays (ENA). This method has proved to be more
efficient than other neuroevolving strategies as it
combines the benefits of incremental evolution with the
power of several neural networks integrated in a single
controller. However, the need of defining explicitly the
subobjectives in each substage –compulsory inheritance of
incremental evolution [8]– constitutes the weakest point of
the method hindering its generalization.

An alternative strategy to evolve neural arrays was
presented in [5] to avoid the explicit definition of the
subobjectives. In this way it is possible to build evolving
algorithms easily adaptable to other types of problems.
Nevertheless, the obtained solutions often lack tolerance
for disturbances that may alter the normal process times.
This work proposes a new method of evolving neural
arrays, ALENA, rectifying the mentioned drawbacks.
ALENA does no work on the basis of subobjectives
explicit definition; the networks activation strategy within
the array does not depend on the processing time but
exclusively on the data input into the controller, and the
algorithm is capable of adjusting the length of the array to
the most adequate size for each situation. In this way,
there exists an upgrading of the solution efficiency and the
algorithm robustness easily adaptable to other types of
problems.

2. ALENA
ALENA allows to obtain controllers made up of neural
arrays that solve process control problems more efficiently
than traditional solutions. Member networks arising from
the evolution of different subpopulations learn to become
specialized in different subtasks of the total process to be
controlled. Thus, from the coordinated operation of these
networks, the solution of a complex problem arises more
efficiently.

Internal Organization of the Controller
The controller consists of a neural array, a tuple of neural
networks in the manner of C=(nn1,nn2,..,nnn). Like a
network, a neural network accepts an input of data, it is
evaluated, and produces the corresponding output. At each
instant t, the output will be provided by some of the
member networks. Only one of them remains active at a
time, thus the controller processing time is evaluated in
such instant.

Performance of the Controller
At the beginning of the process, the only active network of
the controller is nn1, which  solves all the inputs up to its
auto-deactivation. Once deactivated, the control moves to
nn2, still evaluated until it “decides” to be deactivated,
passing the control to nn3. This control delegation goes on
until nnn (last component) is eventually activated,
remaining in such state until the end of the process. In all
the cases, the network deactivation is carried out after the
output of the controller occurs, leaving the next neural
network active for the next instant of evaluation.
 

Figure 1. Structure of the Controller



Array networks have an output neuron additional to the
quantity defined by the problem to be solved. The value of
such neuron is not part of the controller output and is used
to determine whether the evaluated network should be
deactivated.
Let di(t) be the value of the extra output neuron of the
active network nni at the evaluation instant t. The neural
network nni will be still active for instant t+1 if some of
the following two conditions are fulfilled:
1) Abs(di(t)-di(t-1)) < c, where c is an a priori defined
constant.
2) i = n, being n the array length.
On the contrary, if none of these conditions is fulfilled,
nni+1 will be activated at instant t+1.
In this way, the activation/deactivation mechanism of the
member networks is defined in function of the information
provided to the array at two consecutive time instants. The
sensitivity of this mechanism can be adjusted by the
proper choice of the constant c that appears in the first
condition. For a range between 0 and 1 of the extra neuron
output, good results with values for c comprising 0.01 and
0.1 have been found. As with other parameters in the
neural networks theory, previous experimentation may be
the best option to determine this value properly.

3. EVOLVING ALGORITHM
Two phases are distinguished in the evolving algorithm:
1) Exploration: It comprises the first generations of the
evolution. Beginning with single-component arrays, the
algorithm approaches the solution to the problem at the
same time the array length becomes larger with the
incorporation of new neural networks.
2) Exploitation: Once the solution to the problem is close
enough (high enough fitness), the array length remains
fixed and the solution is achieved by means of the
adjustment or optimization of the components.
If the array length established during the exploration is n,
controllers like C=(nn1,nn2,..,nnn) will be obtained by
concurrent evolution of n subpopulations of neural
networks, one for each nni component of the controller.

 
Figure 2. Neural Networks Subpopulations

In both phases –exploration and exploitation–, populations
Pi of neural networks are evolved one at a time, during
variable length periods, measured in quantity of
generations, and determined in function of the best fitness
obtained per generation. As the process advances, the
populations evolutions will succeed orderly in a circular
line. Each Pi will eventually undergo several evolution
periods.
The algorithm pseudocode used is the following:

Begin Program
// exploration
n:=0
while not endExploration
  n:= n + 1
  Generate at random subpopulation Pn

  Repeat
    stepOfEvolution(Pn)
  Until fitness_Stationary
End while

// now n keeps the array length
// exploitation
i:=0
While not termination
  i:= i mod n + 1
  Repeat
    stepOfEvolution(Pi)
  Until fitness_ Stationary
End while

End Program.

//routine StepOfEvolution
StepOfEvolution(Pi)
begin
Build a controllers population PC(i)
Evaluate each controller of PC(i)
Assign fitness to networks of Pi

If not fitness_stationary then
  Pi:= next_generation(Pi)
End

The condition endExploration is related to the
understanding, certainly vague, of the already mentioned
“high enough fitness.” This condition must be defined in
function of the particular implementation of a given
problem. As example, in the problem of obstacle evasion,
objects search and collection presented in this work,
endExploration takes the value true when a fitness
equal to the 75% of the maximal value attainable by
optimal controller is achieved.
The condition fitness_Stationary will be true when
the best fitness cannot be upgraded over a given number of
generations. This quantity is a parameter of the algorithm.
This paper shows the results that suggest the use of a small
number for this parameter (1 or 2, at most).
The condition termination becomes true when a given
generation, or a value of previously fixed fitness, is
achieved.
Controllers are built up with each of the networks of the
population that undergoes the evolution and the best-
ranked network according to its fitness, in each of the
remaining populations. In this way, the evaluated
controllers differ from each other, only in the i-th
component.
Pc(i) = {(nn1,nn2,...nni,...nnn): nni ∈ Pi and

nnJ = best(PJ) for i≠ J}

Figure 3. Subpopulations Evolution

In this way, at any moment, there exists a population Pi
that evolves to optimize the integration of the i-th
component of the controller with its remaining networks.
The fitness attained by each controller during the
evaluation is assigned to its i-th component (individuals of
population Pi).



In order to obtain the next generation in the networks
population Pi no specific evolving algorithm is assumed.
Simple genetic algorithms –such as the presented by
Goldberg [7]– as well as other more sophisticated ones
–typical of the neuroevolution paradigm– can be used. In
particular, in this work, SANE [9] [10] [11] has been
implemented, which is briefly described since it has also
been used as comparative referent in the tests carried out.
No restriction is assumed on the network parameters
undergoing evolution (connection weights, architecture,
transference function, etc.). A set of variants can be found
in [14], where several researches on neuroevolution are
quoted, including hybridization with traditional learning
algorithms.
Since a neural array evaluation makes use of the same
computing resources as a single network, and since
subpopulations are evolved in shifts, one at a time, the
computational load of the algorithm here presented is
similar to that of any conventional method. In addition,
since the controller shares most of the components, a good
implementation of its evaluation allows to upgrade the
processing times, enabling, in some cases, the evaluation
of a controller and the use the output for another, thus
saving computing time. It should be bear in mind that, in
neuroevolving algorithms, neural networks evaluation
often consumes most of the running time.
A small variant to the algorithm here presented allows to
reduce the storage requirements. Instead of keeping the
whole subpopulations, only a given percentage of the best-
ranked networks in them is to be kept. Once the shift for
its evolution is obtained, the subpopulation is completed at
random with chromosomes that provide genetic diversity.

More on the exploration and exploitation phases
During the algorithm exploration phase, it is important
that the partially built controllers tend to deactivate all of
their neural networks during their evaluation. Thus, the
future next component will have chances of executing
itself. For it, those controllers that have not deactivated all
of their networks at the last instant of the evaluation (only
during the exploration) are penalized with low fitness, and
the evaluation time is extended every time that the
algorithm adds a component to the neural arrays.
In the exploitation phase, the components optimization can
result in the decrease of the array length. It is common to
find that, while the algorithm adjusts the i-th component,
subjecting the subpopulation Pi to evolution, some
controller solves the problem using the first k neural
networks with i ≤ k < n, being n the current length of the
arrays. In this case, subpopulations PJ  are eliminated for
k < J ≤  n, and the arrays are cut establishing their new
length in k.

4. SANE
SANE  has demonstrated the advantages of cooperative
coevolution in the search of solutions to control problems,
being superior to the traditional strategies.
In the conventional solutions that evolve neural networks,
each population individual represents a complete neural
network. This does not occur in SANE, where the
individuals of a neuron population are combined to make
up the networks that express the searched solution. This
combination undergoes evolution in a blueprints
population.
Each member of the neuron population codifies, with
binary alphabet, a sequence of connections (label, weight)
that thoroughly defines a hidden node of a feedforward

neural network with a single hidden layer. The field label
identifies the input or output neuron with which a
connection is established. Each member of the blueprints
population consists of a series of pointers to the other
population that identify the neurons building the neural
network (fig. 4). The blueprints population uses the real
alphabet.

Figure 4. SANE Populations

The evolving algorithm operates building the neural
networks from each blueprint chromosome. Each network
fitness, obtained by its performance in the solution of the
posed problem, is assigned to the blueprint chromosome.
The fitness of the neuron population individuals is
calculated as the sum of the five better fitness obtained in
the networks of which they have been part. The next
generation is obtained in the neuron population and, then,
the next generation in the blueprints population.
SANE uses an elitist selection and replacement strategy in
both populations. The best ranked half of the population
moves towards the following generation. The best quarter
is selected to reproduce itself completing, with its
descendants, the remaining half (fig. 5).

 
Figure 5. Replacement Selection in SANE

In the reproduction, one point crossover is used in order to
obtain the first descendant whereas the second one is
obtained by a copy of one of the parents. In the neurons
population, binary mutation is applied with 0.001
probability per bit. In the blueprints population two types
of mutations are applied: i) change of pointer to another
unit of the neurons population chosen at random with 0.01
probability, and ii) change of pointer to a descendant of
the unit pointed with 0.5 probability.
[9][10][11] can be consulted for a more detailed
explanation of this method.

5. OBSTACLE EVASION, OBJECT SEARCH AND
COLLECTION

Problem Definition
The aim consists in achieving intelligent behavior in an
agent that moves freely in two dimensions within the
boundaries of a virtual environment, interacting with
obstacles, which the agent must learn to elude, and objects
that it must learn to find and collect.
A controller directs the agent movements in a temporal
interval simulated by the succession of n discrete time
instants (simulation steps). At each instant, the controller



is stimulated by a set of input signals. The output is made
up of an ordered pair (α , ρ ) that determines the rotating
and displacement angle performed by the agent on the
surface. However, the obstacles and the boundaries of the
environment can frustrate the movement.
The goal of the problem is to control the agent so that it,
from a given place, finds and withdraws from the scenario
two objects of different kind, in a given order, in the lesser
possible quantity of steps.

Agent
Each agent has 5 sensors to detect obstacles, at a short
distance (twice its own diameter), distributed uniformly in
front of the agent in order to achieve an vision angle of
144° (fig. 6).

Figure 6. Obstacle Sensors

The obstacle sensors can be considered as touch-sensitive
extensions oriented forwards in five directions. Each
sensor provides a real value belonging to the interval [0,1]
directly proportional to the closeness of the obstacle
detected.
It also has 4 sensors, affected to the detection of the object
1, and others 4 for the detection of object 2. They show the
absence or presence of the object in a radio of 90° around
the agent, by means of the values 0 or 1. The objects
detection is carried out at any distance, provided that no
obstacle is in the way, impeding its visualization (fig. 7).
The four sensors affected to the detection of an obstacle
are set to 1, at the moment in which the corresponding
object is collected.

Figure 7. Object Sensors

Defined Scenarios
The complexity of the problem varies in function of the
three defined scenarios (fig. 8).
Scenario A is the simplest one. Its reduced dimensions and
the obstacles arrangement limit the agent mobility. An
evolving algorithm will easily find a good solution. It is
enough to evolve a controller that advances until an
obstacle is found (labyrinth wall) and goes around the
scenario without leaving it, keeping it always to the right
(known heuristics to dodge given labyrinths).

 
Figure 8. Scenarios

Scenario B represents an intermediate level of difficulty.
The controller must be more elaborated than in the
previous scenario. Here, it is necessary that the agent
becomes separated from the walls in order to reach the
objects. Once the first object is collected, the challenge
consists in finding the most adequate direction to go on. It
should be considered that, from that place, the second
object is not “in sight”, nor any of the obstacles. The agent
only handles the information that the first object has been
collected (four sensor set to 1) and, from this data, it must
adopt the most adequate moving strategy to solve the
scenario efficiently (lesser quantity of possible steps).
Scenario C is the most difficult of the three. To the
difficulties of scenario B it must be added the need of
carrying out several changes of direction to find an
efficient run. This behavior is not easy to acquire, mainly
if, as in this case, there are no many significant changes in
the data input to the controller.

Fitness Allocation
The problem of obstacle evasion can be considered of the
type of Sequential decision tasks. Its main characteristic is
the difficulty to designate with precision  the goodness of
a decision taken, being necessary a decisions sequence
before being able to measure that the effects of any of
them have been. Some of the examples of the real world
are: data routing in Internet routers, flow control in
chemical reactors, air-traffic control, etc. In all of these
cases, the effect of a simple decision is evidenced after
some time has passed and, even then, it is frequently
difficult to establish which, and to which extent, the
responsible decisions were for what has occurred [10].
The obstacle elusion and objects search have been framed
within this type of problem and, thus, there is no
assessment of the controllers aptitude until the simulation
used for its evaluation has not finished.
Once the simulation time finishes, the controller fitness is
computed, which in turn directs the agent, in the following
manner: Let f(a) be the aptitude value assigned to agent a
for its performance in the simulation.
• If object 1 is not reached, f(a) will take a value of the
interval [0,40) computed proportionally to the path run
towards such object.
• If, otherwise, object 1 was collected but object 2
remains uncollected, f(a) will take a value of the interval
[40,50) computed proportionally to the path run towards
object 2.



• Eventually, if both objects are collected, f(a) will
belong to the interval [50,60). If s is the number of steps
used to complete the task, f(a)=50+10(o/s), being o an
estimation of the quantity of steps necessary to solve the
scenario for a optimum controller.

Artificial Neural Networks Architecture
In order to build arrays, feedforward networks are used
with a single hidden layer made up of 8 neurons, with a
free connection scheme (not thoroughly connected), with
bias and transference function  evolution letting each node
have one out of four different sigmoids: f1(x)=1/(1+exp(-
0.5x)), f2(x)=1/(1+exp(-x)), f3(x)=1/(1+exp(-1.5x)),
f4(x)=1/(1+exp(-2x)). The transference function evolution
has proved to have a good performance when applied to
problems of obstacle evasion and reaching objectives
[2][3], reason why it has been used in this work.

6. EXPERIMENTATION
The performance of this new evolving strategy was
measured with and compared to SANE.
In all the tests carried out, feedforward networks were
evolved with 13 input neurons, 2 output (3 in the case of
the neural arrays), and 8 hidden neurons, tendency
connection, and transference function evolution. In the
neuron population, the sigmoid type (2 bits), the tendency
connection (16 bits), and 15 connections per neuron were
codified. Each connection was codified with 8 bits for the
label and 16 bits for the weight. Blueprints subpopulations
chromosomes were codified with real numbers.
Populations of 80 blueprints and 640 neurons were used,
both in SANE and ALENA subpopulations.
For ALENA method, the condition of achieving a fitness
equal to 75% of the maximum value attainable by an
optimum controller (estimated over every scenario) was
taken as the finalization of the exploration phase.
On the whole, 15 tests were carried, testing SANE,
ALENA1, ALENA2, ALENA5, and ALENA10 on each of
the described scenarios (fig. 8). The sub-index
accompanying ALENA method refers to the parameter
that determines the condition fitness_Stationary of
the algorithm. Thus ALENAi is an instance of the ALENA
method in which the condition fitness_Stationary
becomes true when the fitness curve is not upgraded
during i generations.
Each of the tests consisted in 30 evolutions extended
through 300 generations. In order to analyze the tested
methods performance, the functions fitnessAvrg and
HitRatio are used and defined as follows:

Being Fi (g) the fitness value of the best individual of the
generation g, in the evolution number i.

Being Hi (g) a function that returns 1 or 0, according to the
success or failure of the evolution number i in finding a
controller that solves the task (collecting both objects) in
at most g generations.

Results obtained
An important parameter of the new proposed method is
that which indicates how many consecutive generations
without progresses make the fitness_Stationary
condition come true. The impact of this parameter is

especially significant during the algorithm exploration
phase.
In principle, one may think that a large value will lead to
invest too many generations in the optimization of a
component, whereas it would be of better profit to add a
new network to the array. On the other hand, a small value
would not give the chance to the algorithm to find a
nearly-good component when a new network is being
added (in the exploration phase) to the array, which would
undergo the same fate. The experimentation carried out
does not support this last assertion. Figure 9 and 10, for
scenario A, show that the lesser the value of this
parameter, the better the method performance. The tests on
scenarios B and C yielded very similar results.

Figure 9. Average Fitness. ALENA1, ALENA 2, ALENA 5
and ALENA 10 on scenario A

Figure 10. Hit Ratio. ALENA 1, ALENA 2, ALENA 5 and
ALENA 10 on scenario A

ALENA10 needed 157 generations in order to obtain the
100% of efficiency (collection both objects in the 30 test
evolutions), while ALENA1 only needed 51 for the same
result.
The use of a small value for this parameter results in
controllers with greater number of components. Table 1
shows the average length of the neural controller that have
solved each scenario.

ALENA1 ALENA 2 ALENA 5 ALENA 0

Scen. A 8.93 8.23 6.30 6.03
Scen. B 7.20 5.83 5.07 4.83
Scen. C 8.10 6.57 5.57 4.87

Table 1. Average Length of the neural array

It must be recalled that most of the neural networks in a
controller does not assume a greater computational load,



since within the array only one network remains active at
each instant. The genetic algorithm does not suffer
overload either, since only one populations is evolved at a
time.

Next, the comparative graphics between ALENA1 and
SANE on the different scenarios are presented.

Scenario A

Figure 11. Average Fitness. Hit Ratio. Scenario A

Scenario A is successfully solved by both methods.
However, in order to achieve a 100% efficiency, SANE
used 100 generations, whereas ALENA1 only 51. In
addition, the best fitness always favored ALENA1 which
found the speediest controllers (fig. 11).

Scenario B

Figure 12. Average Fitness. Hit Ratio. Scenario B

Scenario B, more complex than A, emphasizes the
performance differences of both methods. In only 42
generations, ALENA1 reached the 100% of efficiency,
whereas SANE only obtained the 77% in 300 generations
(fig. 12).

Scenario C

Figure 13. Average Fitness. Hit Ratio. Scenario C

Finally, the most difficult of the three Scenarios evidences
that ALENA1 obtains a significantly higher performance
than SANE in the solution of this problem.
In the tests carried out on the three Scenarios, notice that
SANE performance is affected notoriously by the Scenario
on which the test is carried out. On the contrary, ALENA1
behaves rather similarly in all of them. This is clearly
depicted in figures 14 and 15.

Figure 14. SANE on Scenarios A B and C

Figure 15. ALENA1 on Scenarios A B and C

7. CONCLUSIONS  AND FUTURE LINES OF
WORK

A method evolving neural arrays to control process more
efficiently than the conventional methods but with similar
processing requirements has been presented.
ALENA also upgrades other neural arrays evolution
strategies eliminating the explicit definition of
subobjectives and adjusting automatically the array length
for each situation. In this way the solutions are easier to be
generalized with other type of problems.
The results obtained to the present are expected to be
applied in the area of robotics in order to evolve neural



arrays dominating a robot arm with five degrees of
freedom from an external image acquisition system.
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